A GENERIC MANAGEMENT MODEL FOR
CORBA, CMIP AND SNMP

DISSERTATION
DER, WIRTSCHAFTSWISSENSCHAFTLICHEN FAKULTAT
DER UNIVERSITAT ZURICH

zur Erlangung der Wurde
eines Doktors der Informatik

vorgelegt von
BELA BAN
von

Kreuzlingen TG

genehmigt auf Antrag von
Pror. DrR. L. RICHTER
ProrF. DrR. K. BAUKNECHT

DEZEMBER 1997

Die Wirtschaftswissenschaftliche Fakultat, Abteilung Informatik, gestattet hierdurch die
Drucklegung der vorliegenden Dissertation, ohne damit zu den darin ausgesprochenen
Anschauungen Stellung zu nehmen.

Zurich, den 10. Dezember 1997

Der Abteilungsvorsteher: Prof. Dr. L. Richter

11

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as far that the passing there

Had worn them really about the same,
And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day !

Yet knowing how way leads on to way,

I doubted if I should ever come back.
I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I —

I took the one less traveled by,

And that has made all the difference.

ROBERT FROST (1874-1963)
THE RoAD NoOT TAKEN

Contents

Acknowledgments

Abstract

Zusammenfassung

1 Introduction

1.1
1.2
1.3

1.4

2.1

2.2

2.3

Motivation Lo
Definitions
SCOPE . L
1.3.1 Distributed vs. Non-Distributed Paradigm
1.3.2 Protocol-Centric vs. Interface-Centric.
1.3.3 Procedural vs. Object-Oriented Model
1.3.4 Dynamic vs. Static Functionality
1.3.5 Operation vs. Management,
1.3.6 Interface vs. Implementation.
1.3.7 CORBA vs. DCOM vs. Java
Goals
1.4.1 Concepts o L e
1.4.2 Prerequisites. e
2 Target Object Models
CORBA . . .
2.1.1 Architectureo
2.1.2 Object Model
2.1.3 Specification Language oL
2.1.4 Inter-ORB Bridging L.
OSI Network Management (CMIP)
2.2.1 Architectureo
2.2.2 Object Model
2.2.3 Specification Language L oL
224 Naming e
SNMP . .
2.3.1 Architectureo
2.3.2 Model

111

x1

x1il

X1v

v

CONTENTS

2.3.3 Specification Language oL 20
2.4 SUMMATYo e e e e e 21
Related Research 23
3.1 Inter-Domain Management L. 23
3.1.1 Overview e e 23
3.1.2 NMF - X/Open Joint Inter-Domain Management 29
3.2 SUummary . .o oL .o e e e 33
The Generic Object Model 35
4.1 Architecture L 35
4.1.1 Object Model 36
4.1.2 Metadata Repository oo 38
4.1.3 Adapters. L 39
4.2 Object Model 39
421 Overviewo 40
4.2.2 Instance Modelo 41
423 MetaModel 57
4.2.4 Convenience Bindings oL 72
425 Typing e 80
4.2.6 SUMMATYo e e e e 81
4.3 Metadata Repositoryo 82
4.3.1 Extending CORBA’s Interface Repository 82
4.3.2 Providing Own Metadata 84
4.3.3 Related Worko 87
4.3.4 SUummaryo e e 89
4.4 Adapters L 90
4.4.1 Characteristicso 90
442 IDL Interface 91
443 CORBA Adapter 92
444 CMIP Adapter 93
445 SNMP Adapter 94
446 SUMMATY . . . o o o e e e e e e 94
45 Event Handling 95
4.5.1 Overview of Existing Event Models 95
4.5.2 The Generic Event Model of GOM 97
4.5.3 SUMMATY o v e e e e e e e 107
4.6 OtherIssues 107
4.6.1 Integration of SNMPol 107
4.6.2 Reconciling Idiosyncrasies of Different Object Models 113
4.6.3 The Proxy Principle 123
4.6.4 Persistence L 125
4.6.5 Execution Model oo 125
4.6.6 Enabling OSI Managers to Access GOM 127
47 Summary ... o e e e 128

CONTENTS v

5 Applicability 131
5.1 GOMscript 131
5.2 Roaming Agents 133

6 Conclusion and Outlook 137

A OMG IDL Definition of GOM Interfaces 143
A.1 Instance Model 143
A2 Meta Model 147
A3 Event Model 148
A4 Metadata Repositoryo 149
A5 OSI Agent SpecificCode oo 153

B Layout Definitions 155
B.1 CORBA Layout e 155
B.2 GDMO Layout e 159
B.3 SNMP Layout e 165

C GODMscript Language Overview 167
C.l OvVerview o o 167
C.2 Types . . . o e 167
C.3 Identifiers 168
C.4 EXPressions o v v it e e e 168
C.5 Statements. L 169
C.6 Extensions 174

C.6.1 Example 174
C.6.2 Writing an Extension for GOM 177
Bibliography 179
Glossary 189

Curriculum Vitae 195

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27

The CORBA architecture, 13
Interface definition using IDL oo oL 15
Manager-Agent paradigmo oo 16
ASN.lexample 18
GDMO example (edited) 19
ASN.I macro o e 21
XoJIDM Interaction Translation Architecture 31
Architecture of GOM 35
Local and remote proxieso 37
The object model of GOM 40
Interface GomElemento 41
Static- and dynamic approaches Lo 44
Interface Val L 45
Interface GenObj L 47
Interface Adapter L 50
Interface Factory L L 51
Example of OMG IDL exception. 52
Creation of a GOM instance representing a CORBA target instance 54
Creation of a GOM instance representing a CMIP target instance 54
Getting an attribute value of a GOM instance 55
Setting an attribute value of a GOM instance 56
Invoking an operation on a proxy instance 57
The metamodel of GOM 58
Metadata tree for attribute "age™o oo 59
IDL interface Person 59
CORBA layout 62
GDMO layout 66
Example of GDMO layout for package 67
Convenience bindings Lo o 73
IDL interface Printer 73
Generated C++ binding for interface GenObj (shortened) 74
Use of generated C++ class L. 75
Convenience binding for generated C++ class GenObj 75
Use of C4++ convenience binding 77

Vil

V1il

4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48

5.1
5.2

LIST OF FIGURES

Generated Smalltalk binding for interface GenObj (shortened) 78
Use of generated Smalltalk class 79
Message doesNotUnderstand of class GomObj 80
Use of convenience binding for Smalltalk 81
Typing classification of GOM 81
An extended interface repositoryo 83
Integration of specific metadata o000 84
Providing own metadata Lo oL 85
Adapters L 91
Event handling architecture of GOM 99
Interface EventServiceo 101
Event handling in adapters oL 103
The layout of SNMP 112
UNIX synchronization daemon 115
Interface ProxyAgent 118
Interface GenGroupObj L L 119
Recursive type definitions in GOM. 121
Example of a recursive type definition in the meta model 122
Adding deferred-asynchronous execution to GenObj. 127
Example of use of ExecuteAsync. 127
Access from OSI managersto GOM 128
GOMscript samplecodeo oo 132

Roaming Code. L 133

List of Tables

3.1 Classification of Related Work in the Domains CORBA, CMIP and SNMP 24
3.2 XoJIDM Specification Translation L. 30
4.1 Mapping of target system elementsto GOM 42
4.2 Mapping of CORBA elements to the instance model 63
4.3 Structure of types in the generic meta model using the CORBA layout . . 64
4.4 Mapping of GDMO elements to the instance model 68
4.5 Mapping of meta model types using the GDMO layout 70
4.6 Mapping of ASN.1 subtypes 71
4.7 Mapping of SNMP to GOM. 108
4.8 Mapping of SNMP requests to GOM operations 109
4.9 Mapping of SNMP typesto GOM 110
4.10 Arguments to the TRAP operation 112

1X

Acknowledgments

My thanks go to the following people (in alphabetical order):

Bauknecht, Kurt

For being co-advisor for this thesis and for his support getting me
started as a pre-doc.

Deri, Luca

For many interesting discussions, for sometimes having extreme
opinions, for his invaluable help with SNMP and OSl-related is-
sues, for always introducing new and exciting ideas, for trying
and installing everything new on the planet, for proof-reading my
thesis and correcting my English ...

Domenig, Marc

For getting me to learn CLOS and for being an excellent diploma
thesis advisor.

Dreyer, Werner

For proof-reading and valuable comments.

Gantenbein, Dieter

For many interesting discussions and for proof-reading the thesis.

Genilloud, Guy

For interesting discussions during DSOM’95, ECOOP’96 and af-
terwards.

Kleinoder, Wolfgang

For providing me with the job at IBM.

Maffeis, Silvano

For the many discussions we had on Electra and CORBA in gen-
eral, for always being interested in all sorts of things and for giving
me the tip about Cornell ...

Niksch, Michael

For his guru-style advise on things ranging from AFS cache prob-
lems to questions about the firewall etc.

Pavka, Lilli

For very detailed proof-reading.

Rageth, Beat

For his willingness to help with problems with the infrastructure
at Ifl since my diploma thesis.

Richter, Lutz

For his support in being the main advisor for this thesis, for his
willingness to hold frequent meetings with me and for his advise
on many aspects of the 'famous’ Promotionsordnung.

Riviere, Anne-

Isabelle

For valuable comments on the draft version.

Schiirfeld, Ute

For the long discussions on DSOM/OSI integration.

Steiger, Patrick

For proof-reading and valuable comments.

Most of all I would like to thank Janet: for her patience with the 'perpetual student’,
for supporting me the entire time, and for the past 8 years !

x1

Abstract

The predominant models to perform network and systems management have traditionally
been SNMP and CMIP. However, SNMP is beginning to reach its limits when more
complex management tasks are to be performed, and CMIP - owing to its complexity
and slow standardization process — has not yet gained the same acceptance as SNMP.
The advent of object-oriented distributed processing models has brought forward a third
candidate, CORBA, originally not targeted specifically at management tasks, but in many
respects nevertheless suitable for managing both local and wide area networks.

CORBA is more powerful than SNMP and less complex than CMIP. Its affiliation with
C++, a widely used programming language, lends it to immediate use by a huge number
of programmers and allows them to introduce distribution into their programs without a
too drastic change of philosophy.

It is therefore assumed that CORBA will become important in the network and systems
management domain as well as in the distributed systems domain. To be more precise,
CORBA will be used to implement management applications (managers) and managed
entities (agents).

The author assumes that, in the near future, all models will have to coexist, because
investments in older models have been made, because CORBA may not yet be ready for
certain specialized management tasks (e.g. embedded management agents), or simply for
political reasons.

Therefore, the need arises to manage a system written in one model from a system written
in a different model, for example to manage an OSI agent using a CORBA-based man-
ager. Assuming that CORBA will achieve broad acceptance in the management world,
it would be desirable to be able to manage other models transparently from CORBA.
The benefits would be investment protection of existing managed entities, the opening
of the SNMP- and CMIP-dominated management world to management-inexperienced
(CORBA) programmers, and the unification of management in one common, simple, and
yet powerful model.

The goal of this work is to examine how CORBA can be used for network and systems
management. The focus is on the client side; that is, how CORBA can be used to imple-
ment management applications that access managed entities, rather than how CORBA
can be used to tmplement managed entities.

Work in this area already exists; an overview will be given and it will be shown that most
work focuses on compile-time static translation of one model to another. This generates
a number of problems.

Therefore a dynamic runtime-based approach is proposed that eliminates these problems
and has several advantages over static approaches. The proposed model is a combination

X111

xiv ABSTRACT

of a generic object model, metadata, and adapters that convert between the generic and
specific target models. Although the elements of the proposed models are established
and well known, their combination and their application to the domain of management
is novel and makes for the issues of interest in this thesis.

Zusammenfassung

Im Netz- und Systemmanagement werden traditionellerweise SNMP und CMIP eingesetzt.
Es haufen sich jedoch die Anzeichen dafur, dass SNMP langsam an seine Grenzen stosst,
und CMIP hat — aufgrund seiner Komplexitat und des langwierigen Standardisierungs-
prozesses — bisher noch nicht die gleiche Akzeptanz wie SNMP gefunden.

Die Verbreitung von objekt-orientierten verteilten Objektmodellen lasst einen dritten
Kandidaten, namlich CORBA, erkennen, welcher ursprunglich eigentlich nicht zum
Zwecke des Netzmanagements entwickelt wurde, aber trotzdem in vieler Hinsicht ideal
fur das Management von lokalen und Weitverkehrsnetzen geeignet scheint.

CORBA ist machtiger als SNMP und weniger komplex als CMIP. Seine Nahe zu C++,
einer weit verbreiteten Programmiersprache, offnet es gegenuber einer grossen Anzahl
von Programmierern, welche ihre Applikationen auf CORBA-Basis auf relativ einfache
Art und Weise um den Verteilungs-Aspekt erweitern konnen, ohne eine wesentlich andere
Philosophie lernen zu miussen.

Die vorliegende Arbeit basiert deshalb auf der Annahme, dass CORBA zunehmende Be-
deutung im Netz- und Systemmanagement erlangen wird, welche es im Bereich Verteilte
Systeme schon hat. Praziser gesagt: CORBA wird eingesetzt werden, um Management-
(Manager-Rolle) und Managed-Applikationen (Agenten-Rolle) zu entwickeln.

Der Autor nimmt an, dass mittelfristig alle drei Modelle koexistieren werden, sei es,
well bereits eine betrachtliche Menge von Mitteln in die existierenden Modelle investiert
wurde, sel es, dass andererseits CORBA noch nicht fur alle anfallenden spezialisierten
Managementaufgaben bereit ist, oder dass Unternehmen einfach aus politischen Grunden
(noch) nicht ausschliesslich auf die Karte CORBA setzen wollen.

Deshalb stellt sich die Frage, wie Systeme, welche in eitnem Modell entwickelt wur-
den, durch ein anderes verwaltet werden konnen. Basierend auf der Annahme, dass
CORBA eine grossere Durchdringung der Managementwelt gelingen wird, ware es
wunschenswert, andere Modelle ebenfalls transparent via CORBA zu manipulieren.
Vorteile waren Investitionsschutz bestehender Agenten, das sich Offnen der SNMP- und
CMIP-dominierten Managementwelt gegeniiber Management-unerfahrenen (CORBA)
Programmierern und die Zusammenfuhrung des Managements unter ein gemeinsames,
einfaches und dennoch machtiges Modell.

Das Ziel der vorliegenden Arbeit ist die Beantwortung der Frage, wie CORBA im Netz-
und Systemmanagement eingesetzt werden kann. Ich beschranke mich dabei auf die
Manager-Seite; d.h. wie CORBA eingesetzt werden kann, um Managementapplikationen
zu entwickeln, welche auf unterschiedliche Agenten zugreifen, und nicht, wie Agenten-
funktionalitat auf Basis von CORBA entwickelt werden kann.

Nach einem Uberblick iiber die Forschung auf diesem Gebiet werde ich zeigen, dass die

XV

XV1 ZUSAMMENFASSUNG

meisten Ansétze eine statische Uberfithrung eines Modells in ein anderes wiahlen, ein
Vorgehen, das einige Probleme aufwirft.

Deshalb schlage ich einen dynamischen Ansatz vor, welcher einige dieser Probleme lost
und ausserdem gegenuber der statischen Vorgehensweise gewisse Vorteile beinhaltet. Er
besteht aus einem generischen Objektmodell, Metadaten und Adaptern, welche zwischen
dem generischen und jeweils einem spezifischen Zielmodell konvertieren. Die verwendeten
Elemente sind bekannt; jedoch ist es ihre Kombination im Gebiet Netz- und System-
management, welche den Beitrag dieser Arbeit ausmacht und interessante Fragestellungen
aufwirft.

Chapter 1

Introduction

1.1 Motivation

Prior to the seventies, computing was performed primarily on mainframes with proprietary
operating systems and centralized administration. Attached to the mainframes were dumb
terminals, which possessed no computational capability other than the firmware code that
initially connected them to the mainframe, and their operation and management was
performed from a central place.

With the rise of the UNIX (formerly: MULTICS) operating system in the early seven-
ties and the personal computer in the eighties, decentralization of computation ensued,
and computers were interconnected in the form of local area networks (LANs) and wide
area networks (WANs) [Tan92, Bac86]. Parallel to the decentralization of computational
resources, their management had to become decentralized as well. At that time, various
proprietary schemes existed or were created to perform management of the computing
infrastructure (e.g. TL1, Telnet etc.).

In 1978, the International Standards Organization (ISO) began work to establish a stan-
dard for network management, the Open Systems Interconnection (OSI) Network Man-
agement standards, intended to create a common management protocol, the Common
Management Information Protocol (CMIP) [CMI].

Because of the slowness of the standardization process, the complexity of the proposed new
standard, and the urgent need for management tools, the Simple Network Management
Protocol (SNMP) [CFSD90] was devised. It was originally regarded as a provisional means
for management until the OSI standard would be completed, but subsequently became
a de-facto standard because of its dissemination, partly due to its simplicity. Today,
although SNMP is predominantly used, it is beginning to reach its limits. Therefore a
new version (SNMPv2) has been created [CMRW96], but its deployment has been rather
low so far [Ros90a].

For historical reasons there has always been a division between tools for operating (e.g.
TCP/IP, RPC) and managing (e.g. SNMP, CMIP) a networked system. With the advent
of object-oriented distributed computing models (CORBA [OMG95], ANSA [ANS93],
Java [RMI96], DCOM [BK96]), there are efforts to make the operational and manage-
ment faces’ the same, i.e. to manage and operate the network using the same model.
Moreover, distributed systems management tasks cannot themselves be centralized, but

1

2 CHAPTER 1. INTRODUCTION

require distribution of management as well. In this respect, a distributed computing model
such as CORBA can be considered a distribution enabler for management tasks.

There are indications that CORBA is becoming an important technology for implementing
both management- and managed entities. The success of Tivoli’s management framework
[Tiv95], which is based entirely on CORBA, is a strong indicator of this. Genilloud [Gen96]
reinforces this argument by stating that ”distributed objects are thus the paradigm that
will allow systems management to converge towards one single, homogeneous and global
management architecture”.

Still, there exist a variety of legacy systems for management purposes. Especially compa-
nies involved in telecommunications and carrier business have invested significantly in OSI
network management standards and are therefore unlikely to move towards emerging new
technologies such as CORBA without preserving their existing investments. It is therefore
unlikely that there will be a single predominant management model in the near future.
For companies having a heterogeneous system environment this means that resources
represented through a number of differing object models will have to be managed.
Assuming that CORBA! will achieve increasing prominence in the network and systems
management business, without, however, fully dominating it, we can expect to see an
increasing need to build and employ bridges between CORBA and other models, e.g. to
manage legacy systems from CORBA and in turn to access CORBA from legacy systems.
Bridges are syntactic and semantic translators that allow applications in one model to
access another model as if the latter were of the same model, thus hiding differences
between object models.?

The present work focuses on how a heterogeneous system environment can be managed
from CORBA-based applications.

A number of approaches exist for managing OSI- or SNMP systems from CORBA. An
overview of these will be given in chapter 3.

This thesis proposes a novel approach called Generic Object Model (GOM)? for CORBA-
based network management consisting of a metadata repository as its central piece, a
generic object model capable of representing any target objects, and adapters constituting
bridges between generic and specific target systems.

The expected advantages of such a model can be summarized as follows:

Uniform Programming Model A uniform programming model allows transparent
manipulation of a set of object models without having to deal with the underlying target
model. This would enable new systems built using CORBA to integrate and make use of
existing (and tested) legacy SNMP and CMIP building blocks without the need for re-
implementation of functionality, thereby saving a considerable amount of time, cost, and
knowledge. This scheme avoids the need for a complete re-writing of legacy systems, but

!The reason for choosing CORBA is given in section 1.3.7.

2The concept of CORBA’s inter-ORB bridges, which convert requests between different ORBs, is
discussed in section 2.1.4.

3The model is called GOM after one of its three main components, the generic object model (cf.
section 4.2). To refer to that particular component, the term generic object model (in lowercase letters)
is used; to refer to the entire proposal, the capitalized version Generic Object Model (or its acronym,

GOM) is used.

1.1. MOTIVATION 3

instead allows immediate use and integration in the new system with the future option of
gradual replacement by new, CORBA-based components.

Dynamic Aspect There are also benefits for applications that cannot predict at com-
pile time the extent of classes they will encounter, instances of which they have to handle.
This could be especially important in the area of mobile agent applications [ME96] where
an agent travels from machine to machine and has to manipulate instances of classes that
it did not know about when it was compiled (cf. section 5.2).

GOM allows the dynamic discovery of classes at runtime and enables management ap-
plications that take advantage of this capability to manipulate instances in a dynamic
manner.

Small Clients Because of size limitations it is not feasible for an agent to have compiled-
in static knowledge of a large number of classes. It is more economic both in terms of size
and speed to send small agents around in the network rather than large ones (cf. section
5.2) [MGG96].

GOM allows a client to contain initially no knowledge of classes of the target system to
manipulate. When starting to manage the target system through GOM, classes that are
not yet known are dynamically loaded into GOM’s runtime environment, enabling client
applications to grow dynamically (in terms of size) with the number of classes they need
to know in order to perform management tasks.

The structure of the thesis is as follows: the remainder of this chapter will define common
terms and concepts. Then we will examine several aspects of computational systems
that are important for this work. Also, the scope of the thesis will be identified. The
goals pursued, the contribution, as well as underlying concepts and prerequisites will be
discussed at the end of the chapter.

In chapter 2, an overview of the prospective target object models (CORBA, CMIP and
SNMP) to be managed from the generic model is given. No in-depth treatment of the
three models will be given, but the objective is rather to make the reader aware of the
similarities, but also the differences, between the various models.

The objective of chapter 3 is threefold: first the author presents research done in the
area of inter-domain management between CORBA, CMIP and SNMP. It will be shown
that most approaches deal with static compile-time translation and therefore have cer-
tain deficiencies, which will be described. Second, the scope of this work will be further
restricted by precisely defining on which area of inter-domain management the work fo-
cuses. Finally, one example of work on inter-domain management will be presented in
more detail.

Chapter 4 is the main chapter and will present the author’s model of CORBA-based
dynamic network management. It will be shown that using a dynamic, metadata-based
model has certain benefits over static compile-time based approaches. After giving an
overview of the architecture, the three main components will be described: (1) the generic
object model, which is a reified object model capable of handling any target object model
without need to be extended, (2) the metadata repository, central to the generic model
as it contains metadata descriptions of all target models to be managed and (3) adapters

4 CHAPTER 1. INTRODUCTION

which perform conversions between the generic and the target models. A section on a
generic approach for event handling complements the generic object model and finally,
some issues that are relevant, but not discussed in-depth, will be presented.

Chapter 5 validates the ideas proposed in this thesis. It discusses two applications of
the proposed model, an interpreter and a toolkit for roaming agents. Both are depen-
dent on the dynamic, runtime-based features offered by GOM and could not have been
implemented using static compile-time based approaches.

Chapter 6 will summarize the proposed model, compare the results to the goals initially
set and to the related work, and draw conclusions. The work will be completed with an
outlook into an area in which dynamic models such as the one presented might have an
impact in the future, namely the World Wide Web.

1.2 Definitions

This section defines terms and concepts commonly used throughout this thesis. All terms
and abbreviations will also be listed in the glossary (p. 189).

An object model is essentially the description of a system by means of objects and their
interactions. Information (data) is represented by objects and information flow is achieved
by interaction between objects.

An object is a collection of operations sharing a common state which is hidden from the
outside and can be accessed/modified only by invocation of the object’s operations. The
set of operations offered by an object is called its interface [Weg90].

A class is a template from which objects (instances) can be created. It contains the
definition of operations and a number of instance variables. When an object is created
from a class, it receives its own set of instance variables according to the class’ definition.
Operations, however, are shared by all instances of a class and are therefore conceptually
located in the class.

A type is a mechanism for classifying values into categories of common properties and is
used, among other things, for type- checking to enforce syntactic constraints on expres-
sions in order to ensure operator/operand compatibility. The main difference between
types and classes is that types are specified by predicates over expressions that classify
values into categories, whereas classes are specified by templates used for generating in-
stances with uniform properties and behavior. Every class is a type, defined by a predicate
that specifies its template. However, not every type is a class, since predicates do not
necessarily determine object templates [Weg90].

The difference between an information model and an object model is the abstraction level
used. An information model deals with information (data) and the flow of information in
a system, whereas an object model defines information to be in the form of objects, thus
being more concrete in terms of modeling. An information model may also be expressed
using a structured (functional) model [ODP95].

One of GOM’s goals is to manage a number of heterogeneous systems from its generic
model. As will be explained in section 4.2, for each instance in the system to be managed,

4To prevent a name clash between CORBA interfaces, which are classes in object-oriented parlance,
the terms IDL- or CORBA wnterfaces are used in ambiguous cases.

1.3. SCOPE 5

a corresponding prozy instance will be created on the GOM side. The system to be
managed is called target system (or target model) and its instances will be called target
instances.

A management- or manager system denotes the entity that performs management while
a managed system is the entity on which management is performed. The terms manager
and client on the one hand and agent and server are used synonymously.

1.3 Scope

The goal of this section is to present certain aspects of computational systems that are
relevant for this work and to show how these affect and/or contribute to the topic. For
each aspect, the non-relevant parts will be excluded from the scope of this thesis.

1.3.1 Distributed vs. Non-Distributed Paradigm

An important aspect of computational systems is whether (or to what extent) they are
interconnected. Non-distributed, centralized systems are easier to maintain than their
distributed counterparts because they do not have to deal with a variety of operating
system architectures, protocols and data formats. Distributed systems, however, have
a better cost-performance ratio, scale better, and are more flexible and reliable than
centralized, single-point-of-failure mainframes. Distributed systems also make certain
aspects of computing transparent. Location transparency means that users of such systems
deal with computational entities regardless of where the latter are located physically and
without the need to know. Migration transparency allows computational entities to be
moved to different physical locations without their clients being aware of it. Concurrency
transparency allows many clients to access the same entities without being aware of the
other users in the system and replication transparency allows to have multiple replicas®
of an entity in a transparent way for the user [Tan92].

This work is concerned with how (object) models for management and / or operation of
distributed systems (CORBA, CMIP, SNMP) can be handled from a single generic model

and therefore does not focus on centralized, non-distributed systems.

1.3.2 Protocol-Centric vs. Interface-Centric

The client view of a distributed system may be on the protocol level (CMIP, SNMP) or
the protocol may be hidden and only object interfaces (cf. 2.1.2) may be exposed to the
client. The latter approach defines objects regardless of the underlying protocol whereas
the former defines a protocol that clients have to observe in order to communicate with a
peer entity.

Of course, interacting with a remote object through its interface will make use of a protocol
to send the request, but this fact is hidden from the client, thus offering a higher level of
abstraction.

5E.g. for performance improvement or security reasons.

6 CHAPTER 1. INTRODUCTION

The generic object model presented in this work is affected in two ways by this aspect:
first, it will encounter object models of both aspects such as the protocol-centric CMIP
and SNMP models on the one hand and interface-centric models such as CORBA on the
other hand. It will have to be able to handle all of the above models (and more) regardless
of whether a model is protocol- or interface-centric. Second, the generic object model will
itself have to expose an API to the client. This API will be interface-centric, which means
that clients do not have to be concerned about protocols, but see only computational
objects of the elements constituting the generic object model.

1.3.3 Procedural vs. Object-Oriented Model

Procedural (or structured) programming makes a clear separation between the program
logic (functionality, code) and state (structure, data). With the advent of object-oriented
programming, this separation was eliminated and data and code were encapsulated to
form a computational unit. Major features of object-oriented programming are [Mey88]:

Encapsulation Data and code are comprised into a unit of computation (i.e. an object).
Data within the object is shielded from the outside and can only be modified by
invoking operations provided by the object at a (public) interface.

Inheritance Objects can extend other objects by inheriting their data and code and
by adding new data or operations or by modifying existing ones. Inheriting be-
havior and state is called tmplementation inheritance while inheriting the protocol
(interface) dictated by the superclass is called interface inheritance.

Polymorphism Depending on the type of the object the same message can produce
different behavior.

The focus of this work will be on object-oriented models (CORBA, CMIP), but will also
take into account non-OO systems such as SNMP because of its wide dissemination in
the management domain. The API of the generic object model exposed to clients will be
in the form of object interfaces (cf. 2.1.2).

1.3.4 Dynamic vs. Static Functionality

Functionality in a distributed system can be static or dynamic with regard to its location.
A CORBA-based system is static in the sense that functionality is offered to clients in
the form of services exposed by implementation objects located in a server. Although
implementation objects may be located in multiple servers and may even be migrated
between servers, they are passive and migration must be performed, for example, by a
system administrator.

Dynamic functionality, on the contrary, is active (roaming) in the sense that it may decide
itself to migrate to a different location. The concept of agents [ME96] or mobile code for
example has dynamic functionality.

1.3. SCOPE 7

1.3.4.1 Dynamic Code Paradigm

Code is sent from one location to another to be executed. Examples are Java applets
[Sun95] or TeleScript intelligent agents [Whi94].

A Java applet is essentially byte code for a virtual machine [ASU86, Kam90] that is sent
to a location running a virtual machine interpreter, which then executes it. Thus, code
is always sent from a server to a client.

In TeleScript, however, intelligent agents may be sent in both directions since it is the
agent which decides where to travel.

1.3.4.2 Static Code Paradigm

Static code is functionality that is in a certain location (e.g. in a CORBA server) and
can be accessed by clients using proxies (method-call-forwarding substitutes for the real
remote objects).

Static and dynamic functionality can complement each other profitably. Taking the ex-
ample of Java, is does not seem sensible to send large amounts of code (e.g. for a database
server) to the client due to latency and economic reasons. However, it does make sense
to send code for example for an intelligent form that has to be filled in by a client and
that subsequently sends itself to a certain location (e.g. back to where it came from).
A potential application of Java applets might be in the area of (portable) graphical user
interfaces as front end to static functionality. An example is a CORBA server that im-
plements a database management system. Rather than sending the entire DBMS code
to the client, it makes more sense to send down a Java applet that implements the GUI
functionality which subsequently accesses the CORBA DBMS as a CORBA client.
There are some projects that deal with implementing CORBA access from Java via IIOP
[Joe96, IBM96, Sat96, Ion96].

In this thesis, the author is concerned mainly with the management of static functionality,
i.e. with the creation and manipulation of instances located in servers® via proxies in the
client’s address space.

Research into how the dynamic code paradigm can be exploited in the management
domain is underway, but is beyond the scope of the thesis.

1.3.5 Operation vs. Management

The model used to implement a system is often different from the one used to manage
it. A distributed system may for example be implemented using remote procedure calls
(RPC) but be managed using SNMP or CMIP agents. Recently, with the advent of
object-oriented distributed systems such as CORBA, operations (i.e., implementation)
and management models tend to become the same, e.g. CORBA may be used to im-
plement and manage a system. This may be achieved by adding CORBA objects to
the system whose task is to manage other objects, or by adding operations to existing

CORBA interfaces to make them manageable. In the TINA [TIN95] model, management

5The term server is used here in the sense of a location that implements object interfaces and is not
constrained to CORBA servers.

8 CHAPTER 1. INTRODUCTION

capabilities are usually injected into an object by adding specific interfaces to the object
which are used exclusively for management purposes.

Here, we assume that object-oriented distributed processing (OODP) systems are increas-
ingly used to operate and manage DP systems and will therefore be based on such concepts
(CORBA) while at the same time offering capabilities for integrating pure management
systems (SNMP, CMIP).

As the motivation for this thesis comes from the management world, the focus is on
management. However, nothing precludes the model from being used to create distributed
systems.

1.3.6 Interface vs. Implementation

Languages for building OODP systems can be classified into two main categories: pure
interface description languages and languages that allow both description and implemen-
tation of distributed systems.

Interface description languages typically specify a system by defining a number of classes,
the services they offer (operations), and their instance variables (having a certain type).
These languages are not computationally complete in that they do not offer constructs
for implementation of the specification. Typically, a specification written in an interface
specification language will be translated into an implementation language for implemen-
tation.

Advantages of pure specification languages are that they are language-independent (any
language can be used for implementation) and that the division between interface defini-
tion and implementation may account for a cleaner design without too much regard for
implementation details. A disadvantage is that they have to be mapped to an implemen-
tation language which may involve conversion / loss of information.

Examples of interface specification languages are remote procedure calls [BN84], CORBA
Interface Definition Language (IDL) [OMG95], GDMO and ASN.1 [GDM92, ASN90] and
TINA ODL [TIN95].

An implementation language is computationally complete and can be used for both system
specification and implementation. Examples are Smalltalk [GR89], C++ [Str91] or Java
[Sun95].

Many object models for distributed systems are based on specification languages to define
the system interfaces and then perform a mapping to an implementation language.

In this thesis, the focus will be on interface description languages such as OMG IDL or
GDMO.

1.3.7 CORBA vs. DCOM vs. Java

Sun’s Java [Sun95] language is similar in syntax to C++. Programs are compiled into
byte-code interpreted by a virtual machine (VM). Porting the virtual machine to a number
of architectures enables Java programs to run unmodified on every platform for which a
VM exists. The same mechanism also allows Java code to be sent across the network to
a different machine, which subsequently executes the byte-code (Java applets).

1.4. GOALS 9

Sun has recently added Remote Method Invocation (RMI) [RMI96] to the language, en-
abling objects on one machine to invoke methods of objects on remote machines. Whether
a method call is local or remote is transparent to the programmer.

Microsoft’s Distributed Component Object Model (DCOM) [BK96] is another model for
writing distributed applications. It has gained a strong foothold especially in the PC
market as it is part of the Windows95 and WinNT operating systems. DCOM has only
recently (1996) evolved from a non-distributed model (COM).

Both Java and DCOM are currently proprietary models developed solely by single com-
panies, whereas CORBA is a standard. However, the author believes that both DCOM
and Java will achieve wide dissemination and will compete with CORBA.

The reason for choosing CORBA as distribution mechanism of this work is a pragmatic
one: both Java/RMI and DCOM were not yet available when this work started.
However, it is the author’s belief that the model underlying all of these three object-
oriented distributed processing architectures is fundamentally the same and therefore the
ideas presented in this thesis could be applied equally well to Java or DCOM.

1.4 Goals

Network management systems have traditionally used SNMP or CMIP to manage re-
sources. With the advent of object-oriented distributed systems such as CORBA it is
envisaged that an increasing part of management tasks will taken over by CORBA-based
management applications. These require either managed entities to be CORBA-based as
well, or, if these are not available, e.g. if written in SNMP or CMIP, need bridges that
convert between the CORBA and SNMP or CMIP models respectively. The advantage of
using bridges to access existing managed systems of heterogeneous models would be that
only CORBA needs to be used on the client side while still being able to access various
other models on the server side. An important additional argument is that time, money
and know-how invested in building managed systems using SNMP and CMIP is not lost.

The major goal of this thesis is therefore to propose a common CORBA-based
network management integration model for CORBA, CMIP and SNMP exploit-
ing dynamic runtime- and metadata-based mechanisms to access target models.

Maybe surprising at first glance, the CORBA model is also among the target models to
be managed. However, the author assumes that in the future a significant number of
managed entities (e.g. agents) will be written using CORBA. Thus the need arises to
manage CORBA as well.

The benefits of such a model are

1. A uniform programming model that hides the differences between heterogeneous
managed systems,

2. Greater flexibility, thus reducing client-server dependencies, and

10 CHAPTER 1. INTRODUCTION

3. Lower memory requirements for client management applications.

Work done in the area of bridging between CORBA management applications and SNMP-
and CMIP-based managed resources will be presented in chapter 3. Most of this work em-
ploys static translation of object models to CORBA, bringing with it certain disadvantages
such as insufficient flexibility (strong interdependencies between management- and man-
aged applications through inclusion of translation-generated code), bloated management
applications and problems mapping certain idiosyncrasies of CMIP due to limitations of
the compile time translation approach.

In chapter 4, a novel approach will be presented (GOM). It in fact comprises well-known
concepts such as metadata, a generic object model, and adapters, but these have not yet
been applied in this combination to the area of CORBA-based management. It will be
shown that some of the disadvantages of static approaches can be eliminated using this
model.

The focus of this work is on management aspects, but nothing precludes the model and
concepts presented from being applied to the broader area of distributed applications
in general. As management of a distributed environment is distributed by definition,
concepts of distributed computing apply equally well to distributed management.

The contribution made by this thesis consists of

1. A proposal of the Generic Object Model (GOM), which is a novel model for CORBA-
based management based on eztsting and well-known concepts such as metadata, a
generic reified object model and adapters, but

(a) applied in a novel combination

(b) and to an area (network management)in which they have not been used before.
2. A prototype validating the ideas of GOM.

This thesis provides a model for CORBA-based management applications to transparently
handle a number of heterogeneous target systems such as managed entities implemented

in CORBA, CMIP or SNMP. It also provides an extensible mechanism through which

other (management) models may be integrated.

1.4.1 Concepts

This work is based on some of the major concepts assumed to be present in an object
model to be integrated into the generic model. Absence of one or all of the concepts in a
target model does not preclude the model’s inclusion, but integration will be easier if the
following concepts are present:

1. Concept of distributed information represented by distributed objects (not neces-
sarily of the same object model). Any information in a system is modeled as an
instance of a class (object).

1.4. GOALS 11

2. Concept of always available description of objects (metadata), e.g. replicated on
every machine. As described in 1.4.2, meta information of the classes available in a
system 1is essential for the functioning of the generic object model.

3. Concept of handle (local proxy) to an object that finds the corresponding target ob-
ject wherever the latter may be located. The assumption is that in most distributed
systems clients receive a local handle — called a prozy [Sha86] — to a remote object.
Any operation invoked on the proxy will be forwarded to the real or target instance;
clients need not care whether the target instance is local or remote (distribution
and location transparency).

1.4.2 Prerequisites

As will be discussed in detail in chapter 4 there are a few requirements on an object model
that is to be integrated into the generic model.

The first requirement is that there is runtime information available about the classes and
their attributes and operations which adapters (cf. 4.4) can query. This requires some
transformation of a model specification into an electronic form suitable to be maintained
by a type repository (cf. 4.3). Typically this transformation is performed by a transla-
tor/compiler.

Second, the model must offer certain dynamic capabilities such as creation of instances
given the class name (as a string) and invocation of operations on instances given the
name of the operation. Some models already offer such an API e.g. CMIP [ITU92a],
CORBA’s DII or IIOP [OMG95], COM’s IDispatch interface [Box95] and Java’s Core
Reflection API [Sun96].

Chapter 2

Target Object Models

This section will present the three target (object) models dealt with in this thesis:
CORBA, CMIP and SNMP.!

Its objective is first to familiarize the reader with the models (and their idiosyncrasies) that
need to be managed from GOM, and second, to enumerate commonalities and differences
between them to foreshadow problems to be overcome when defining a generic model that
integrates all three target models.

A basic knowledge of CORBA, CMIP and SNMP is helpful because the concepts under-
lying these models will be explained only briefly.

2.1 CORBA

2.1.1 Architecture
OMG’s Common Object Request Broker [OMG95] specifies the architecture by which

instances in a heterogeneous environment can communicate with one another regardless
of whether they are local or remote. The architecture is shown in fig. 2.1.

The Object Request Broker (ORB)

is responsible for accepting requests Object Implementation

from clients, finding the target object
and its implementation, invoking the

request on it, and returning the result oIl DL ORB Satic DL | Dynamic || Object
to the caller. The interface (cf. 2.1.2) Sube mertece) | Sketeon | | errae || P
seen by the client is completely inde-

pendent of where the object is located Object Request Broker Core

or in which programming language it

is implemented. The ORB maintains
an Interface Repository, which is es- Figure 2.1: The CORBA architecture
sentially meta information about the

interfaces registered with the ORB and an Implementation Reposttory, which is informa-
tion about where implementations of interfaces are located. The Interface Repository is

!SNMP is an exception because, although it is not exactly an object model, it is included in the
discussion because of its usefulness as an example of how non object-oriented systems can be mapped to
object-oriented ones, and because of its dissemination in the management domain.

13

14 CHAPTER 2. TARGET OBJECT MODELS

needed for example by the ORB to marshal and unmarshal? requests to / from clients
and the Implementation Repository is needed for locating the implementation to invoke
requests on instances.

Clients call methods of instances using either compiler-generated client stubs, which have
to be included at compile-time, or the Dynamic Invocation Interface (DII), which allows
clients to create requests to be sent to instances at runtime. Implementation skeletons are
compiler-generated implementations of the services offered by an interface, enriched with
programmer-added functionality. They are usually called by a server to handle requests
from clients.

When a client creates an instance (either remote or local), it receives a proxy in the
form of an object reference, which is an opaque handle that uniquely identifies the remote
instance.®> Any method invoked on an object reference will be forwarded to the remote
instance and the result will be returned to the client.

The CORBA architecture includes a set of common object services (CORBAservices
[COS95]), which are reusable services such as Naming, Event, Persistence etc.

2.1.2 Object Model

The CORBA object model provides objects that isolate the requesters of services from
the providers of services. An object encapsulates state (attributes) and behavior (opera-
tions) and offers access only through a well-defined interface. Objects interact by sending
messages (requests) to other objects. CORBA has atomic types such as long, string, and
boolean and constructed ones such as sequences, structs, or unions.

An interface defines the set of possible operations (i.e. services) that can be performed
on an object. An object satisfies an interface if it can be specified as the target object in
each potential request described by the interface [OMG95]. An operation of an interface
is an identifiable entity with a name, optional parameters and a return value that specifies
a service that can be performed by the object.

2.1.3 Specification Language

Interfaces are specified using the Interface Definition Language (IDL). IDL allows to
define interfaces, together with their attributes and operations. However, it cannot be
used to implement an interface. For this purpose, IDL code has to be translated into
an implementation language (e.g. C++, Smalltalk), which can subsequently be used
to complete the implementation. IDL was designed to be used only as specification
language to allow multiple implementation languages to be used, resulting in language
independence. It is therefore possible for a client to access an object from a language

2Marshalling flattens a data structure, e.g. to save it to a file or send it across the network. Unmar-
shaling reconstructs the data structure, e.g. from a data stream sent over the network. In order to work
without the programmer having to write additional code, flattening / unflattening operations make use
of meta-information.

30bject references are reliable because they are never reused. An object reference will always point
to the object for which it was created or, if the object has been deleted, to a NIL object.

2.1. CORBA 15

different than the one in which it was implemented as long as a language binding* is
available.
An IDL example is given in fig. 2.2:

interface Printer {
attribute long printer_id;
attribute Location loc;
boolean Print(in Document doc, in long number_of_copies);
void Shutdown();
+;

Figure 2.2: Interface definition using IDL

In the example, an interface for a printer is defined. It has the attributes printer_id
(long) and loc, which is an object reference to an interface Location. A printer offers
two services, Print, which takes two parameters and returns a boolean and Shutdown,
which has no parameters and no return value.

Since IDL is language-neutral, it has to be compiled to a specific language binding (e.g.
C++). The IDL compiler accepts IDL code and generates client stubs and implementation
skeletons for the specified language binding (cf. fig. 2.1). Client stubs do not directly
invoke methods on objects, but instead are essentially void methods that only forward
the method to the ORB. The ORB finds the implementation of the object and sends the
request to it. Then the implementation skeleton is called and the return result is sent
back to the client®.

2.1.4 Inter-ORB Bridging

This section will discuss the concept of inter-ORB bridges [OMG95, ch. 11] and how they
relate to adapters as defined in this work.

Inter-ORB bridges have the task of converting requests between ORBs of different vendors.
They can also be used to control access to ORBs within different domains, such as security
(e.g. firewall functionality [CB94]) or accounting domains.

Inter-ORB bridges are classified into in-line and request-level bridges. In-line bridges are
part of the ORB core proper, whereas request-level bridging is performed by application
code outside the ORB.

Request-level bridges can be further classified into interface-specific and generic bridges.
Interface-specific bridges support a finite number of IDL interfaces that were included
when the bridges were compiled. Code for conversion is usually generated by the IDL
compiler.

Generic bridges can be used to convert all sorts of requests without being tied to individ-

ual IDL interfaces since they are built using CORBA’s Dynamic Skeleton Interface (DSI),

4A translation from IDL to an implementation language.
5The implementation skeleton is generated by the IDL compiler and has to be enriched with code by
the programmer to implement the desired functionality (behavior)

16 CHAPTER 2. TARGET OBJECT MODELS

Dynamic Invocation Interface (DII) and Interface Repository (IR). The DSI receives re-
quests and the DII — with the help of metadata stored in the IR — dispatches them to
instances in other ORBs.

Rather than translating requests between different ORBs, bridges can also be used
to translate requests between ORBs and other non-CORBA systems such as SNMP
[CFSD90], CMIP [CMI], COM [Bro94] etc. [OMG95, 9.1.2].

CORBA bridges are located at the server side and used to implement functionality,
whereas GOM is at the client side and used to access functionality. CORBA request-
level bridges could for example be used profitably to implement XoJIDM’s interaction
translation approach (see 3.1.2). However, using XoJIDM’s approach, the client would
still ’see’ all of the CORBA interfaces generated by their approach, regardless of whether
CORBA bridges are used at the server implementation side.

The model proposed in this thesis could be used to implement generic request-level bridges
since the main components needed for building these (DII and IR) are provided by GOM.
As a matter of fact, using GOM in a generic request-level bridge would even go a step
further: requests could be bridged between the models of CORBA in addition to those of
SNMP and CMIP.

2.2 OSI Network Management (CMIP)

2.2.1 Architecture

OSI Network Management® has been defined by the joint ISO / ITU-T standard docu-
ments X.7xx" [ITU92a, ITU92b, ITU92c].

The approach proposed by X.700% is to place an agent close to the information that is
relevant to be managed and / or monitored (cf. fig. 2.3).

An agent maintains information (in the form of managed object instances) about the state
of a particular part of the network for which it is responsible. Queries about or changes
of the state of the network can be sent only to the agent, not directly to the objects.
The protocol used to interact with the agent is the Common Management Information

Protocol (CMIP) [CMI].

A manager can send messages and re-
Resources ceive replies over this protocol to man-
Agent age the agent. An agent may also
send unsolicited information asyn-
Manager chronously to the manager, e.g. to

notify it of a problem in case of an
element failure. The Common Man-
agement Information Service Entity

(CMISE) specifies 7 requests that de-

fine the interaction between manager

MIB

Figure 2.3: Manager-Agent paradigm

and agent: M-CREATE is used to add management information to be maintained by
the agent. The opposite is M-DELETE, which removes management information from

6The term CMIP will be used synonymously.

"An overview is given in the ISO / IEC documents 7498-4 (X.700) (functional areas) and ISO / IEC
10040 (X.701) (agent-manager architecture). The information model is defined in ISO / IEC 10165-1
(X.720).

8The terms X.700 and OSI Network Management are used interchangeably.

2.2. OSI NETWORK MANAGEMENT (CMIP) 17

the agent. M-SET changes information in an agent whereas M-GET retrieves informa-
tion from an agent. As the amount of management information returned by an agent
in response to an M-GET-request may be too large, this request can be canceled using
M-CANCEL-GET. When the simple semantics of M-GET or M-SET to retrieve or change
information is not powerful enough, it is possible to specify operations on managed objects
(cf. below) which can be called using M-ACTION. If an error occurs in the network, an
agent may at any time send an unsolicited message to the manager concerning the cause

of the error by using the M-EVENT-REPORT request.

2.2.2 Object Model

Information to be managed by an agent is modeled as managed objects. A managed object
(MO) may represent either a logical resource such as a user account, or a real resource
such as an ATM switch. A resource may be mapped to several managed objects, or several
resources may map to one managed object. A managed object contains attributes, actions
and notifications. An attribute models some state in a resource (e.g. an IP-number of
a router or the address of a customer). An action may for example be the addition of a
new routing entry to the routing table (attribute) of a managed object that represents a
router. Notifications are messages that can be sent from the managed object to its agent
which then forwards them to any manager that is interested in receiving them. CMIP
requests that can be sent to an agent map directly to methods applied to managed objects
that the agent contains. When, for example an M-GET request is sent to the agent, the
agent will first find the managed object to which the request is directed, then retrieve the
information from the managed object and finally return it to the sender.

2.2.3 Specification Language

Managed objects are defined using two specification languages: Abstract Syntaz Notation
One (ASN.1 [ASN90]) is used to define data types and Guidelines for the Definition of
Managed Objects (GDMO [GDM92]) to define managed objects.

The type of attributes or operation parameters contained within managed objects is de-
fined using ASN.1, which defines atomic types such as integer, real or string and aggregate
types such as lists, structs and unions. An example of ASN.1 is shown in fig. 2.4.

The example defines 3 types: BaseManagedObject is a struct which contains
2 members, namely an ObjectClass (another ASN.1 type defined below) called
baseManagedObjectClass and an ObjectInstance. An ObjectClass is a union with
the members globalForm of type OBJECT IDENTIFIER and nonSpecificForm of type
INTEGER. An ObjectInstance is also a union with 3 members. ASN.1 types are assigned
to attributes within managed objects as will be shown later. Managed objects are defined
using GDMO [GDM92]| notation. An example of GDMO is given in fig. 2.5.

Each managed object class is derived from at least one other class (multiple inheritance
is allowed) and contains a number of mandatory and conditional packages. A package
contains attributes, actions and notifications. The type of an attribute is not defined
in GDMO directly, but the ATTRIBUTE clause always refers to an ASN.1 type defined

in some ASN.1 file. A mandatory package (and therefore its attributes, actions and

18 CHAPTER 2. TARGET OBJECT MODELS

BaseManagedObject ::= SEQUENCE {
baseManagedObjectClass ObjectClass,
baseManagedObjectInstance ObjectInstance}

ObjectClass ::= CHOICE {
globalForm (0] IMPLICIT OBJECT IDENTIFIER,
nonSpecificForm [1] IMPLICIT INTEGER}

ObjectInstance ::= CHOICE
distinguishedName [2] IMPLICIT DistinguishedName,
nonSpecificForm [3] IMPLICIT OCTET STRING,
enumerateForm [4] IMPLICIT INTEGER}

Figure 2.4: ASN.1 example

notifications) must be present in an instance of the managed object class, whereas the
presence of conditional packages is determined at runtime depending on the specified
behavior.® This implies that although two instances may be of the same class, they may
not have the same number of attributes, actions or notifications.

In the example shown in fig. 2.5, the managed object class customer is derived from top.
It has the mandatory packages customerPkg and contactListPkg and the conditional
packages opNetworkListPkg, servicelListPkg, typeTextPkg and userLabelPackage.
The customerPkg package defines the attributes customerID and customerTitle.
CustomerID is subsequently defined to be derived from attribute systemId, which is
defined in some other GDMO file, systemId itself will have its type defined somewhere
else.

2.2.4 Naming

Instances of managed objects may contain other instances and may themselves be con-
tained within other instances. The resulting structure is called a containment tree. Each
instance within the containment tree has a relative distinguished name (RDN), which con-
sists of the naming attribute of the instance and its value, e.g. customerID=(name IBM).
The concatenation of all RDNs from the root to an instance is called distinguished name
(DN), e.g. netId=TelcoNet;customerID=(name IBM). A distinguished name uniquely
identifies an instance within the context of its agent.!® An instance within a containment
tree can for example be accessed any time given its distinguished name. Contrary to
a CORBA object reference (cf. 2.1.1), distinguished names do not reliably identify in-
stances since they may be reused when an instance has been deleted to refer to a different
instance.

A conditional package may for example be included when an instance is created or before a SET- or
ACTION-request is executed.
10The same naming scheme can also be used to ensure object identity across several agents.

2.2. OSI NETWORK MANAGEMENT (CMIP) 19

customer MANAGED OBJECT CLASS

DERIVED FROM top;

CHARACTERIZED BY
customerPkg,
contactListPkg,

CONDITIONAL PACKAGES
customerTypesPkg PRESENT IF ! an instance supports it !,
opNetworkListPkg PRESENT IF ! an instance supports it !,
servicelListPkg PRESENT IF ! an instance supports it !,
typeTextPkg PRESENT IF ! an instance supports it !,
userLabelPackage PRESENT IF ! an instance supports i!;

REGISTERED AS {iso member-body(2) 124 forum(360501) 3 46};

customerPkg PACKAGE
BEHAVIOUR customerPkgDefinition, customerPkgBehaviour,
commonCreationBehaviour;
ATTRIBUTES
customerID PERMITTED VALUES FORUM-ASN1-1.SystemIdRange GET,
customerTitle GET;;

customerID ATTRIBUTE
DERIVED FROM "CCITT Rec. X.721 (1992) |
ISO/IEC 10165-2 : 1992":systemld;
MATCHES FOR EQUALITY;
BEHAVIOUR customerIDBehaviour;
REGISTERED AS {iso member-body(2) 124 forum(360501) attribute(l) 228%};

Figure 2.5: GDMO example (edited)

The GDMO name binding clause defines which instances of managed object classes can
be contained in an instance. If an instance of class customer is to be created under (i.e.
‘contained in’) an instance of class network, then there has to be a name binding that
specifies that customers can be created under networks. A name binding is also used to
constrain the deletion of managed objects because it can mandate that an instance cannot
be deleted as long as it still contains other managed objects.

Using scoping and filtering, it is possible to access more than one instance at a time,
e.g. to send a GET-request to multiple instances. Scoping selects instances starting
with a base instance and specifies how many instances should be included. The scope is
essentially the number of levels of children, or it can be the entire subtree starting from
the base instance. The resulting set of instances can be further reduced by specifying
a filter, which is an expression that is applied to the attributes of each instance in the
selected set of instances. If the evaluation of the filter is true, the instance is included in
the set. Of the 7 CMIP requests, scoping and filtering can be used with M-GET, M-SET,
M-ACTION and M-DELETE. It is thus possible to delete an entire subtree of managed

20 CHAPTER 2. TARGET OBJECT MODELS

object instances with a single request.!!

2.3 SNMP

2.3.1 Architecture
The Simple Network Management Protocol [Bla92, CFSD90, LF93] is a wide-spread In-

ternet standard for network management, mainly due to its simplicity and dissemination.
Its architecture is conceptually similar to that of OSI network management. A manager
communicates with an agent using the UDP-based SNMP protocol, which allows the
manager to issue GET-, GET-NEXT- and SET-requests and to receive responses. The
agent performs the requests sent by the manager and in addition may send TRAP-requests
to the manager, which are notifications of a problem that occurred on the agent side.
Unlike CMIP, the SNMP protocol does not define operations that can be executed on
variables (see below). Operation calls have to be simulated by the manager setting certain
variables in the agent. Manager and agent have to agree that setting a certain variable
invokes a certain operation.

2.3.2 Model

SNMP is not an object-oriented model because it does not have a notion of classes, it
knows only vartables. These represent information in the agent’s Management Information
Base (MIB) and can be accessed using a unique object identifier. An object identifier is
a node in a global naming tree whose structure is jointly administered by the ISO/ITU-
T standards bodies (cf. [LF93, ch. 7, p. 122]). New object identifiers (for new MIBs)
can be added to the leaves of the tree in a well-defined manner. Object identifiers can
conceptually be compared to OSI distinguished names and CORBA object references
since they unambiguously identify a variable or object, respectively.

A variable has a certain type that is defined using ASN.I macros (cf. below). SNMP has
only a small number of types available for describing information, which are the simple
types INTEGER, OCTET STRING, OBJECT IDENTIFIER (0ID), NULL and a few predefined
types such as Gauge and TimeTick [RM88].!2

An additional structuring mechanism are (conceptual) tables which allow to store any
number of variables under a given variable. The GET- and GET-NEXT SNMP requests

allow to traverse such tables.

2.3.3 Specification Language

The specification language of SNMP (ASN.1 macros) is used for two purposes, namely
the creation of MIBs and the definition of variables of a certain type.

11 This may not be possible when the name binding specifies that contained instances have to be deleted

before deletion of their parent.
12A11 ASN.1 types allowed for use in SNMP are listed in table 4.9 on page 110.

2.4. SUMMARY 21

A new MIB is essentially created by defining a number of variables at a certain position in
the global naming tree. These variables then represent the information an SNMP agent
will serve.

Each variable is of a certain type, which is defined using ASN.1 macros. An example is
shown in fig. 2.6

This example defines a variable that is allocated
under system (which is a node in the naming tree).
Its type is an OCTET STRING and it is read-only (i.e.
it cannot be set).

By knowing the MIB of an SNMP agent, it is possi-
ble to know the structure of the MIB (e.g. the part
of the global naming tree the agent serves) and the
types of its variables.

sysDescr OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
::= { system 1 }

Figure 2.6: ASN.1 macro
The SNMP model has been included in this discus-

sion since it is first relevant for network manage-
ment (a de-facto standard) and second, it can show whether and to what extent non

object-oriented models can be integrated in the Generic Object Model. A discussion on
the integration of SNMP into GOM can be found in sections 4.6.1 and 4.4.5.

2.4 Summary

The three target models described here have some commonalities and also some differ-
ences.

protocol-based whereas CORBA is interface-oriented (cf. section 1.3.2). The architecture
of the first two models is based on the concept of agents representing a set of resources
through MIBs and managers accessing agents through the use of a well-defined protocol
(CMIP or SNMP respectively). Access point to information is in any case the agent,
while CORBA clients access instances directly regardless of the server in which they are
located. In this respect, CORBA servers can be compared in their functionality to CMIP-
or SNMP agents in that they contain objects, but — unlike the latter two — the presence
of CORBA servers is transparent to client management applications.

The CORBA and OSI models are both object-oriented. They have a notion of classes
including attributes and operations, whereas SNMP only has variables to represent infor-
mation.

CORBA identifies instances through unique, non-reusable, opaque object references while
managed objects are identified by their distinguished names, which can be reused after
deletion of an object. Object identifiers are used to uniquely refer to SNMP variables.
The specification language for data types in the OSI- and SNMP models is ASN.1. In the
case of OSI, GDMO is used to define classes for managed objects, while SNMP makes use
of ASN.1 macros to define variables. CORBA uses OMG IDL to define its classes.

Since GOM has an object-oriented model, it should be relatively easy to map the OSI
and CORBA object models to it, while mapping SNMP variables may be more awkward.
Mapping a non object-oriented to an object-oriented model may require some counter-

22 CHAPTER 2. TARGET OBJECT MODELS

intuitive translations, comparable to the ones found in database technology when mapping
relational and object-oriented databases (impedance mismatch [Cat91, ch. 4.7.2]).13

A detailed comparison of the CORBA, CMIP and SNMP models can be found in [Rut93,
QP93].

13These issues are discussed in sections 4.6.1 and 4.4.5.

Chapter 3

Related Research

The purpose of this chapter is threefold. First, the scope of Inter-Domain Management
(IDM) and a classification of work being done in this area will be presented. Then we will
see what part of this area the thesis will focus on. The major part of the chapter will be
devoted to an overview of research done in this area, with emphasis on the work done in
the XoJIDM task force.! That work will be used as a typical representative of the static
approaches and used for comparison with the proposed generic model.

It will be seen that most approaches dealing with inter-domain management employ a
static, compile-time based approach, which has some deficiencies. The most important
ones will be discussed.

3.1 Inter-Domain Management

3.1.1 Overview

The term Inter-Domain Management is used here in the sense given by XoJIDM (cf.
3.1.2), which defines a domain? as a system by means of which management is accom-

plished.® Examples of domains are CORBA, CMIP (X.700), and SNMP.

L As of August 1997.

2Usually, the term domain is used in management terminology to denote an area of management to
which the same policies apply, such as a security- or administration-domain (cf. [Slo94]).

3Throughout the thesis, domain will be used synonymously with (object) model; the latter being the
more generic term.

23

24 CHAPTER 3. RELATED RESEARCH
CORBA Server CMIP Agent SNMP Agent
e JIDM [Int95,
Hie96b, Sou94c]
e Liaison [Der97] ° GOM
CORBA . .
cliont e Bilingual Agent e Liaison [Der97]
[SG94] e Mazumdar [Maz96]
e Genilloud [GG95, e Telecom SIG [Tel96]
GP95, Gen96]
e Telecom SIG [Tel96]
o CMIP-SNMP
Proxy-Agent
o JIDM [Hie96b, [RFC91a]
CMIP Sou94b, Sou94d] o [ACHO3]
manager e Mascotte [Mas97] ° [KSQ?)]
o [BGGYY] o [MPBS95]
e [Cha93, New93]
e Protocol
Independent
SNMP e JIDM Management Agent
manager e Mazumdar [Maz96] IMBL93]

IMC
[LaB93b, LaB93a]

Table 3.1: Classification of Related Work in the Domains CORBA, CMIP and SNMP

3.1. INTER-DOMAIN MANAGEMENT 25

Inter-Domain Management therefore deals with management of one domain through a
different domain, e.g. management of an OSI agent through a CORBA manager. Multi-
Domain Management, as used in this thesis, denotes management of several domains
through a single domain. Whereas there exists a binary relation between the management
and managed domain in Inter-Domain Management, Multi-Domain Management has an
1-M relation.

Currently, most work done in Inter-Domain Management deals with the management
models of SNMP and CMIP* with CORBA becoming increasingly important. The
overview of related research will therefore be restricted to the domains of SNMP, CMIP
and CORBA.

An overview of work done in Inter-Domain Management between SNMP, CMIP and
CORBA is given in table 3.1. The vertical row contains management domains whereas
the horizontal row contains managed domains.

Management of a domain X using X itself does not fit the above definition of Inter-
Domain Management, which dictates that the management and managed domains are
to be different. Since, if both domains were the same, which is normally the case in
management, then Inter-Domain Management would not be of interest to us. The cases
of using an SNMP manager to manage an SNMP agent, a CMIP manager to manage a
CMIP agent and a CORBA client® to manage a CORBA server are therefore not discussed
here.

Management Domain = CORBA, Managed Domain = CMIP Work in this
particular area tackles how CMIP agents can be managed by CORBA managers.

The XoJIDM task force has defined an algorithm for mapping a specification written
in GDMO / ASN.1 to OMG IDL and is currently working on an algorithm for runtime
conversion of requests between the domains of CORBA and OSI. As this work is important
for the thesis, a more detailed description will be presented in section 3.1.2.

The work on the Bilingual Agent [SG94] describes how a CORBA interface can be added to
an OSI agent, thus making it - in addition to OSI managers - also accessible to CORBA
managers. Its approach is to translate GDMO templates and ASN.1 types into OMG
IDL code. For each managed object in the agent, a corresponding CORBA (front-end)
instance is created that forwards CORBA requests sent to it to the underlying CMIP
managed object. Both static translation and runtime conversion code were generated
manually, but the intention was to make use of an already existing tool (Managed Object
Agent Composer [MOA94]) to automate both tasks. This work is similar to the solution
described in [Gen96, ch. 4.3] which proposes to upgrade existing OSI agents with IDL
interfaces to the managed objects.

Related work done on managing OSI objects from ANSA [ANS93] managers is described
in [GG95, GP95, Gen96].6 This approach can also be divided in a translation part and a

4Although CMIP actually only denotes the protocol used for communication between manager and
agent in the OSI management model, in practice 1t is often used in a pars pro toto meaning, denoting the
entire OSI model. It is therefore used interchangeably with the terms OSI or X.700.

°In the CORBA domain, the terms client and server are usually preferred to manager and agent,
respectively.

6A previous paper [BGG94] described the opposite mapping, namely accessing ANSA objects from

26 CHAPTER 3. RELATED RESEARCH

runtime interaction part (cf. [Spe97]). The translation part maps an OSI GDMO/ASN.1
specification to its corresponding ANSA IDL specification plus conversion code. The
runtime translation makes use of both the generated ANSA classes and the conversion
code to translate ANSA operations into OSI requests and back.

An OSI agent is represented by a corresponding ANSA prozy-agent (adapter), whose
task is the creation and deletion of ANSA managed objects, which are proxy instances
for managed objects in an OSI agent, and the discovery and retrieval of existing objects
from the real OSI agent. Each managed object in the OSI agent is represented by a
corresponding ANSA managed object located in the proxy-agent, which itself represents
the OSI agent to the ANSA world. Operations invoked on an ANSA managed object
are translated to OSI CMIP requests and sent to the real agent. CMIP responses are
converted to ANSA. Conversion code from GDMO/ASN.1 to ANSA IDL has previously
been generated by a translator.

Another approach for managing CMIP agents from CORBA management applications is
the Liaison project described in [Der97, Der96, BD97]. At its core is the Prozy, which
works similar to an HTTP server. It accepts CMIP requests, encapsulated in HTTP,
dispatches them to a CMIP agent and returns the response again in the form of HTTP
to the management client.

The type system of Liaison is very simple: it consists only of type string. This forces
the programmer to convert all types of the native host system (e.g. C++ or Java) to
string form, e.g. to provide arguments to a function call or to convert a return value from
a string to a host system type.

CMIP requests are mapped to HT'TP, sent to the Prozy and there converted into a pro-
cedure call which implements the CMIP request. This has the advantage that the Proxy
does not need to maintain any state information, but it also includes the disadvantages
of not being object-oriented (internally).

The OMG Telecommunication Special Interest Group has issued a white paper on how
to use CORBA in the field of telecommunications [Tel96]. The focus of this work is on
provisioning CORBA services ([COS95]) tailored to the needs of the telecommunications
domain. Physical and logical resources are supposed to be represented by CORBA inter-
faces. Access to OSI and SNMP managed systems will reuse the work done by XoJIDM.

Management Domain = CORBA, Managed Domain = SNMP This part of
IDM deals with managing SNMP agents from a CORBA-based management domain,
thus allowing transparent CORBA-based management of SNMP devices without having
to deal with the SNMP protocol.

XoJIDM has defined a translation algorithm that maps CORBA IDL to SNMP [Spe97,
Part 6]. Following this work, [Maz96] describes an approach in which SNMP MIBs are
translated to CORBA IDL. The Dynamic Skeleton Interface (DSI) and Dynamic Imple-
mentation Routine (DIR) [OMG95] are used at runtime on the server side to convert
incoming CORBA requests to SNMP PDUs and SNMP responses to CORBA values.
Liaison [Der97, Der96, BD97] allows CORBA management applications to manage SNMP
agents. Aside from access to CMIP agents, it also offers access to SNMP agents.

OSI managers.

3.1. INTER-DOMAIN MANAGEMENT 27

The OMG Telecommunication Special Interest Group has proposed a scheme describing

how SNMP devices can be managed from a CORBA-based application [Tel96].

Management Domain = CMIP, Managed Domain = CORBA The subject of
this research area is how a CMIP manager can manage objects in the CORBA domain.
The XoJIDM task force considers in its prospective Interaction Translation document
[Int95, Hie94, Hie96b, Souddb, Sou94d] the use of a proxy agent (controller) to receive
CMIP requests and dispatch them to CORBA objects using the Dynamic Invocation
Interface (DII). There is a MIBserver that records OSI names (Distinguished Names)
and CORBA object references in a table, which can be queried to translate OSI names
to CORBA object references and vice versa. The approach makes use of XoJIDM’s
Specification Translation document [Spe97, part 4], which defines a mapping from IDL to
GDMO/ASN.1.

The Mascotte project [Mas97] deals with how the various elements of a CORBA system
can be managed using CORBA itself on the manager side. To achieve this, CORBA IDL
interfaces have been defined for a number of entities such as the basic object adapter, the
ORB core etc.

To integrate these management interfaces with existing (OSI) management, their IDL
specification has been (manually) translated to GDMO / ASN.1 and a scheme has been
devised that translates at runtime requests between the CMIP and CORBA domains.”
Thus, it is possible for a CMIP management application to manage (selected) CORBA
objects.

Similar work is described in [BGG94], but the domain to be accessed from OSI managers
is ANSA [ANS93] instead of CORBA. The goal is to access existing ANSA objects from
OSI managers without modifying the ANSA objects. The approach is twofold: first, a
static translation maps the ANSA object model specification to GDMO/ASN.1. Then,
a runtime translator in an OSI pseudo agent maps CMIP requests to ANSA operation
invocations.® In order to find ANSA interface references from OSI names, when an OSI
CREATE request creates a corresponding ANSA object, the binding between OSI name
and ANSA interface reference is recorded in the pseudo agent’s naming table and subse-
quently used to retrieve the correct ANSA interface reference.

Management Domain = CMIP, Managed Domain = SNMP This work inves-
tigates how a CMIP manager can manage SNMP resources transparently.

The Internet Architecture Board (IAB) has defined the notion of an OSI prozy agent which
has the role of an OSI agent towards an OSI manager and the role of an SNMP manager
towards an SNMP agent, thus acting as a gateway between CMIP and SNMP requests.
The goal of the proxy agent is to present SNMP resources to an OSI manager in the form of
OSI managed objects. Employing this scheme, the Internet MIB II specification [RFC91b]
has been (manually) translated® to allow OSI management applications to manage SNMP

"This scheme involves a prozy OSI agent translating OSI requests to CORBA operations and vice
versa.

8The code for the runtime translator is supposedly generated by the static translator (the paper
mentions that future work will include such a translator).

®The resulting OSI MIB is called OSI Internet Management (OIM II).

28 CHAPTER 3. RELATED RESEARCH

resources.
Similar work implementing a gateway between the domains of OSI and SNMP 1s described
in [ACH93]. It consists of a special intermediate OSI agent that provides OSI managers
access to SNMP resources in the form of managed objects. The proposal includes a
translation that maps SNMP object types to OSI managed objects and, at runtime, OSI
Distinguished Names to SNMP object identifiers (OIDs). Unlike in the above approach,
translation of SNMP MIBs to OSI MIBs is automated. The gateway agent implements
a name mapping from OSI names to SNMP variable names and a service mapping that
maps CMIP requests to their SNMP counterparts.

The work described in [KS93| realizes an application gateway (cf. [Ros90b]) between OSI
manager and SNMP agent, which is essentially an OSI agent acting as an SNMP manager
and converting requests between the two domains. Similar to the approach described
above, a name mapping and a functional mapping are defined, which allows to translate
between OSI names and SNMP object identifiers on the one hand and CMIP- and SNMP-
requests on the other hand. The mapping between SNMP and OSI MIBs is conceptually
similar to the one in [ACH93], but results in fewer managed object templates being
generated. The authors also describe problems encountered in creating an application
gateway, such as reconciliation between a connection-oriented (CMIP) and connectionless
(SNMP) protocol, and breaking up large CMIP PDUs into several smaller ones with
subsequent reassembly.!?

Another approach similar to the ones already described is [MPBS95]. This work is based
on the Network Management Forum’s ISO/ITU-T and Internet Management Coexis-
tence (IIMC) activities, which define mappings between SNMP/CMIP and vice versa
[LaB93b, Cha93]. A compiler has been written following the IIMC approach for mapping
SNMP MIBs to OSI MIBs. The resulting GDMO code is already enriched with code that
translates CMIP- to SNMP -requests and can be compiled into an OSI agent [Pav93].

Management Domain = SNMP, Managed Domain = CORBA Work in this
area deals with enabling SNMP mangers to manage CORBA objects.

XoJIDM’s specification translation document [Spe97, Part 5] defines a mapping from
SNMP to OMG IDL.

[Maz96] describes an implementation that makes use of this mapping. It consists of
a CORBA-based agent that acts as an SNMP agent (using CMU’s'! SNMP library).
Incoming SNMP PDUs are converted to CORBA requests and CORBA events are mapped
to SNMP traps.

Management Domain = SNMP, Managed Domain = CMIP How to use SNMP
managers for management of CMIP agents is important here.
The goal of the approach followed in [MBL93, WMBL92]| is to augment a CMIP agent

to support the SNMP protocol as well. This is done by creating a special agent with a
protocol-independent MIB (PIM) and CMIP and SNMP protocol processors that - depend-

10Unlike SNMP - which is based on UDP — CMIP has no packet size restriction.
1Carnegie Mellon University.

3.1. INTER-DOMAIN MANAGEMENT 29

ing on the protocol used!? - dispatch an incoming request to the corresponding object.
The SNMP part of the protocol-independent agent is implemented by translating the
CMIP MIB to both an SNMP MIB and C++4 objects for the PIM representing SNMP
objects. Any CMIP object created also registers a corresponding SNMP entry in the
name registration table in order to make it known to SNMP managers.

Use of this scheme allows vendors to provide additional SNMP access to their OSI agent
managed devices, enabling existing SNMP-based applications to manage the device.

3.1.2 NMF - X/Open Joint Inter-Domain Management

The Network Management Forum — X/Open Joint Inter-Domain Management task force
(XoJIDM)*? has as its goal the integration of CORBA in the network management world.
The task force tackles issues such as how CORBA can be used for building management
applications (clients) and managed applications (agents, servers). Specifically, some of
the major objectives are:

1. Management of OSI agents using CORBA clients

2. Management of SNMP agents using CORBA clients
3. Management of CORBA agents using OSI managers
4. Management of CORBA agents using SNMP agents

As the focus of this work is on the manager side, only the first item will be examined,
namely the scheme proposed by XoJIDM to enable CORBA applications (clients) to
transparently manage OSI Managed Objects.

The approach chosen involves translation of an OSI agent specification (GDMO / ASN.1)
to CORBA IDL (Spectfication Translation [Spe97]) and subsequent runtime conversion of
CORBA requests to CMIP and back (Interaction Translation [Int95]). CORBA clients
include the language bindings of the IDL specification generated by a GDMO / ASN.1 to
IDL translator.

Specification Translation defines a mapping from GDMO and ASN.1 to IDL as shown in
table. 3.2.

GDMO templates may be mapped up to 3 IDL interfaces: a default CORBA interface,
an interface for notifications and one for handling multiple replies.

GDMO packages as such do not exist in the translated code, but all elements (attributes,
actions and notifications) of both mandatory and conditional packages are added to the
resulting IDL interface. Information about conditional packages is present only in com-
ment form. Possibly large IDL interfaces may result from this algorithm, containing all
elements of conditional packages even if just a few conditional packages may be present
in the resulting managed object.!*

12The determination of the correct protocol is easy since SNMP requests are sent as connectionless
UDP packets to a well-defined port, while CMIP requests use connection-oriented communication.

!3More information can be obtained from the Web site at
http://www.rdg.opengroup.org/memonly/tech/sysman/jidm/index.htm.

14Which conditional packages are to be present is decided by the creator of the instance or by the OSI
agent that creates an instance.

30 CHAPTER 3. RELATED RESEARCH

GDMO Templates IDL Interfaces (up to 3: class, notifications and multiple

replies)
GDMO Packages Elements of IDL Interface
GDMO Attributes IDL Types / Interfaces
S;?SMO Attribute Ac- IDL Operations (get_X(), set_X())
GDMO Actions IDL Operations
GDMO Notifications IDL Operations
GDMO Parameters IDL IDL Types
ASN.1 Types IDL Types

Table 3.2: XoJIDM Specification Translation

Attributes in GDMO templates are mapped from ASN.1 to their corresponding IDL type
and are made member variables in the resulting IDL interface. Access to them is allowed
only through the use of accessor operations. Corresponding to their GDMO attribute
access definitions, these will enforce constraints on attribute access such as absence of
accessor operations that modify a value if the latter was declared read-only in the GDMO
template. There may be a number of accessor operations per attribute for getting, setting,
replacing with default, adding and removing attribute values.!®

ASN.1 types are translated to their corresponding IDL types, e.g. an OCTET STRING is
mapped to a string, a SEQUENCE to a struct etc.

Interaction Translation specifies the runtime conversion mechanism and the general em-
bedding of the proposed scheme within the CORBA architecture as shown in fig. 3.1.1°
The GDMO / ASN.1 documents that define the agent’s MIB are translated to IDL ac-
cording to the rules of Specification Translation. The resulting IDL code is subsequently
translated to both client stubs and server implementation skeletons (server stubs) of the
desired target language (e.g. C++).

The previous GDMO / ASN.1 to IDL translation provided not only IDL interfaces, but
also code (behavior) for the server stub implementation, which converts CORBA requests
into CMIP PDUs using for example XOM / XMP. The server stubs merged with the
generated stub implementation code represent fully functional proxies for managed objects
and reside in a CORBA CMIP object adapter (CMIP OA).

A management application may now include the generated client stubs in a desired lan-
guage binding (e.g. C++ or Smalltalk). A request invoked on a client stub will be
transparently forwarded to the server object in the CMIP OA, which will then use XOM
/ XMP to dispatch it to an agent using the CMIP protocol. The response from the agent

15 Accessor operations for adding or removing values are present only for set-valued types.

1®Note that at the current date (Aug. 97), no formal Interaction Translation document has been fur-
nished yet, but a few proposals ([Hie94, Hie96b, Sou9d4b, Sou94d, Sou94a, Soud4c, Sou94e]) have been
submitted to XoJIDM that are to be merged into a common document. Whenever XoJIDM’s Interaction
Translation document 1s mentioned, the author therefore refers to a prospective future document extrap-
olated from the proposals submitted so far. Note, however, that the final document may or may not be
in line with the submitted proposals wrt. its contents. The proposals that deal with CORBA manager
managing OSI agents are specifically [Hie94, Hie96b, Sou94c].

3.1. INTER-DOMAIN MANAGEMENT 31

GDMO Client Stub
ASN.1 : ‘
GDMO/ASN.1 CORBA| |CORBA
to IDL Translator Request | |Response
IDL CMIP OA
: cMIP | | cmip
IDL Compiler oot | T o e
Client Server s |} Ve ‘
Stubs Stubs Impl.
\/ OSI Agent
(_ Client) [Server]

Figure 3.1: XoJIDM Interaction Translation Architecture

is subsequently converted to CORBA!” and returned to the client.

While the document on Specification Translation is almost finished, Interaction Trans-
lation is still far from being ready: as of Aug. 1997, only a few proposals have been
submitted for discussion.

3.1.2.1 Deficiencies

The static specification translation approach as exemplified by XoJIDM has a number
of drawbacks/deficiencies resulting mostly from idiosyncrasies of OSI. Some of them are
described below. A more detailed description of problems of specification translation is

given in [Gen96, 152-167].

3.1.2.2 Multiple Replies

A GDMO ACTION may return a single or multiple responses. This is handled in Xo-
JIDM’s approach using exceptions [Spe97, 4.5.2]. When a single response is returned, no
exception is thrown. When multiple responses are returned, an exception is thrown that
has to be caught by the application to handle the responses.

Responses are collected via an event channel [COS95] using either the push- or pull model.
For each GDMO template containing ACTIONSs, the normal IDL interface plus two ad-
ditional ones for the pull- and push models will be generated.

This scheme has the disadvantage that for each GDMO template containing ACTIONS,
up to three IDL interfaces will be generated.

Moreover, using the event channel which was actually conceived for storing events for
the purpose of iterating through a result set seems counter-intuitive to common design
practice.

17 .e., it will be converted to a data type of the chosen language binding.

32 CHAPTER 3. RELATED RESEARCH

Last but not least, despite the fact that in practice few ACTIONs return multiple re-
sponses, clients always have to wrap code that invokes an action with exception handling
code. This code may only be used a fraction of the time but nevertheless increases the
size of the code and may impair readability.

[Gen96, 4.6.8] describes a scheme called flezible translation to solve this problem.
Section 4.6.2.4 describes how GOM handles multiple replies.

3.1.2.3 Attribute Operations

Another problem is the number of operations generated for each attribute in a GDMO
template: since CMIP’s M-GET/M-SET request may raise a number of exceptions, Xo-
JIDM decided to map attribute access to IDL operations, which can raise exceptions as
well. For each attribute, there are up to 5 operations to get, set, set to default, add and
remove an attribute (see [Spe97, 4.3]), leading to increased code size. Genilloud [Gen96,
4.3.3] describes this problem in more detail.

A characteristic of CMIP is that multiple attributes can be set or retrieved with a single
request. This has been taken into account by providing generic get- and set methods, but
this actually defies the purpose of JIDM’s strong typing concept.

Further problems concerning the manipulation of GDMO attribute groups are described

in [Gen96, 4.6.9.1].

3.1.2.4 Conditional Packages

Actions, attributes and notifications of GDMO conditional packages may or may not be
present in a managed object instantiated from a GDMO template. The JIDM translation
algorithm by default includes all conditional packages that might possibly be instantiated
in the resulting IDL interface [Spe97, 4.2]. When an implementation detects that an
element to be accessed is in a conditional package that is not present, an exception is
thrown. How to keep track of the conditional packages (and their elements) that have
been included is implementation-dependent.

Including all elements of all conditional packages defies a central design choice of GDMO;
namely to allow clients to decide which elements should be included in a managed object
and which not, thus being able to pay’ (in terms of memory size) for the elements that
are actually used. If all conditional packages are included in the resulting IDL interface,
but only a few are actually used, then an overhead is carried with each instance.

GOM’s generic object model (cf. 4.2.2) allows to decide at instance creation time which
elements should be present in an instance. It is for example possible to create an ’empty’
instance (one with no attributes) and add an attribute only when it is requested the first
time (lazy attribute creation).

3.1.2.5 Notifications

Notifications are mapped to four operations: two for pulling and two for pushing oper-
ations (confirmed, unconfirmed) [Spe97, 4.6]. As in the case of attribute operations this
leads to increased code size.

3.2. SUMMARY 33

GOM’s event handling model (4.5) is generic and does not take into account typed
events/notifications. Therefore, a significant code reduction can be achieved.
Problems of mapping notifications to IDL operations are described in further detail in

[Gen96, 4.6.10].

3.1.2.6 Recursive ASN.1 Types

As IDL does not support recursive types (except with sequences), the JIDM translation
algorithms supports only direct recursion using sequences of length 1. Indirect recursion
is not supported. Genilloud states that recursion can best be supported through manual
intervention (flexible translation) [Gen96, 4.6.3].

GOM allows to map recursive data types in a simple manner both in the instance- and
meta model (see section 4.6.2.6).

3.2 Summary

A few characteristics common to most approaches are described here.

First of all, to perform Inter-Domain Management between a management domain (A)
and a managed domain (B) requires that the specification of domain A be translated
into a corresponding specification in domain B (syntactic translation). This translation
is in most cases performed by a compiler, which accepts a specification of domain A and
outputs a specification for domain B.

Second, the mapping is usually unidirectional and irreversible.!® The reason for this is
that transforming a specification from one domain to a different one results in most cases
in loss of information since all domains are syntactically and semantically different. It
is possible, however, to prevent information loss at translation time to a certain degree
by storing it in comment-form in the resulting specification, enabling a B-A translator to
transform specification B back to A.

Third, semantic translation determines the runtime behavior of a generated specification
and involves bidirectional runtime translation between domains A and B. The code for
a runtime mapping may have been generated by the specification translator or it may
be an independent entity, possibly using helper information previously generated by the
specification translator.

This thesis focuses on multi-domain management with the common management domain
being CORBA and the managed domains being CMIP, CORBA and (to a lesser extent)
SNMP. It will be contrasted mainly with the approach proposed by XoJIDM [Spe97,
Int95]'°, which has some limitations:

o Clients have to know the types of classes they will be managing; this is typically done
by compile-time inclusion of generated client stubs, which creates a tight binding

18This implies that the exactly same specification of domain A cannot be re-engineered from the
generated specification of domain B using a B-A translator.
198pecifically Inter-Domain Management between CORBA and CMIP and CORBA and SNMP.

34 CHAPTER 3. RELATED RESEARCH

between a client and a service (offered by a server in the form of a class). Modifica-
tion of the specification leads to shutdown and regeneration of the client application,
which is unacceptable for certain types of applications.

e Static inclusion of client stubs may lead to a large number of classes and methods
being present in the client application since the mapping algorithms defined by
XoJIDM’s Specification Translation generate a large amount of code. Dependencies
of classes on other classes have to be resolved at compile-time?°, which may make
the client include all dependencies of a certain class into the executable. In the
worst case, the transitive closure over all client stubs will have to be included.

o A static, compiled-time based approach is problematic with certain ASN.1 types
such as ANY DEFINED BY?!, extensible attribute groups??, and a mapping of condi-
tional packages?® is awkward.

e Finally, most approaches specialize in mapping exactly one domain into another one,
requiring one translator per mapping. If n domains are given, then each additional

mapping to/from all other domains requires n? — n new translators.

It will be shown that a dynamic mapping approach — based on metadata — has advantages
over static (compile-time) mapping between domains and will solve some of the problems
mentioned above. The author’s intention is to show that the approach proposed in this
thesis does not necessarily compete with the one adopted by XoJIDM, but complements it,
depending on the type of the application. For certain applications, compile-time inclusion
of a fixed number of classes may be preferred, for others runtime inclusion via metadata
mechanisms may be better suited (see chapter 5).

Moreover, it will also be shown that the model presented here does not necessarily need
to be restricted to the domains of CMIP and SNMP, but can be extended to integrate
other domains such as COM (OLE) [Bro94] or Java [Sun95].

Of course, the proposed model could also be employed to enable OSI managers to trans-
parently interfere with SNMP or CORBA domains. However, this goal is beyond the
scope of the thesis and will be treated only briefly in 4.6.6.

20At least in languages such as C++, which is probably the most frequently used CORBA language
binding.

21This ASN.1 type can be determined only at runtime.

228et of attributes to which attributes can be added or from which attributes can be removed. Attribute
sets are manipulated as a whole, 1.e. a GET-request on an attribute group returns all of its members.

23Members of conditional packages (e.g. attributes or operations) may or may not be present in an
instance. XoJIDM by default includes all members of all conditional packages.

Chapter 4

The Generic Object Model

4.1 Architecture

This section will give an overview of the architecture of the Generic Object Model. It
will briefly introduce the three main components of GOM, the generic object model, the

metadata repository and the concept of adapters.
The architecture of GOM is shown in fig. 4.1.
IDL
Target GDMO
Model ASN.1
Specification
Parser

Client
Applications

Write Interface

Read Metadata
Generic Object Moddl (GOM) Intf. Repository

/ w
CMIP SNMP Adapters ﬁ

CORBA
e
|
CORBA CMIP SNMP Target Systems

Figure 4.1: Architecture of GOM
At the core of GOM is the metadata repository (MR) which maintains information about

35

36 CHAPTER 4. THE GENERIC OBJECT MODEL

the structure of classes of several target models. It is needed to type-check request ar-
guments at runtime and to convert values between GOM and target models. As GOM
possesses no knowledge about the classes available in a target system because they are not
included at compile time, it has to rely entirely on metadata for instance manipulation.
The next important component of GOM’s architecture is the generic object model. It
wraps instances of target systems in a generic representation and offers them as prozy
instances to client applications. Proxy instances can be manipulated by applications as
if they were normal instances, but rather than maintaining functionality of their own,
operations invoked on them will be processed by GOM, which performs type checking,
conversion, dispatching to the corresponding instance in the target system and conversion
of return value [GHJV95].

All of these tasks are actually performed by adapters. An adapter is a bridge between
the generic object model and exactly one specific target model. It type-checks, converts
and dispatches requests between them. Every proxy instance will have a reference to an
adapter to which it forwards all requests it receives.

The integration of these three components in GOM and their cooperation will be explained
in the context of the overall architecture in sections 4.1.1, 4.1.2 and 4.1.3. A more detailed
discussion of each component will be given in sections 4.2, 4.3 and 4.4.

4.1.1 Object Model
The object model of GOM is defined through a number of classes (IDL interfaces) with

attributes and operations, and the interactions among them. These classes provide a
homogeneous abstraction layer to clients, shielding them from and leveling the differences
between various target systems such as CORBA, CMIP and SNMP.

The CORBA interfaces are GenObj, Val (and subclasses), Adapter and Factory. As
these are explained in detail in section 4.2.2.2, it is the task of this section to focus on
the interaction between their instances.

Each instance in a target system is represented by a corresponding prozy instance in
GOM. Proxies receive requests such as for attribute retrieval or operation invocation and
forward them to the target instance they are representing.

A proxy object (GenObj) may be created locally, i.e. in the client’s address space (this
is the default case) or in a different process on the same machine, or remotely, i.e. on a
different machine (see fig. 4.2).

Local proxies with either local (2) or remote (3) target instances will probably be the
most frequent situation. In these cases the proxy is always in the same address space
as the client, and communication overhead between client and proxy is minimal.! Com-
munication between the proxy- and target object takes place using whichever protocol
is appropriate, depending on the target’s object model. This communication may for
example be a CORBA- or CMIP request.

Case (1) can be used if interaction between proxy and target object is much more intense
than between client and proxy, e.g. in the case when a request to a proxy instance
generates multiple requests to the target object, or if a certain type of adapter is not

!Essentially the cost of a local procedure call.

4.1. ARCHITECTURE 37

Remote Proxy ~ Remote Target Object
,,,,,,,,,,,, > K
L or;eV\I’ Proxy Remote Target Object

Figure 4.2: Local and remote proxies

available on the local machine. This may be the case when the local host wants to access
OLE instances ([Box95]) without having an OLE adapter available. In this case, both the
proxy and the target instance might be created in the remote host where a suitable OLE
adapter is located (1).

A theoretical fourth case is that of a remote proxy and a local target object. As this
increases communication overhead significantly without any visible advantage, this alter-
native is not considered (although not prohibited).

Proxy instances and their corresponding adapters always have to be co-located at the
same location. This means that if a proxy instance is to be created remotely, then a
suitable adapter will have to be present at that location as well.

IDL Interface GenObj defines the class for proxies. It contains operations for getting and
setting attributes, invoking operations, deleting the instance, and accessing metadata
about the target instance.

A proxy instance is stateful; it records the classname of the target object, its own instance
name (may be empty), a reference to an adapter to which all requests are forwarded (see
below) and a property list which allows any further state information to be attached (as
for example needed by adapters).

Proxy instances are created using factories. A factory is responsible for locating the
correct adapter for the desired target object model and dispatching the creation request
to it. The adapter will then create the target instance (at the specified location), a (local
or remote) proxy instance for it and return the proxy instance to the caller.

The adapter will set attribute adapter of the created proxy to refer to itself so that the
proxy can forward any operation invoked on it to a suitable adapter.

There is exactly one adapter for each object model. Its IDL interface name consists of a
concatenation of the name of the object model it represents and the sufthx " _Adapter", e.g.
"DSOM_Adapter". Whenever an adapter is created, it is registered with a naming service
(cf. [COS95]) using this assigned name. For example, a CMIP adapter on host "adl"
would have an interface name of CMIP_Adapter and would be registered with the naming
service on host "adl'" with key "CMIP Adapter' and value "<CORBA object reference
of the CMIP adapter instance>'".

When a factory creates a proxy instance, it first has to find a suitable adapter that serves
the desired object model. Using the above name, the factory searches the naming service
either on the local or remote machine (depending on the location of the proxy). If the

38 CHAPTER 4. THE GENERIC OBJECT MODEL

adapter is found, the creation request is forwarded to it, otherwise a new adapter will be
created (if its interface is available) and its name added to the naming service.

A factory allows to specify the location of the proxy- and target instances in operation
Create. If the location of the proxy instance is remote, then the naming service on the
remote machine will be queried for a suitable adapter, otherwise the local naming service
will be used.

The above discussion of the provided interfaces making up GOM comprises the instance
model (cf. 4.2.2) which will be used most frequently by clients. However, clients may also
access the other part of GOM’s object model, the meta model, to retrieve metadata about
elements of the target system. A discussion of the meta model is presented in section
4.2.3.

As the various language bindings for the CORBA interfaces that make up GOM’s object
model may not make use of the entire set of features available for that language (since
it has to be 'portable’ across many languages), it is sometimes useful to provide a layer
on top of the generated languages bindings that conforms to the philosophy of the host
language. These are called conventence bindings and are discussed in section 4.2.4.

4.1.2 Metadata Repository

The metadata repository (MR) is a central component of GOM that maintains metadata
about the various target object models managed by GOM. Its main users are:

Adapters The generic object model of GOM needs access to metadata about the target
instances for which it provides proxy instances in order to type-check and dispatch
requests and convert between a target- and the generic model. This is the task of
adapters.

Clients The metadata repository is not only used internally by adapters, but it is also
open to clients, which can query it for metadata. Both adapters and clients use the
same interface to the MR: the read interface.

Compilers Metadata can be added to the MR either by means of metadata adapters or
compilers using the write interface. This allows compilers (or parsers) to generate
metadata in the MR for any target model by reading the target specification and
entering it (in an acceptable form) to the MR.

Metadata is kept persistently in metadata caches, one for each object model. Metadata
caches are persistent, thus having the function of databases meta information.

Metadata adapters are responsible for providing target system metadata just-in-time.
They are called by the metadata repository whenever metadata cannot be found in the
metadata cache and have to provide the desired information by tapping into existing
sources of metadata (such as other metadata repositories), converting it to a form that
is accepted by the MR and copying the requested information to a metadata cache. The
metadata repository is discussed in section 4.3.2.

4.2. OBJECT MODEL 39

4.1.3 Adapters

Adapters function as bridge between the generic- and exactly one specific target model.
They level the differences between the various target models by assisting the generic object
model in communication with target systems. All the system dependent code that needs
to be written to communicate with the target system is located here.

An adapter is an abstract class. No instances of it should ever be created, but it should
be subclassed by real adapters that override and implement its operations to provide
bridging functionality.

As mentioned above, the CORBA interface name of an adapter is constructed as a con-
catenation of its object model name and the suffix ""_Adapter". The ASCII form of this
name is also used to register an instance of an adapter with a naming service. This allows
a factory to create proxy instances by (1) locating a suitable existing adapter instance
from a naming service or (2) by creating a new instance of an adapter and registering it
with the naming service.

An advantage of adapters — besides encapsulation of system-specific code — is that libraries
for access to target systems will be linked with an adapter, but not with the proxy
instances. Therefore target system specific code will not have to be linked with the client
application, resulting in code size reduction. Also, since an adapter is represented as
CORBA interface, multiple entities can retrieve an adapter instance using the naming
service and access it without increasing code size since the code is loaded into memory
only once.

Adapters are discussed in more detail in section 4.4.

4.2 Object Model

An object model is essentially the description of a system by means of objects and their
interactions. Information (data) is represented through objects and information flow
through interaction between objects (cf. 1.2).

The object model of GOM consists of a number of CORBA interfaces containing attributes
and operations. Their purpose is to provide a uniform programming model to clients.
This allows transparent manipulation of a set of heterogeneous target object models with
minimal concern for their structure, thus allowing a user to get- and set attributes of a
proxy GOM instance without necessarily needing to know that the target instance may
actually be a managed object in an OSI agent.

GOM’s object model is divided into an instance- and a meta model. The instance model
is used to represent instances of target systems (e.g. managed objects in an OSI agent,
SNMP variables in an SNMP agent or objects in a CORBA server), whereas the meta
model is used to represent metadata about the target systems (e.g. information about
attributes of a class, parameter types of an operation etc.).

The instance model is described in section 4.2.2. Its main characteristics will be discussed
and a detailed description of the interfaces involved will be given. Also, use cases demon-
strating how to manipulate instances of target models using GOM’s instance model will
be shown.

40 CHAPTER 4. THE GENERIC OBJECT MODEL

The meta model is described in section 4.2.3. Besides describing the interfaces structuring
the meta model, the focus will be on layout definitions and their mapping to the target
models of CORBA and CMIP. They define how the generic structure of the meta model is
mapped to a specific target meta model, e.g. how metadata for a GDMO class template
is represented in the meta model.

Section 4.2.4 describes the concept of convenience bindings, which are (optional) addi-
tional layers on top of the bindings generated from the IDL interfaces. Their objective is
to offer a better and more user-friendly integration with the host language. Examples of
convenience bindings for both C+4 and Smalltalk will be given.

4.2.1 Overview

An overview of the interfaces available in GOM 1is shown in fig. 4.3.

GomElement

Instance Model Meta Model

_—7

‘ GenObj ‘ [Values] ‘ Metalong H MetaFloat H MetaStringH MetaObj H Metal ist ‘

Figure 4.3: The object model of GOM

At the top of the hierarchy is IDL interface GomElement (definitions are shown in fig.
4.4) from which all classes of the instance- and meta model inherit. It is used to define
a number of operations common to both models. GomElement is an abstract interface
(i.e. no instances may be created) and therefore all operations must be overridden by
subclasses.

The GomKind type enumerates all elements of the instance- and meta model and operation
GetKind identifies for each element what type of element it is. This is important when
one does not know which interface one has to deal with, as in the case of generic metadata
browsers that displays metadata differently depending on their type.

Operation AsString returns a string representation of the instance and Copy returns a
copy.

Operations Dump and Read write the contents of the object to a stream or read from
the stream to re-create the object. Having the ability to stream out all of its instance-
and meta model objects and to reconstruct them at a later time allows GOM to save its
objects to a file, thus making them persistent, or to send them across a communication
link (in order to re-create them at a remote location). This facility is currently used by
the metadata cache (cf. section 4.3.2) to make its contents persistent, thus enabling faster
re-population upon restart.

The interfaces of the instance model are shown in the left subtree and the ones of the
meta model in the right subtree.

4.2. OBJECT MODEL 41

enum GomKind {
// instance model types
GenObjKind, ValKind, NILKind, ObjRefKind, BoolKind,
CharKind, ShortKind, IntKind, LongKind, DoubleKind,
StrKind, EnumKind, StructKind, SequenceKind,
UnionKind, ArrayKind, AnyKind,

// meta model types
MetaObjKind, MetalongKind, MetaFloatKind,
MetaStringKind, MetalListKind

3
interface GomElement {
GomKind GetKind();
string AsString();
GomElement Copy Q) ;
boolean Read(in InputStream is);
boolean Dump (in OutputStream os);

Figure 4.4: Interface GomElement

The root of all instance model interfaces is Val, which models a (proxy) value of a target
system. Derived from it are GenObj whose proxy instances represent objects of target
systems (e.g. a managed object in an OSI agent) and a set of values such as Int, Struct,
Str and Bool (cf. section 4.2.2 and appendix A.1 for a description).

The root of all metadata model interfaces is MetaElement. Its subclasses are MetaLong,
MetaFloat, MetaString, MetaList and MetaObj (cf. fig. 4.16 on page 58).

A client of GOM will mostly use the instance model whereas an adapter implementor that
needs access to metadata will also have to deal with the meta model.

The instance- and meta models are explained in the next two sections.

4.2.2 Instance Model

The instance model is that part of GOM that a client will use most often. Its task is
to provide a uniform abstraction model for instances of other object models (i.e. target
instances) by furnishing corresponding prozy instances for target instances, encapsulating
knowledge of how to access the targets. Proxy instances are always instances of the
interface GenObj and operations invoked on them are transparently dispatched to the
target system they represent.

The instance model is generic in that it is a synthesis of features common to object-
oriented models. Most object models provide classes; classes can be instantiated; instances
have attributes and operations; operations have parameters and a return value and so on.

42 CHAPTER 4. THE GENERIC OBJECT MODEL

Target Model GOM Model

Class X Interface GenObj

Instance of X Instance of GenObj (name == "X")
Type Subclass of interface Val

Value (Instance of Type) Instance of subclass of Val

Table 4.1: Mapping of target system elements to GOM

GOM acknowledges this situation and tries to provide a common, reified instance model
that uses the commonalities between a number of models and tries to reconcile their
differences. Reification [Mae87, Cha94] is the ability to represent concepts of a system
through elements of the system itself and is used by GOM in the sense that all major
elements of GOM are modeled as objects (IDL interfaces).?

Therefore, classes of any target model are represented as instances of the IDL interface
(GenObj), e.g. a managed object of GDMO template X in an OSI agent will not — as in
the case of XoJIDM (cf. 3.1.2) — be mapped to an instance of IDL interface X, but always
to an instance of IDL interface GenObj with class name ”X”.

By having no concept of classes in the instance model, but knowing only instances, the
generic object model of GOM resembles those of prototype-based models such as SELF
[UCCH91, US91].

As shown in table 4.1, instances of any target system class are always represented as
instances of GenObj, with the target system’s class name parameterized within the equiv-
alent GenObj (proxy) instance.

Target system types (e.g. a CORBA long, struct, or an ASN.1 SEQUENCE) are mapped to
a subclass of Val. There are a finite number of GOM values and all values of all possible
target systems should map to one of those. An instance of a target system type (a value,
e.g. ’57), is mapped to an instance of a subclass of Val.

The IDL interfaces of the instance model (GenObj, Val, Adapter and Factory) will be
explained in section 4.2.2.2.

4.2.2.1 Characteristics of the Instance Model

Uniform Model Mapping elements such as classes, attributes and values of target
systems to a finite set of IDL interfaces has the advantage that the type system of GOM
is known and that clients do not need to be recompiled because new types are added
or existing ones modified. This is in contrast to approaches that statically translate an
object model’s specification to IDL and make clients include the resulting IDL interfaces.
Using static translation, clients have to be recompiled whenever the original specification
is modified, or additional classes are added, since the IDL interfaces will have to be
regenerated.

2Complete (object-oriented) reification would also involve modeling method dispatch, inheritance etc.
as objects. However, for our purpose a partially reified object model is sufficient.

4.2. OBJECT MODEL 43

Dynamic Access Classes of target systems that were not known when a client appli-
cation was compiled can nevertheless be manipulated without the need for client recom-
pilation. It is possible to create instances of these classes, get- and set their attributes
and invoke operations on them.

Of course, an application must be written accordingly to use this feature. Applications
that benefit from a dynamic approach are for example class browsers, interpreted languages
and roaming agents.

A class browser offers the capability to inspect classes of a system, their attributes, oper-
ations, superclasses and may also allow to ad hoc create instances of them, set values and
invoke operations interactively. A browser needs access to metadata about these classes
as provided by GOM.

The task of writing an interpreter for the target systems supported by GOM is facilitated
by the use of the instance- and meta model. Using such an interpreter, it is possible to
interactively — or by writing scripts — manipulate instances of all target systems supported
by GOM, i.e. instances can be created, deleted, accessed and their operations invoked.
This is especially important for interactive discovery of the classes of existing systems
by ’playing’ with them in an interactive way. It can also be used for testing purposes,
when for example new classes in a target system have to be tested without wanting to
write a client application. Finally, small management scripts can be written that perform
management chores by manipulation of instances of target systems. An example of an
interpreter (GOMscript) built using GOM is given in section 5.1.

A roaming agent is a piece of code that migrates from location to location in a network
and performs certain (management) tasks at each location. Assuming that resources
at a certain location such as printers, switches, routing tables and password files are
represented as objects (e.g. OSI managed objects, objects in a CORBA server or SNMP
variables), management of these could be achieved by interpreted code using GOM. This
model is especially suited for roaming agent applications that need to handle instances of
classes that were not known when the agent was written. A simple roaming agent toolkit
that has been written on top of GOMscript demonstrates this point (cf. section 5.2).

Client Independence The dynamic aspect of GOM eliminates the strong dependence
of clients on servers that is present in static translation approaches where clients statically
include classes generated through translation.

The difference between the static- and dynamic approach is shown in fig. 4.5 (see [BD97]
for a comparison of a static with two dynamic approaches).

Rather than statically translating the target model’s specification into a corresponding
CORBA specification (IDL interfaces) to be used by client management applications
through compile-time inclusion as shown in fig. 4.5 (a), the approach taken by GOM
(fig. 4.5 (b)) is to generate metadata from a model’s specification and collect it in a
metadata repository. This repository can subsequently be accessed by adapters at runtime
to retrieve metadata about target entities to be manipulated.

This has the advantage that — since clients do not include classes generated from a server
specification — they are not dependent on changes to a server’s specification. Thus, clients
do not have to be recompiled when servers change.

44 CHAPTER 4. THE GENERIC OBJECT MODEL

Client A
Object
Model X
Server
Object
— Object / Model X
Client B Model X
Object
Model X
@
Client A
< . Object
N Model X
\ Server
Object
ClientB Model X
Metadata
e Repository
(b)

Figure 4.5: Static- and dynamic approaches

Small Client Size Client applications will have a tendency to become bloated since
the generated CORBA bindings may — owing to interdependencies between interfaces and
types® — include a potentially large number of interfaces. Even if only a small set of these
is used by the application, it will nevertheless have to pay the price for all of them.

As shown in fig. 4.5, an object model X will be included both by servers and clients in the
static approaches, whereas it will be included only by the server in the dynamic approach.
Here, the model is included in the metadata repository only. Since clients do not have to
include a potentially large amount of generated code, they are typically smaller (in terms
of memory) and therefore use fewer resources.

Taking into account that applications may additionally have to include libraries for graph-
ical user interfaces, networking, database access etc., to prevent them from becoming too
large, it is an advantage if only a small, finite set of interfaces need to be included, thus
reducing at least one component that bloats client code.

4.2.2.2 Interfaces

In this section the CORBA IDL interfaces that comprise the instance model of GOM will
be explained. Note that only excerpts of the IDL code will be shown, for the complete
definitions refer to appendix A.1.

Val The CORBA interfaces for generic values of GOM are shown in fig. 4.6.

3E.g. when interface A is derived from or contains interface B, it will have to include interface B’s
specification. It will also have to recursively include B’s dependencies even if it does not need them.

4.2. OBJECT MODEL

interface Val : GomElement {};
interface NIL : Val 1};

interface Bool : Val { attribute boolean wval; };
interface Char : Val { attribute char val; };
interface Short : Val { attribute short val; };
interface Int : Val { attribute long val; };
interface Long : Val { attribute long val; };
interface Double : Val { attribute double val; };
interface Str : Val { attribute string val; };
interface Enum : Str { attribute long long_val; };

interface Struct : Val {

Val Get(in string key);
Val GetIndex(in long index);
boolean Set(in string key, in Val val);
boolean Add(in string key, in Val val);
boolean Remove(in string key);
long Size();

s

interface Sequence : Val {
boolean Add(in Val new_val);
long Size();
Val At(in long index);

};

interface Union : Val {
attribute string name;

attribute Val val;
+;
interface Array : Val {
Val Get(in long index);
boolean Set(in long index, in Val new_val);
long Size();

};

Figure 4.6: Interface Val

46 CHAPTER 4. THE GENERIC OBJECT MODEL

The values present in the generic object model currently represent an intersection of values
present in the two object models CORBA and CMIP. It should be possible to represent
most values of other target systems using only these generic values. If, however, a value
of a target system cannot be represented using the available set of generic values, then
the generic model would have to be extended.

Every value is derived from the CORBA interface Val which is itself derived from
GomElement (described on p. 41).

Interface NIL represents the NULL value, i.e. no value. Bool represents boolean values
(true or false). The interfaces Char, Short, Int, Long, Double, Str and Enum represent
simple values, whereas Struct, Sequence, Union, Array and Any represent constructed
values.

The Struct interface represents struct values that have a (finite) number of member
elements of which each has a name and another value (subclass of Val). There are a few
operations that manipulate the contents of a struct.

The Sequence interface models lists of values. Operation Add adds a value to the list, At
returns the value at a certain index.

The interface Union models a union (as known in C). It has a name and a value as
members which can be replaced by other values.

Interface Array is similar to Sequence, but its size cannot be modified after its instanti-
ation.

GenObj An instance of GenObj is a prozy object for a real object in a target system
(e.g. a managed object in an OSI agent, or an SNMP variable). Operations invoked on
it will be transparently forwarded to the corresponding object in the target system, using
metadata available about that system maintained by the metadata repository (cf. 4.3).
A Gen0bj is always a value too because it is derived from Val and can therefore be used
whenever a Val is expected, e.g. as argument to an operation.

The definition of Gen0bj is shown in fig. 4.7.

Each instance of a Gen0bj has as attribute a reference to the adapter that created it. This
is necessary to forward requests sent to a proxy instance directly to the corresponding
adapter. Each instance also maintains the classname of the target instance it represents
(e.g. "circuit” for a GDMO managed object), and an instance name that may be set
by the adapter that created the object to give it a (symbolic) name. The latter can for
example be used to store the distinguished name in the case of an OSI managed object.
The attribute properties is important for attaching additional state to a proxy repre-
senting a target instance that cannot be accommodated using the normal set of member
attributes of GenObj. It is a dictionary containing strings as keys and subclasses of Val
as values. The Dictionary interface has operations for associating a key with a certain
value and for retrieving a value associated with a certain key. A possible use could be for
storing the object identifier (OID) of a GDMO managed object template.

In a future version properties will probably be replaced by OMG’s property service [Obj95]
which offers a standardized way of attaching information to any CORBA object without
modification of the object’s type.

A number of operations are defined in interface GenObj to get- and set attribute values,
to invoke operations and to delete target instances.

4.2. OBJECT MODEL

47

interface GenObj

attribute
attribute
attribute
attribute

Val
void

void
void

Val
void

Metalbj
Metalbj
Metalbj
Metalbj

Val
boolean

string
void

Adapter
string
string

: Val { // An object can also be a value

adapter;
classname;
instance_name;

Dictionary properties;

Get(in string attrname) raises(GenEx);
GetN(in Dictionary values) raises(GenEx);

Set(in string attrname, in Val new_val) raises(GenEx);
SetN(in Dictionary values) raises(GenEx);

Execute(in string opname, in Arglist args) raises(GenEx);
Delete() raises(GenEx);

GetClassDef() raises(GenEx);

GetAttributeDef (in string attrname) raises(GenEx);
GetOperationDef (in string opname) raises(GenEx);
GetElementDef (in string element_name) raises(GenEx) ;

GetProperty(in string name) ;
SetProperty(in string name, in Val new_val);

GetPolicy();
SetPolicy(in string new_policy);

Figure 4.7: Interface GenObj

48 CHAPTER 4. THE GENERIC OBJECT MODEL

The Get operation requires as its argument the name of the attribute to be retrieved from
the target instance and — if found — returns this value in the form of a generic GOM value.
If not found (e.g. if consulting the metadata reveals that there is no attribute with the
specified name in the target instance’s class), or if the target instance cannot be reached,
an exception of type GenEx is thrown (cf. section 4.2.2.3).

Instances of GenObj may cache attribute values for faster access, by storing them locally
in the proxy instance and returning the local copy rather than the remote target value.
Not having to access the target instance every time a request for an attribute value is
received results in improved response time and reduced network traffic. Also, values can
still be returned for cached attributes in case a target instance is not reachable, e.g. due
to a network partition.

A caching policy, which is a description of the way attribute values should be cached, can
be specified either on individual proxies (operation GenObj: :SetPolicy or on all proxies
of a certain object model (operation Factory::SetPolicy. The latter allows to set a
default policy for all objects that will be created, but still enables modification of the
caching policy for a single object. The argument to both operations is in string form,
which allows to specify various policies and which has the advantage that the signature
of the operation does not have to be changed when new policies are added. Currently,
three policies are specified:

o "tt]=X": Specifies a time to live (in seconds). After this time has elapsed, the
attribute will be retrieved from the target instance when a GET-request for an
attribute value is received.

e "never_cache”: Always access the target instance. This in effect turns off caching.

o "always_cache”: Once the attribute value has been retrieved from the target in-
stance, it will be cached and only the cached value will be returned.

Note that in strongly typed languages such as C++, in order to use the value it has to be
narrowed to its actual value, e.g. from Val to an instance of Long. A type-safe narrowing
mechanism for C++ is presented in section 4.2.4.1. Bindings for other strongly-typed
languages may provide similar narrowing mechanisms.

GetN* allows to retrieve a number of attributes in a single operation. Its parameter is
a dictionary which contains keys (in the form of strings) and values associated with the
keys. To perform a get-operation on multiple attributes of an object, the dictionary has
to be populated with key/value pairs where the value part is NULL. Upon successful
completion of the operation, the corresponding values will be provided for those keys
whose attributes were successfully retrieved.

The Set operation sets an attribute value in a target instance and requires the name
of the attribute and the new value as arguments. If the attribute cannot be found, the
target instance cannot be reached, or if the value cannot be set because it is read-only,
an exception of type GenEx is thrown describing the error condition (cf. 4.2.2.3).

Similar to GetN, SetN allows to set multiple attributes in a single operation call. Its only
parameter is a dictionary containing the attributes to be set together with the new values.

“Note that since overloading is not allowed by IDL, a second operation called Get is not valid.

4.2. OBJECT MODEL 49

Operation Execute invokes an operation of a target instance. It requires the name of the
operation and a list of arguments as an instance of Arglist. This interface represents
a variable number of arguments and offers operations to add, remove and traverse its
members. A typical GOM operation call would first add all arguments to an instance
of Arglist and then call Execute with the name of the operation to be invoked and
the instance of Arglist. Note that convenience bindings (cf. 4.2.4) may offer a more
convenient interface to operation execution on top of Execute, e.g. in the case of C++ a
method using variable argument lists (cf. [Str91]).

The return value is an instance of a subclass of Val and can be downcast to the actual
class using the narrowing mechanisms available for each language binding as described in
4.2.4.

If arguments are modified by the operation call, then these are available in the Arglist
instance at the same position as before the call and can be retrieved by the client. For
a discussion of how CORBA’s IN, OUT and INOUT arguments are handled see section
4.4.3.

In case of an error condition, an exception of type GenEx will be thrown.

The operations GetClassDef, GetAttributeDef, GetOperationDef and GetElementDef
allow a client to retrieve metadata about the class of the target instance which the Gen0bj
proxy object encapsulates (cf. 4.3).

GetClassDef returns metadata about the target instance’s class in the form of a MetaQbj
(cf. appendix A.2), GetAttributeDef returns information about an attribute and
GetOperationDef about an operation of the target instance’s class. These are conventence
operations for the CORBA layout (cf. 4.2.3.2) and assume the strings "interfaces" for
the class metadata, "attributes" for the attribute metadata and "operations" for in-
formation about a certain operation.

As an example, GetAttributeDef called on an instance of GenObj will be forwarded to
the corresponding adapter, which will first retrieve metadata about the class of the target
instance, using operation Find of the metadata repository (see 4.3.2) with the name of the
object model (stored in the adapter, e.g. "CORBA"), the string "interfaces" as key and
the name of the CORBA interface (e.g. "Printer") as arguments. If found, the returned
instance of MetaObj should contain all information about the desired CORBA interface.
The next step is to search the dictionary of MetaObj for the key "attributes'. If found,
the adapter will return it as result of the GetAttributeDef operation.

If the CORBA layout is not used, the convenience operations cannot be used and the
more generic operation GetElementDef has to be used which allows to retrieve metadata
about any element of the target instance’s class, e.g. "cond_packages' in the case of the
GDMO layout (cf. B.2).

Operations SetProperty and GetProperty allow to attach or retrieve additional state to
an instance of GenObj (cf. discussion of attribute properties above).

The target systems supported by GOM may have different mechanisms and semantics for
operation invocation such as group communication [Maf95] where an operation call may
return a number of results (or will use the first result returned), or asynchronous opera-
tions where an operation invocation is handled by a separate thread. An asynchronous
operation returns immediately and the result can be fetched at a later time. These is-
sues will be dealt with in sections 4.6.2.3 (group communication) and 4.6.5 (asynchronous

50 CHAPTER 4. THE GENERIC OBJECT MODEL

interface Adapter {
attribute string object_model;
GenObj Create(in string classname, in string inst_name,
in string target_location, in Arglist args);

Val Get(in GenObj objref, in string attrname);
void GetN(in GenObj objref, in Dictionary values);
void Set(in GenObj objref, in string attrname, in Val new_val);
void SetN(in GenObj objref, in Dictionary values);
Val Execute(in GenObj objref, in string opname,

in Arglist args);
void Delete(in GenObj objref);
MetaObj GetClassDef (in GenObj objref);
MetaObj GetAttributeDef (in GenObj objref, in string attrname) ;
Metalbj GetOperationDef (in GenObj objref, in string opname) ;
Metalbj GetElementDef (in GenObj objref, in string element_name);
ProxyFilter CreateFilter(in string type, // class or struct

in string target_location,
in string target_name,

in Arglist attrs,

in ConsumerlList consumers);

void SendEvent(in EventInfo event_info,
in string destination_address);
s
Figure 4.8: Interface Adapter
operations).

Another important issue concerning proxy-based systems is what should be done when
the target instance represented by a GOM proxy instance is currently unavailable for
reasons such as communication problems, target instance death or a crash of the target
instance’s server. These problems will be tackled in section 4.6.3.

Adapter The IDL code for interface Adapter is shown in fig. 4.8.

An adapter is the bridge between the generic object model and exactly one target object
model (cf. section 4.4). It knows how to interact with the target system and mainly has to
perform type-checking and conversion of requests between GOM and the target system.
Since all requests sent to a proxy instance will immediately be forwarded to the cor-
responding adapter (to which each proxy has a reference), the interface of Adapter is

4.2. OBJECT MODEL 51

interface Factory {
GenObj Create(in string object_model, in string classname,
in string inst_name,
in string proxy_location,
in string target_location,
in Arglist args) raises(GenEx);

Val GetConstant(in string object_model, in string const_name);
string GetPolicy(in string object_model);
void SetPolicy(in string object_model, in string new_policy);

};

Figure 4.9: Interface Factory

almost the same as that of GenObj. One difference is that operations Get, Set, Execute
and Delete additionally have a reference to the proxy instance as first argument which
can be used by an adapter to retrieve information from the GOM proxy when needed.
Operations GetClassDef, GetAttributeDef, GetOperationDef and GetElementDef offer
access to metadata of the target object’s class (cf. section 4.4).

Operations CreateFilter and SendEvent are part of GOM’s generic event handling
model and are described in section 4.5.2.

The Adapter interface is abstract, that is no instances of it can be created. Its main goal
is to dictate a common set of operations to subclasses. Any adapter in GOM has to be
derived from this interface and implement all operations of Adapter.

Factory The OMG IDL interface for the GOM Factory is shown in fig. 4.9.

The factory is used for the creation of (a) proxy instances (instances of GenObj) and (b)
values that represent target model constants.

Operation Factory: :Create is used to create local or remote proxies. Its arguments are
the name of the target object model (e.g. "CMIP” or "CORBA”) in which the target
instance will be created, the name of the class®, the instance’s name (may be empty), the
location of the proxy instance, the location® of the entity in which the target instance is
to be created and an argument list (as described in the Execute operation above).
Parameter proxy_location allows to create the proxy instance at a specified location
(e.g. a CORBA server). To create proxies locally — e.g. in the client’s address space —
this argument has to be null (e.g. a NULL pointer in the C4++ language bindings). To
create them at a remote location, proxy_location indicates the location where the proxy
instance should be created. Remote proxies were discussed in section 4.1.1.

Parameter inst name can be used to attach a description to an instance, e.g. in the case

of CMIP it could represent the distinguished name ([ITU92a]).

5If modules or similar name space structuring mechanisms are used, then the fully specified name has
to be used.
6Target system dependent, e.g. an AE-title in CMIP [ITU92a], or the name of a CORBA server.

52 CHAPTER 4. THE GENERIC OBJECT MODEL

enum completion_status {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE};

exception X {
unsigned long minor;
completion_status completed;

};

Figure 4.10: Example of OMG IDL exception

To create values that represent constants in target systems, operation GetConstant can
be used. It accepts as arguments the name of the target object model and the fully
specified name of the target constant, e.g. "MyDocuments::Account: :max 1limit".
Operations GetPolicy and SetPolicy modify or retrieve the current caching policy for
all proxy instances of a certain object model.

This is different from the corresponding operations in GenObj which modify the caching
policy on the basis of single instances.

4.2.2.3 Error Model

The error model of GOM is based on ezceptions. An exception is an interruption of the
normal invoke/response control flow of an operation invocation in an error situation. They
offer an additional exit from an operation call signaling an error condition and describing
the cause of the exception.

A number of operations may raise a GenEx exception (cf. appendix A.l). It contains
attributes name which is the name of the exception in the target model, ex_type which
defines whether the exception occurred in GOM or in the target model (see below) and
members which i1s a dictionary that contains strings as keys and subclasses of Val as
values. Since exceptions are similar to structs, the generic interface GenEx should allow
to represent any target model exceptions.

An exception defined in OMG IDL as shown in fig. 4.10 would contain "X" as its name and
the keys of members would be "minor" with an instance of Long as value and "completed"
with an instance of Enum as value.

A GenEx is thrown by an adapter (1) when it cannot dispatch the operation to the target
instance or another error occurred in GOM, or (2) when the operation of the target
instance signals an error condition tself.

The first case may for example involve not being able to locate the target instance, or
a type mismatch between a GOM generic value and its formal parameter as defined in
the metadata. In this case, the operation is not even dispatched to the target instance,
but an exception is thrown immediately. Attribute ex_type will contain GOM_EX as value.
To describe the error condition, two entries will be inserted into members: '"errcode"
indicates the error in a programmatic manner’ and "errstr" describes the error condition
in string form.

"GOM’s error codes are described in the enumeration GomErrcode in appendix A.1.

4.2. OBJECT MODEL 53

In the second case, GOM was able to dispatch the request to the target instance, but
there an error condition ensued and was returned, either as return value or in the form of
an exception. In this case, ex_type will contain TARGET_EX.

If a value was returned by the operation invocation describing the error condition, then
GOM will not throw an exception, but convert the value as usual and return it. If an
exception was thrown, then GOM will convert the target model specific exception into a
GenEx and throw that on to the caller. It is the caller’s responsibility to know the names
of the fields an exception contains (its members) and retrieve them accordingly to handle
the error condition.

4.2.2.4 Use Cases

The intention of these use cases is to show the control flows through the various compo-
nents of GOM for a number of operations.

Creation Operation Factory::Create creates both a target- and a corresponding
proxy instance at the specified locations.

1. The client has to create a factory object. This will typically be done once (at the
start of the client application) and the instance will be stored in a variable for further
reference.

2. The factory object is used to create a new instance using operation Create.

3. The factory object locates a corresponding adapter to which the creation request
can be forwarded by constructing the name of the adapter through concatenation
of the object model given and the suffix "_Adapter".

4. The naming service at location proxy_location is searched for an instance of the
adapter with the given name. If proxy_location is NULL, then the local naming
service will be used. If no adapter with the specified name has been found, a new
instance will be created at location proxy_location using the constructed name as
interface name and registered with the naming service, using the constructed name
(string) as key.

5. The creation request is dispatched to the adapter.

6. The adapter tries to create the underlying object (e.g. an OSI managed object,
CORBA object etc) at location target location. If successful, it creates a GenObj
proxy instance and stores a reference to the adapter in the newly created object
(attribute adapter). Further requests sent to the proxy will be forwarded to the
adapter that created it.

7. The GenObj proxy instance is returned. An exception of type GenEx is thrown if
the instance cannot be created.

54 CHAPTER 4. THE GENERIC OBJECT MODEL

GenObj_ptr inst;
Factory_ptr f=new Factory;
try {

inst=f->Create(""CORBA", "ZRL::Printer", '"psp31", O,
"adlerhorn.zurich.ibm.com", 0);

¥
catch(GenEx& ex) { /* Error */ }

Figure 4.11: Creation of a GOM instance representing a CORBA target instance

GenObj_ptr inst;
Factory_ptr f=new Factory;
try {

inst=f->Create("CMIP", "customer",
"netId=TelcoNet;customerID=(name IBM)", O,
"agentID=266352",0) ;
}
catch(GenEx& ex) { /* Error */ }

Figure 4.12: Creation of a GOM instance representing a CMIP target instance

In figure 4.11 an example is given that shows how a client may create a new CORBA
instance (using the C++ language binding).

Fig. 4.12 shows how a CMIP instance is created.

Essentially the code is the same, but rather than specifying CORBA as object model,
CMIP is used. Also, the distinguished name of the managed object to be created as
target instance is given in inst_name.® The location of the target instance is in this case
the AE title of the agent in which the managed object is to be created.

Deletion The Delete operation of GenObj deletes first the target instance and — if
successful — also the proxy instance. If the target instance cannot be deleted, an exception
of type GenEx is thrown, indicating the cause of the failure.

Note that in some cases (such as CMIP [ITU92al), objects may contain subordinate objects
(children objects) that may have to be deleted before the parent object can be deleted.
Trying to delete an instance containing children will result in an exception.

Deletion of a proxy instance by other means such as the delete operator in the C++
bindings will only cause deletion of the proxy, but not of the target instance.

Getting the value of an attribute

8In string syntar as defined in [GMRY4].

4.2. OBJECT MODEL 55

GenObj_ptr person;
Long_ptr age;
try {

age=(Long_ptr)person->Get('age");

cout << "Age is " << age->val() << endl;
}
catch(GenEx& ex) { /* Error */ }

Figure 4.13: Getting an attribute value of a GOM instance

Operation Get is invoked on a proxy instance.

The operation is forwarded to the corresponding adapter whose reference is stored
in the instance. The CORBA object reference is added as argument so that the
adapter can retrieve more information about the proxy.

Depending on the caching policy (see above), if the attribute value is cached, it will
be returned immediately.

The attribute value is retrieved from the target instance (as identified by the proxy
instance) using target system specific calls (e.g. DII or CMIP) and returned to the
client.

Example code (C++ bindings) is shown in fig. 4.13.
Note that conventence bindings for strongly typed languages may provide a safe narrowing
mechanism (cf. 4.2.4). It can be used to replace the unsafe C++ cast operation performed

in fig. 4.13.

Setting the value of an attribute

1.
2.

6.
7.

The Set operation is invoked on a proxy instance.

The operation is forwarded to the corresponding adapter whose reference is stored
in the instance, adding the object reference of the proxy to the operation.

The adapter retrieves meta-information about the type of the attribute to be set.

The GOM value that is to be used as the new value is type- checked against the meta
information. This involves checking type compatibility between the GOM value and
the meta information for the attribute of the target instance.

The GOM value is converted to an object model specific value.
This value is then set in the target instance.

If successful, it is also set in the proxy (if attribute caching is enabled).

Code that demonstrates how to set an attribute value in a proxy is shown in fig. 4.14.

56 CHAPTER 4. THE GENERIC OBJECT MODEL

GenObj_ptr person;
Long_ptr age=new Long;
try {

age->val(32);
person->Set("age'", age);

}

catch(GenEx& ex) { /* Error */ }

Figure 4.14: Setting an attribute value of a GOM instance

Invoking an operation
1. Operation Execute is invoked on a proxy instance.

2. The operation is forwarded to the corresponding adapter whose reference is stored
in the instance, adding the object reference of the proxy to the operation.

3. The adapter fetches meta information about the operation and performs type-
checking on the arguments provided in the argument list.

4. All generic values of the argument list are converted to corresponding values of the
underlying object model.

5. The operation is invoked in the target instance.

6. Parameters of the argument list that have reference semantics (i.e. they can be
modified by the operation, e.g. CORBA’s IN/OUT parameters) are set accordingly.

7. The result is converted to a generic value and returned.

Fig. 4.15 shows sample code invoking an operation on a proxy instance.

First the argument list is prepared. In the example, two values (a string and a short)
are added to the argument list. Then the operation is invoked and the result stored in a
variable. When an error occurs, e.g. if types are incompatible or a logical error occurs,
then an exception of type GenEx is thrown.

It is essential for adapters to have access to meta information about the target classes to
perform type-checking and conversion of arguments (cf. 4.4).

The code example shown in this section are for the C++ language bindings of GOM’s
IDL interfaces. Clients, however, may choose any language for which a binding exists for
access and manipulation of GOM proxy instances. Convenience bindings as described in
section 4.2.4 provide a more elegant layer on top of a language binding to be used by
client applications.

4.2. OBJECT MODEL 57

GenObj_ptr printer;
Arglist_ptr args=new Arglist;
Bool_ptr ret;

Str_ptr doc=new Str;
Short_ptr copies=new Short;
try {

doc->val("/u/bba/.profile");
copies->val(3);
args->Add("document", doc);
args->Add("number_of_copies", copies);
ret=(Bool_ptr)printer->Execute(args) ;
}
catch(GenEx& ex) { /* Error */ }

Figure 4.15: Invoking an operation on a proxy instance

4.2.3 Meta Model

The generic meta model forms an important part of GOM. Its major task is to provide
metadata description of the classes, their attributes, operations etc. in a system. Its
major goals are:

Simplicity CORBA’s interface repository is rather complex. Special care has to be taken
when to release memory to avoid memory leaks.

The meta model proposed here supports a very simple meta model, i.e. it has
fewer elements than for example CORBA’s interface repository, a clear memory
management policy and a simple inheritance structure.

Ease of Use A simple conceptual meta model should contribute to ease of use for clients.

Integration with GOM The meta model should be integrated seamlessly with the in-
stance model (cf. 4.2.2) to preserve the homogeneity of GOM. The uniformity of
GOM would be destroyed by offering one type of syntax and semantics for the
instance model and a different one for the meta model.

Extensibility CORBA’s interface repository has been designed for CORBA interfaces,
without the possibility of extension for use with other object models. GOM’s meta
model tries to take into account from the beginning the possibility of extension to
accommodate metadata of other object models.

The task of a meta model is to provide metadata about the elements (e.g. module-, class-,
attribute- or operation descriptions) a model consists of. A meta model usually comprises
a finite number of elements since the syntax and semantics of the model it describes
usually never changes. If, however, a non-finite set of models has to be described using
the same meta model, providing a finite number of metadata elements to represent all the

58 CHAPTER 4. THE GENERIC OBJECT MODEL

potential object models is likely to be too inflexible since this scheme has the drawback
that combining a number of object models usually results in meta models that either
follow an approach where the features of all models are combined to produce a common
model (unton approach), or the common model will consist only of features that occur in
every model (intersection approach).® Both approaches are likely to require modification
of the common model when a new model has to be integrated.'®

MetaElement

Metal ong H MetaObj H MetaString H MetaList H MetaFloat ‘

1 1

1
(Property) Dictionary |

1 /F Inheritance

(Key) o (Value) "

‘ Name ‘ ‘ GomElement ‘ ‘ MetaElement ‘ ¢ Containment

Figure 4.16: The meta model of GOM

4.2.3.1 Interfaces

The central idea of the generic meta model proposed here takes into account that the
elements of a generic meta model have to be generic as well and cannot be represented
as compile time classes or interfaces. Therefore a generic element (MetaObj) is proposed
(see fig. 4.16) that contains only a set of properties (a dictionary) and a name.

A property denotes one aspect of the generic element and is an association between a
key (string) and a walue (the referred-to generic element). The value is a subclass of
GomElement (cf. section 4.2.2) and is in most cases a subclass of MetaElement. However,
since it is in certain cases necessary to model instance model values, e.g. to represent
constants or default values for an attribute, the value of an association may also be
a subclass of Val. To determine which GOM element the value of an association is,
operation GetKind () can be used.

A MetaObj instance is used in GOM’s generic meta model to represent a metadata element
of a target object model such as a package in GDMO or an IDL wnterface in CORBA.
Instances of MetaObj can recursively contain another instance of MetaObj, or an instance
of a subclass of MetaElement. All possible structures of metadata can be constructed
using only the subclasses of MetaElement provided by the generic meta model. These are
Metalong, MetaFloat, MetaString, MetaList and MetaObj.

As this model contains only a small number of elements having a flat inheritance structure,
it is conceptually simple and easy to use. Moreover, it should be possible to represent

®An intersection approach may e.g. omit module elements since they may not occur in every model.
100f course, the more models are integrated, the smaller the probability of a modification of the common
model since it may already contain the new features.

4.2. OBJECT MODEL 59

most metadata elements through a combination of these types.!!

The IDL definitions for these generic elements can be found in appendix A.2.

An aspect described by a property may be the attributes contained in a class element.
To retrieve the attributes of a class, the dictionary of the MetaObj representing the class
element would be searched for an entry with key == "attributes" and return the cor-
responding value, in this case another instance of MetaObj. The returned instance (which
represents a list of all attributes of a class) could then be used as starting point for an-
other query, e.g. for the property named "age" of the attribute element which points to
an instance of MetaObj that describes the attribute age of the class element. Fig. 4.17
shows how the metadata tree is structured for the attribute age of IDL interface Person
shown in fig. 4.18.

MetaObj (class "Person")

"superclasses’
"subclasses’
" attributes” _ 1| _ MetaObj (attributes of "Person")

"operations’

"constants”

"typedefs’

"exceptions” "access_mode"
"type"

"name"
"age" —] MetaObj (attribute "age" of "Person”)

MetaObj (type of "age")

"type_code"
"parm" Metalong (type code "short")

"name’
va:

Figure 4.17: Metadata tree for attribute "age"

interface Person {
attribute string name;
attribute short age;

};

Figure 4.18: IDL interface Person

To determine the type of attribute "age" the following steps have to be taken: first,
the metadata about IDL interface "Person" has to be retrieved (see section 4.3.2 for an
explanation of how to do this). Then property "attributes" has to be dereferenced to
obtain a dictionary containing all attributes of the interface. Following property "age",

1 An exception is the representation of values in a meta model, e.g. in the case of default values as
used in ASN.1. Since default values can adopt any ASN.1 type, additional types may need to be added
to the generic meta model.

60 CHAPTER 4. THE GENERIC OBJECT MODEL

one reaches the corresponding attribute’s definition. Then property "type'" is chosen
which describes the type of the attribute. Finally, property "type_code'" refers to an
instance of MetaLong, indicating that attribute age is of type long.

A definition of the relations between the instances of the meta model is contained in a
layout (cf. below). The layout that would be used to perform metadata navigation for
CORBA as described above can be found in section 4.2.3.2 on page 61 and is listed in
detail in appendix B.1.

4.2.3.2 Layout Definitions

The previous discussion dealt with elements of a meta model that denote the constituents
of an object model represented in metadata.

Elements that frequently occur in object models are for example classes, operations, at-
tributes and types. These would typically be represented by a corresponding entity in the
meta model describing the element.

The elements that comprise a meta model and the relations between them shall
for the sake of the discussion be called a layout. Layouts describe how metadata
of a model X is represented in the generic meta model.

A layout defines (a) which elements are available in a meta model, (b) the semantics of
the elements and (c) the relations between them, e.g. a class element is a template for
the creation of instances (definition and semantics) and contains attribute- and operation
elements (relation).

Owing to its genericity, the generic meta model does not prescribe a priori a special
layout. Any layout can be imposed on it by a metadata adapter, which means that the
implementor of a metadata adapter may define the layout of metadata. It is for example
possible to define a layout in which classes do not directly have attributes and operations,
but the latter are contained in packages as is the case in GDMO [GDM92] or in interfaces
as in the case of TINA [TIN95].

It is important that implementors of metadata adapters provide a precise description of
their layout in order for clients to be able to use that meta model. A description of a
layout has to contain the following things:

1. The elements of the meta model (e.g. modules, classes, packages etc.)'?. All ele-
ments have to be given unique names by which they are identified in the generic
meta model (e.g. "constants”, ”attributes”, "type_code” etc.)

2. The semantics of each element.

3. The relations between elements, e.g. ”classes contain attributes and operations”, or
"an attribute contains a type and an access mode”.

12Note that not all elements of the object model may need to have a corresponding representation in
the meta model !

4.2. OBJECT MODEL 61

4. The type code constants used for each type. Each type code constant is a number
that uniquely identifies a type (cf. [OMG95, ch. 6.7.2]), e.g. 5 for short, 13 for
struct etc. A dictionary of type code constants and their string representation
has to be returned by every metadata adapter so that type code constants can be
mapped to names, e.g. for generic printing functions (cf. operations GetTypeCodes
and GetTypeCodeName in appendix A.4).

5. The mapping description of metadata elements to the instance model. It consists
of two parts:

(a) Mapping of Elements: This is a description of how metadata elements of a
layout are mapped to their equivalent representation in the instance model
when creating an instance of the element, e.g. how class definitions are mapped
to instances of GenObj in the instance model.

(b) Mapping of Types: Describes how metadata type definitions in a layout are
represented through values in the instance model. For example, a definition of
the CORBA IDL type long would become an instance of Long in the instance
model, or a definition of an ASN.1 SEQUENCE type would become an instance
of Struct in the instance model.

The latter point is important for two reasons: first, it eliminates implicit underlying
assumptions of how a mapping is defined and second, it is important for users of the
instance model to know which data types to use as arguments for GOM methods.
For example, as in the case above, if the user has to set the value of a GOM instance
representing a managed object which has the (ASN.1) data type SEQUENCE, then
consulting the type mapping table will prescribe the use of the GOM value Struct.

Layout definitions are initially provided for the object models of CORBA and CMIP and
will be described in the next two sections.

Each section first describes the layout. Then it is shown for all elements of the layout
which their corresponding elements are in the instance model. Last, the mapping of layout
elements describing types to the instance model is presented.

CORBA Layout The CORBA layout is modeled after the one used in CORBA’s
interface repository [OMG95, ch. 6.4.4]. It is shown in fig. 4.19.

The CORBA layout contains descriptions of modules, classes, attributes, types, opera-
tions, parameters, constants, type definitions and exceptions (cf. appendix B.1 for the
full description of the layout). The most important elements are briefly described below.
A module is a container for a collection of metadata and may contain constants, type
definitions, exceptions, other modules and classes. Its main use is for structuring the
global name space to avoid name collisions.

A class contains a list of super- and subclasses and information about its constants, type
definitions, exceptions, attributes and operations.

An attribute has a name and a type (modeled after CORBA’s TypeCode interface
[OMG95, pp. 6-35]) which can be simple or constructed.

62 CHAPTER 4. THE GENERIC OBJECT MODEL

’ M etadata Repository ‘

1
m| m| m m| m|

’ Cllass‘ ’Constant ‘ ’Typedef‘ ’Exception‘ ’Mlodule‘

m m
superclasses Class

subclasses m
Class

1 Exception
e

m

1 1]
Exception ‘ ’ TypeCod% ’ Parameter ‘

Sring
Long

List
Dictionary
Float

Figure 4.19: CORBA layout

A simple type has a tag ("type_code'" property) which is a type code constant (number)
describing the type. Constructed types may use the "parm" property to store additional
information, e.g. a struct type may store information about its members in the dictionary
of an instance of MetaObj.

An operation has a number of parameters, a mode (e.g. IN, OUT, INOUT) and a type
describing the return value.

Mapping of CORBA Layout Elements to the Instance Model Table 4.2 de-
scribes the mapping between elements of the CORBA layout and elements of the instance
model.

Not all elements of the meta model are represented in the instance model, e.g. a module
is only present in the meta model as a means for structuring the namespace of identifiers
and therefore not available in the instance model.

A class is modeled as an instance of Gen0bj in the instance model, i.e. for each creation of
a CORBA interface a corresponding instance of GenObj will be created in GOM’s instance
model.

Attributes are not directly represented in the instance model, only their values are. Each
attribute has a value with a corresponding type and access mode that are represented in
the meta model. The metadata of an attribute can be retrieved in the instance model
through method GetAttributeDef (cf. appendix A.1).

In agreement with table 4.1 (p. 42), a type in the meta model is instantiated to a value in
the instance model, e.g. a type with type code tk_struct becomes a Struct value in the

4.2. OBJECT MODEL 63

Layout El- Corresponding Element in the Instance Model
ement
Module No equivalent. Only present in meta model as name space mechanism
Class Instance of GenObj
No equivalent. Only present in meta model. Properties of attributes
Attribute such as access mode can be retrieved through access to the meta model
from the instance model (GetAttributeDef)
Type Instance of Val or subclasses

Operation Method Execute of GenObj

Parameter | Elements of Arglist of Execute

Instance of Val or subclasses. Constants can be created using the
Factory::GetConstant () method, which returns a GOM value
Instance of Val or subclasses. All type definitions are mapped to in-
Typedef stances of Type in the meta model and therefore the same mapping as
for Type applies

Constant

Exception Instance of GenEx value (cf. section 4.2.2.3)

Table 4.2: Mapping of CORBA elements to the instance model

instance model (cf. table 4.3). The same applies to type definitions. A type definition
creates a new type by referring to an existing type and giving it a different name. Type
definitions can always be resolved to the original type and therefore are — as in the case
of types — mapped to values in the instance model.

An operation element of the meta model is not represented through an object in the in-
stance model, but through method Execute of interface GenObj. Metadata about an op-
eration can be retrieved in the instance model using method GetOperationDef of Gen0Obj.
Each operation has zero or more parameter elements which have a type and a mode (e.g.
IN, OUT) and are mapped to values in the instance model of a parameter list (cf. Arglist
of GenObj).

Constants are mapped to values in the instance model. They can be created using method
Factory: :GetConstant which consults the metadata and creates a new value according
to the definition in the meta model.

Exception elements are mapped to instances of GenEx (cf. section 4.2.2.3).

Instances in the instance model may have to maintain some additional state (e.g. their
distinguished name in the case of GDMO or the repository identifier in CORBA). For
that purpose, the Gen0Obj interface has an attribute (properties) which allows to insert
additional information that will be recorded in a dictionary under a chosen name. Using
this name, the information can be retrieved later.!?

Mapping of CORBA Layout Types to the Instance Model Table 4.3 describes
the mapping between types as represented in the meta model and their corresponding
values in the instance model.

13For a more detailed discussion refer to section 4.2.2.

64 CHAPTER 4. THE GENERIC OBJECT MODEL
type_code | parm GOM
Value
tk_null NULL NIL
tk_void NULL n/a
tk_short NULL Short
tk long NULL Long
tk_ushort NULL Short
tk_ulong NULL Long
tk float NULL Double
tk_double NULL Double
tk_boolean | NULL Bool
tk_char NULL Char
tk_octet NULL Char
tk_any NULL n/a
tk_objref MetaString. Name of IDL interface GenObj
MetaObj. The dictionary contains as key the names of the mem-
thestruct bers ané as values theirs;ypes (cf. 2.4 TS',ype in section B.1) Struct
MetaObj. The property "discriminator" of the dictionary points
to a type (cf. 2.4 Type in section B.1) which describes the dis-
criminator. The other keys are the names of the union’s members.
tk_union Each name points to another instance of MetaObj which contains | Union
2 properties: "type” and ”label_value”. The first describes the
type, the second the value of the label (according to the type of
the union’s discriminator)
MetaList. The list contains the strings (MetaString) that name
tk_enum . Enum
the elements of the enumeration
tk string NULL or MetaLong (length of string) Str
MetaObj. The dictionary contains 2 properties: 'type" and
"size". The first points to a type (cf. 2.4 Type in section B.1
th-sequence and the second pOiIII)tS toa MetaLycl))ng(which (if nyogc NULL) Containi Sequence
the length of the sequence
tk_array MetaObj. Same as tk_sequence. Length is always present. array
tk_except MetaObj. Same as tk_struct GenEx
Recursive n/a n/a

Table 4.3: Structure of types in the generic meta model using the CORBA layout

4.2. OBJECT MODEL 65

The table lists the types available in the CORBA layout, with the first column showing
the type code each type is assigned. The middle column shows the parameters of each
type. A parameter can be used to provide further information about a type and is used to
model constructed (or aggregate) types. A struct type e.g. will typically provide further
information about its members whereas a simple type such as boolean will not make use
of the parameter. The rightmost column shows the instance model types to which the
meta model types are mapped.

The mechanism for using parameters to represent constructed types is essentially the same
as the one used in CORBA (cf. table 12 in [OMG95, p. 6-37]).

As the number of types in the instance model is smaller than in the meta model, multiple
meta model types will map to the same instance model type, e.g. the types tk float and
tk_double of the meta model both map to the instance model type of Double.

The table can be used by clients to determine which value to instantiate, e.g. as argument
to an operation. If for instance an operation of a GOM proxy instance representing a
CORBA object requires a formal parameter of type tk_float, then an instance of Double
has to be provided as argument to the Execute call.

GDMO Layout An overview of the GDMO layout is given in fig. 4.20.

Compared to OMG IDL, which defines its elements inline, i.e., elements are contained
within other elements, e.g. an attribute belongs to its enclosing interface and can not be
used by other interfaces'#, GDMO is more flexible in this respect.

In GDMO, the main element is the class template (cf. section 2.2.3). It can include pack-
ages which themselves contain attributes, actions (operations) and notifications. Since
packages do not belong to the template that includes them, they can be used by many
templates. The same principle applies to other elements, e.g. an attribute can be included
in more than one package and therefore be included (indirectly) in more than one class
template.!®

The GDMO layout contains descriptions of name bindings, templates, packages, parame-
ters, attributes, attribute groups, actions and notifications (cf. appendix B.2 for the full
description of the layout). The most important elements are briefly described below; for
more information refer to [GDM92].

A GDMO name binding element defines constraints for the creation of managed objects
within other objects and for their subsequent deletion, e.g. an object may not be deleted
if it contains other objects.

A class template element is the definition from which managed objects can be instantiated.
It contains a number of mandatory and conditional packages. The contents of mandatory
packages always have to be included in the resulting managed object instance, whereas
the contents of conditional packages are only included when certain conditions apply (cf.
[GDM92]).16

Packages contain attributes, actions (operations) and notifications.

An attribute has a name and a syntax (a type) (cf. table 4.5).

14Note that, contrary to attributes, types do allow out-of-line definition and subsequent inclusion in
OMG IDL.

15Note, however, that the OID of the two attributes will be different.

16The decision which conditional packages are included is taken at instance creation time.

66 CHAPTER 4. THE GENERIC OBJECT MODEL

’ M etadata Repository ‘
1

m’ m\ m\ m\ m m\ m\ m\ m‘
’Template‘ ’Package{ ’Name Binding‘ ’Attribute ‘ ’AttrGroup ‘ ’Action‘ ’Notification ‘ ’ ASN.1 Type‘ ’OID Mapping‘

1
1] 1] m| 1] 1 1]

’Name‘ ’Subordinate Class‘ ’Superior Class‘ ’Attribute ‘ ’CreationMode‘ ’DeletionMode‘

Attribute

1 1
1] m| m| m] 1] 1 1 1 m| m|
’Name‘ ’Template‘ ’Mand. Package‘ ’Cond. Packagd ’Document‘ ’Name‘ ’ASN.l Type‘ ’Match&sFor‘ ’Behavior‘ ’Parameter‘
(superclasses)

1 m | m| m| m| m| 1] m| 1] 1]
’Namd ’Behavior‘ ’Attribute ‘ ’Action‘ ’Notification ‘ ’AttrGroup ‘ ’Namd ’Attribute ‘ ’Description‘ ’Fixed‘
1 1

m m m

’Property ‘ ’Parameter ‘ Attribute
Action

1] m| 1] m 1] 1] 1] m| m| 1] 1]
’Namé ’Behavior‘ ’Mode‘ ’Parameter‘ ’Inf. Sl\/ntax‘ ’Replylsyntax‘ ’Name‘ ’Behavior‘ ’Parameter‘ ’Inf. Sl\/ntax‘ ’Replylsyntax‘

1 1 1

[ASN.1 Type| [ASN.1 Type] [ASN.1 Type| [ASN.1 Typd
1 1 m
1] 1] 1] m| 1 1 .
’Name‘ ’Context‘ lsyntax‘ ’Behavior‘ ’Type Deﬂ:r.‘ ’ASN.l Document‘ @f@
1
1 1 1
’OID Name4 ’&/mbolic Name‘ ’Documenﬂ

Figure 4.20: GDMO layout

4.2. OBJECT MODEL 67

MetaObj (class "customer")

"superclasses’
"subclasses”

atributes | "customerTypesPkg" | ™ |
"operations’

1 ["AbcPkg’
"constants’ "Local Pkg"
"typedefs’
"exceptions’
"cond_packages'
"mand_packages"

MetaString (Condition)

" MetaObj ("packages’)

) "customerTypesPkg" | MetaObj (package "customerTypesPkg")

"userL abel Pkg"

"contactListPkg" “attributes’
"operations'
"notifications"

Figure 4.21: Example of GDMO layout for package

An action has a mode (confirmed or unconfirmed), a number of parameters (described by
an information syntax) and a return value (described by a return syntax).

Notifications are similar to actions in that they have a number of parameters described
by a syntax and a return value, described by a syntax as well.

An example of how the GDMO layout can be used is given in fig. 4.21. It shows how
GDMO packages are represented in the meta model, using the GDMO layout.

GDMO templates consist of a number of mandatory and conditional packages which bun-
dle a number of attributes, operations and notifications (see above).

Although packages are only a compile-time entity and have no runtime representation
(their contents 'dwell’ in the GDMO template that included them), it is sometimes nec-
essary to record from which package an attribute or operation was taken.

This is done by adding the properties "cond _packages" and '"mand_packages" as shown
in fig. 4.21.

In the example both property keys point to an instance of MetaObj which has all the
packages in its dictionary. By navigating along the values of this dictionary, it is possible
to reach the contents of a package (e.g. its attributes, operations and notifications).
This scheme allows to flexibly attach any type of additional information needed to repre-
sent a target meta model with the generic one. There is no need to extend the structure
of the meta model by subclassing its elements (class extension), but all elements can be
extended by modifying their instance structure at runtime (instance extension).

Mapping of GDMO Layout Elements to the Instance Model Table 4.4 describes
the mapping between elements of the GDMO layout and elements of the instance model.
The name binding element has no equivalent in the instance model. It is consulted by the
Factory and Gen0Obj objects in the instance model to check whether creation or deletion,

68 CHAPTER 4. THE GENERIC OBJECT MODEL
Layout Ele- Corresponding Element in the Instance Model
ment

Name Binding

No equivalent. Name bindings are only present in the meta model and
are used by adapters to check correctness of creation- and deletion re-
quests

Class Template

Instance of GenObj

No equivalent. The contents of a package are copied to the GenObj

Package instance which is the result of the mapping of the template in which the
package is included
Parameter Elements of Arglist of Execute
No equivalent. Only present in meta model. Properties of attributes
Attribute such as access mode can be retrieved through access to the meta model

from the instance model

Attribute Group

No direct equivalent (cf. section 4.6.2.5)

Behavior No equivalent. Only present in the meta model
Action Method Execute of GenObj
Notification Event (cf. section 4.5)

Table 4.4: Mapping of GDMO elements to the instance model

respectively, are allowed.

A class template element is mapped to an instance of GenObj. The contents (i.e. at-
tributes, actions and notifications) of all mandatory packages that it includes are inserted
into the resulting instance. The contents of conditional packages are only inserted when
certain conditions are met.!” Note that operations and notifications are only conceptually
inserted into the resulting instance since they belong to the class, not the instance. They
are always forwarded by the instance to its corresponding adapter for execution.

A package element is not available in the instance model since only its contents are
included in a resulting instance. The names of the packages included by an in-
stance of GenObj are recorded as a list (Sequence in the instance model) in the
properties attribute. It can be retrieved by calling method GetProperty, i.e.:
GetProperty("packages").

Parameter elements are present in the instance model as elements of an Arglist of method
GenObj: :Execute. Each element of the argument list is a subclass of Val.

Attribute elements are not directly present, but only the values they represent are avail-
able.

Attribute groups are handled differently from attributes, since manipulating them (i.e.
getting and setting attribute groups) requires group mechanisms to be provided. For a
more detailed discussion see sections 4.6.2.3 (group communication) and 4.6.2.5 (attribute
groups).

Actions are mapped as operations in the instance model (GenObj: :Execute() method).
The mapping for notification elements is described in more detail in section 4.5.

"Which conditional packages are included is determined either by the OSI agent or by the manager
in the M-CREATE operation using the packages attribute.

4.2. OBJECT MODEL 69

Mapping of GDMO Layout Types to the Instance Model Table 4.5 describes
the mapping between types as represented in the meta model and their corresponding
values in the instance model.

It was the intention to make this mapping as similar as possible to the one for CORBA
types described in table 4.3.

The table lists the (ASN.1) types available in the GDMO layout, with the first column
showing the type code each type is assigned. The second column shows the parameters of
each type which can be used to provide further information about a type and is used to
model constructed (or aggregate) types. A struct type e.g. will typically provide further
information about its members. The rightmost column shows the instance model types
to which the meta model types are mapped.

An ASN.1 type is represented in the meta model through instances of MetaObj with the
properties '"'name', "document", "type_code" and "parm". The first two specify the type
name and ASN.1 document in which it was defined. The third has as its value an instance
of MetaLong which is the type code for the type. The "parm" property can be used to
describe subtype constraints (cf. below) or to describe constructed types.

ASN.1 values can be simple or constructed. The parameter for simple types is NULL in
most cases. It can also be used to represent an ASN.1 subtype construct which further
constrains a type (i.e., the values accepted by that type). For example, an integer type
may have a subtype constraint specifying that only a certain range of integer values must
be accepted. Subtypes are discussed below.

Constructed values use the "parm" property to describe the type further, e.g. an ASN.1
SEQUENCE which maps to a Struct in the instance model will have as its value another
instance of MetaObj, with the keys containing the names of the members of the struct,
and the values containing their types.

A subtype further constrains a type (cf. [ASN90, section 4]) and is modeled as follows:
for each ASN.1 type T, "parm" has as its value an instance of MetaObj which contains
one of the properties shown in table 4.6.

The two tables can be used by clients to determine which value to instantiate, e.g. as
argument to an operation. If for instance an operation of a GOM proxy instance repre-
senting a managed object requires a formal parameter of type SEQUENCE, then an instance
of Struct has to be provided as argument to the GenObj: :Execute call.

4.2.3.3 Modeling Values

In certain situations it may be necessary to model instance model values in the meta
model. Examples are initial values for constants or default values for attributes. In most
cases, the subclasses of MetaElement will suffice to represent these values. In certain
cases, however, a value may be more complex. For this purpose, a value may be modeled
using subclasses of Val. For this purpose, the dictionary present in MetaObj contains keys
and values, where the key is a string and the value a subclass of GomElement. In most
cases, GomElement can be narrowed to an instance of a subclass of MetaElement, but in
some cases 1t will have to be downcast to an instance of a subclass of Val. What kind of
GOM element it is can be determined using operation GetKind () of GomElement.

70 CHAPTER 4. THE GENERIC OBJECT MODEL
type_code parm GOM
Value
BOOLEAN NULL Bool
INTEGER NULL or subtype (cf. below) Int
BITSTRING NULL or subtype (cf. below) Str
OCTETSTRING NULL or subtype (cf. below) Str
NULL NULL NIL
OBJECT IDENTI-
FIER NULL Str
ObjectDescription NULL Str
EXTERNAL n/a n/a
REAL NULL or subtype (cf. below) Double
MetaObj. The dictionary contains as values the strings
ENUMERATED (Metasgring) that name ‘i,he elements of the enumera‘ciong Enum
MetaObj. The dictionary contains as key the names of
SEQUENCE, SET the members and as values instances of subclasses of | Struct
MetaElement which describe the types or the members
MetaObj. The dictionary contains 1 or 2 properties: "type"
SEQUENCE-QOF, and "size" which point to instances of MetaLong. The first Sequence
SET-OF describes the type of the elements of the sequence, the sec-
ond describes the length of the sequence (if present)
NumericString NULL or subtype (cf. below) Str
PrintableString NULL or subtype (cf. below) Str
TeletexString NULL or subtype (cf. below) Str
VideotexString NULL or subtype (cf. below) Str
IA5String NULL or subtype (cf. below) Str
UTCTime NULL Str
Generalized Time NULL Str
GraphicString NULL or subtype (cf. below) Str
VisibleString NULL or subtype (cf. below) Str
GeneralString NULL or subtype (cf. below) Str
CharacterString NULL or subtype (cf. below) Str
MetaObj. The keys of the dictionary are the names of the
CHOICE union’s members. Each name points to another instance of | Union
MetaObj which is an ASN.1 type
ANY NULL n/a
ANY DEFINED BY | n/a n/a
SELECTION n/a n/a
TAGGED n/a n/a
recursive n/a n/a

Table 4.5: Mapping of meta model types using the GDMO layout

4.2. OBJECT MODEL 71

Property Value

”single_value” ASN.1 value (composed of MetaElements)

”contained _subtype” ASN.1 type

”value_range” List (MetaList) with start- and end values (ASN.1 values)
” permitted _alphabet” ASN.1 type

”size_constraint” List (MetaList) with start- and end values (ASN.1 values)
“inner_type_constraints” | n/a

Table 4.6: Mapping of ASN.1 subtypes

4.2.3.4 Summary

A major point of the generic meta model is to accommodate metadata of several different
object models in the same repository without modification of the meta model’s structure.
This is the main reason for its flexible structure.

Any type of model can be represented using the generic meta model, and there should be
no loss of metadata information caused by a requirement to convert specific metadata to
a (potentially insufficiently flexible) fixed metadata model.

As the one element of the meta model that can contain other elements, MetalObj, represents
aggregation of or references to other elements through a dictionary (set of properties) in
which the keys (strings) denote the property names and the values point to other meta
model elements, any property can be represented by constructing recursive instances
of MetaObj, thus forming a tree, with the leaves being instances of either MetaLong,
MetaFloat, MetaString or Metalist.

This scheme allows to flexibly model any type of information needed to represent a specific
meta model through the generic one. There is no need to extend the structure of the meta
model by subclassing its elements (class extension) as proposed in section 4.3.1, but all
elements of any meta model can be represented by creating a corresponding meta model
structure using elements of the generic meta model (i.e. subclasses of MetaElement).
Since the structure of the generic meta model is neutral with respect to any type of specific
meta model, it can be used to represent any specific metadata. How this is done is specified
in layout definitions that define which elements are available (names and semantics), their
relations to other elements (containment, aggregation), the type code constants for each
type, and how elements and types are mapped to corresponding instances in the instance
model.

Layout definitions are used by clients of the generic object model to determine which
types of values have to be used in the instance model (e.g. for method calls).

Whereas the structure of the meta model is generic and can be specialized to suit metadata
from any meta model, the structure of the instance model is fixed and cannot be changed,
i.e., 1t should be used as is to represent other object models without having to be extended.
This has the benefit that clients have to manipulate only one model and do not need to
know about mappings from other models. The only extension possibility in the instance
model is the properties attribute in the Gen0Obj interface, which can be used to attach
additional information to an object, e.g. the distinguished name of a GDMO managed

72 CHAPTER 4. THE GENERIC OBJECT MODEL

object (cf. 4.2.2).

The generic meta model lends itself to the creation of generic tools (e.g. metadata
browsers, documentation tools) that traverse its structure and display it to users since
that structure is always the same. The semantics of the meta model, however, changes
from layout to layout imposed on the generic meta model and the only place where it is
defined is in the layout definition itself. Therefore, although the structure of metadata
can be displayed to a user, the semantics has to be grasped from the layout definition.
One place where the semantics of a layout is needed is in an adapter where metadata is
used for type-checking and conversion purposes. As it is anticipated that adapters are
written by the same persons who also furnish the metadata adapters and write the layout,
this should not pose any problems.

The goals of the metadata model listed at the beginning of this section were simplicity,
ease of use, integration with GOM and extensibility.

Extensibility has been achieved by defining a very generic meta model on top of which
layout definitions can be placed to suit any type of meta model. Layout definitions for
CORBA and GDMO have been provided that demonstrate the usefulness of the generic
meta model with respect to extensibility.

The generic meta model is very simple, it consists of only 5 classes which can be used
to represent any specific type of meta model. By virtue of its simplicity, the model also
achieves ease of use: clients do not have to learn a large number of classes as in the case
of CORBA'’s Interface Repository, but only have to know the 5 classes mentioned above
as well as the layout definition for a specific metadata model.

Memory management problems should not occur in the generic meta model since all data
is owned by the metadata repository and will be deleted by it only when no longer used
(cf. 4.3.2).

The latter point, namely integration with GOM’s instance model, has also been achieved:
the instance- and meta-models are similar. The result is that clients of GOM have to learn
only one type of model, whereas in the alternative solution that will be proposed in section

4.3.1, the instance model (GOM) would be different from the meta model (CORBA’s IR).

4.2.4 Convenience Bindings

All elements of GOM are defined in OMG IDL. As IDL interfaces cannot directly be used
by client applications, they have to be translated to a desired implementation language
(cf. 1.3.6) (e.g. C++, Smalltalk, Java etc.) using an IDL compiler which generates the
language binding according to a standard mapping defined by the OMG (see 2.1.3).
Since IDL is required to support a number of implementation languages, it cannot make
use of features available in only one language, but has to be based on features available
in all of the supported implementation languages.

It is therefore possible that when mapping IDL to a specific language, the generated
binding will not make use of language-specific features, resulting in a poor API compared
to the richness of language features available.

A solution to this problem is to add convenience bindings for the generated language
bindings as shown in fig. 4.22. They constitute an additional layer on top of the bindings
for a particular implementation language, providing a more elegant interface to clients

4.2. OBJECT MODEL 73

which conforms to the overall look and feel of the host language and makes use of the

latter’s features.'®

The following sections will present sample convenience
bindings for C++ as an example of a strongly-typed and
Smalltalk as an example of a weakly-typed language.
Simil‘ar bindings can be provided for other la‘nguages.
IDL interface GenObj (fig. 4.7 on page 47) will be used -~

as an example. The corresponding convenience class will Bindings

be called Gom0Obj in the examples. Convenience bindings \
for other IDL interfaces (e.g. the other interfaces of the IDL

instance model or the interfaces of the meta model) are
not discussed here for space reasons. However, they will

Client App.

GOM
Compiler Intfs.

Client App.

-

be similar to the ones proposed here. Bindings

The convenience bindings presented below are merely Séﬁa'ci_ta'k
indings

examples of how GOM can be adapted to different lan-
guages. Of course, any client application can provide

its own convenience bindings if needed, e.g. in the Figure 4.22: Convenience bind-

case where the provided convenience bindings are in-
sufficient, or if there are none available for a given language.

ings

Since the set of IDL interfaces in GOM’s instance- and meta model is finite, translation of
the IDL interface code comprising GOM should be performed only once for each language
binding. Therefore convenience bindings have a solid basis that is not expected to be
modified.

Both examples below will show how to access the CORBA Printer interface as defined
in fig. 4.23.

interface Printer {
attribute string location;
boolean Print(in Document doc, in long number_of_copies);

};

Figure 4.23: IDL interface Printer

4.2.4.1 CH+

Generated Language Bindings When translating IDL interface GenObj to C++ us-
ing an IDL compiler, the generated C++ binding'® is very similar to the IDL definition
of GenObj. All IDL operations are mapped to methods in C++4, and attribute access and
retrieval is mapped to accessor methods. To get an attribute T, an accessor method T()
is defined and to set it, the accessor method has the signature T(const T_ptr).

180ffering different interfaces to existing classes employs the adapter design pattern [GHIV95].
19 According to the OMG’s C++ language binding as defined in [OMG95, ch. 16].

74 CHAPTER 4. THE GENERIC OBJECT MODEL

class GenObj : public virtual Object {

public:
Adapter_ptr adapter();
void adapter(Adapter_ptr);
char* classname();
void classname(const charx*);
char* instance_name();
void instance_name(const charx*);
Dictionary_ptr properties();
void properties(Dictionary_ptr);
Val_ptr Get(const char* attrname);
void Set(const char* attrname, Val_ptr new_val);
Val_ptr Execute(const char* opname, Arglist_ptr args);
void Delete();

MetaObj_ptr GetClassDef();
MetaObj_ptr GetAttributeDef (const char* attrname);
MetaObj_ptr GetOperationDef (const char* opname);

MetaObj_ptr GetElementDef (const char* element_name);
Val_ptr GetProperty(const char* name);
void SetProperty(const char* name, Val_ptr new_val);

Figure 4.24: Generated C++ binding for interface GenObj (shortened)

Use of Generated Bindings An example of using the generated class for the IDL
interface specified in fig. 4.23 is given in fig. 4.25.

4.2. OBJECT MODEL 75

GenObj_ptr printer=::name_server.Find("psp30d");
Factory_ptr factory=new Factory;

Long_ptr num=new Long;
Arglist_ptr args=new Arglist;
Bool_ptr retval;

Str_ptr pw=new Str;

GenObj_ptr doc=factory->Create(''CORBA", '"Defs::Document",
0, 0, "adlerhorn.zurich.ibm.com", 0);
pw->val('/etc/passwd");
doc->Set(''name", pw);
num->val(2);
args->Add("doc", doc);
args->Add("number_of_copies", num);
try {
retval=(Bool_ptr)printer->Execute("Print", args);
cout << retval->val() << endl;
}
catch(GenEx& ex) { /* error */ }

Figure 4.25: Use of generated C++ class

The example creates an instance of IDL interface Defs::Document and prints it on a
printer, the reference to which is retrieved from a naming service. Note that the arguments
to the "Print" method have to be created and added to an instance of Arglist which is
one of the required arguments to GenObj: :Execute.

Convenience Bindings A possible C++ convenience binding for Gen0Obj is shown in
fig. 4.26. It augments the generated C++ class GenObj (fig. 4.24).

class GomVal : public Val {};

class GomObj : public GenObj {

public:
GomVal*& operator[] (char* attrname);
GomValx* Execute(const char* opname,
const char* argname, GomVal* argl ...);
s

Figure 4.26: Convenience binding for generated C++ class GenObj

The C++ convenience binding inherits from GenObj which is different from the Smalltalk
convenience binding where only a reference to an instance of Gen0Obj is stored (see below).

76 CHAPTER 4. THE GENERIC OBJECT MODEL

Thus, all member attributes and method of the superclass are available in the convenience
class GomObj.

The three main contributions of this binding are a safe narrowing mechanism for values,
constructors and operators for C++ classes and variable-length argument lists.
Whenever a generic value Val is returned from a method call, it has to be narrowed to its
actual class (e.g. a Long). For this purpose, a corresponding convenience value class with
the prefix Gom is created for each Val class, e.g. GomLong for Long. Each new class has a
static method Downcast that accepts as parameter a value instance (Gom<X>) and returns
the downcast value if the downcast is permissible or NULL if it is not. An example will
be shown below.20

The rich constructor and operator overloading mechanisms of C++ can be employed to
facilitate the use of the generated C++ classes considerably. For instance, every subclass
of GomVal has a constructor that allows to create an instance with a native C4++ value or
with another generic value. Also, conversion operators between native C++ values and
generic values can be provided.

Rather than having to create and populate an instance of Arglist for operation Execute,
it 1s possible to provide variable argument lists as shown in fig. 4.26. This allows to provide
arguments to an operation invocation right away, without first having to construct an
argument list object and adding the arguments to it.

An example of how overloaded operators can be used to facilitate the use of the generated
C++ classes is to replace the Get- and Set methods by the subscripting operator [Str91,
par. 13.4.5]. Thus the two operations shown below:

Long_ptr age=(Long_ptr)person->Get("age");
Long_ptr new_age=new Long;
new_age->val(32);

person->Set("age", new_val);

could be replaced by:

GomLong_ptr age=GomLong: :Downcast({(*person)["age"]);
(*person) ["age"]=new GomLong(32) ;

Note that methods Get and Set may still be used since convenience class Gom0bj is derived
from GenObj.

Use of Convenience Bindings An example of how the C++ convenience bindings
can be used is given in fig. 4.27
The code in fig. 4.27 is essentially the same as in 4.25, but it uses the convenience bindings

for C++4 which makes the code shorter.

2Note that, if a C++ implementation supports runtime type identification (RTTI), then a safe down-
cast can be performed using the dynamic_cast operator [Str91].

4.2. OBJECT MODEL 7

GomObj_ptr printer=::name_server.Find("psp30d4");
Factory_ptr factory=new Factory;

GomLong_ptr num=new GomLong(2) ; // use of constructor
GomBool _ptr retval;

GomObj_ptr doc=factory->Create(""CORBA'", "Defs::Document",

0, 0, "adlerhorn.zurich.ibm.com",
“"name", new GomStr("/etc/passwd"),
0);
try {
retval=GomBool: :Downcast (
printer->Execute("Print",
"doc", doc,
"number_of_copies", new GomLong(2),
0));
cout << *retval << endl; // conversion operator
}
catch(GenEx& ex) { /#* error */ }

Figure 4.27: Use of C++ convenience binding

Evaluation Use of the C++ convenience bindings has a number of advantages. First,
constructors are defined that allow to create an instance and initialize it directly in one
step rather than two. Second, overloaded C++ operators are used to make certain explicit
operations implicit, e.g. automatic conversion of the return value to a boolean value when
printed, as in example 4.27. Third, if RTTI is not available, a safe downcasting mechanism
is provided. Finally, variable argument lists allow to reduce certain steps when invoking
an operation.

4.2.4.2 Smalltalk

Generated Language Bindings According to OMG’s Smalltalk mapping [OMG95,
ch. 19-21], a corresponding Smalltalk class GenObj is generated for the IDL interface
GenObj as shown in fig. 4.28.

Use of Generated Bindings An example of using the generated class for the IDL
interface specified in fig. 4.23 is given in fig. 4.29.

First a previously registered instance ("psp30d") of Printer is retrieved from a naming
service. Then a document that will be printed is created. Target object model is CORBA,
and the name of the document class is "Defs: :Document'". The target instance will be
created in a CORBA server on host adlerhorn, and its accompanying proxy instance will
be created locally (in the client’s address space). Attribute "name" of the target instance
is set to "/etc/passwd" using the set operation of the proxy

Then, operation Print of the target object is invoked using as argument list the previously
created document and an instance of Long which was also created previously and set to

78 CHAPTER 4. THE GENERIC OBJECT MODEL

class: GenObj
superclass: Object
instance variables: | adapter classname instanceName properties
instance methods:
get: attrName
set: attrName newVal: val
execute: opname args: arglist
delete
getClassDef

getAttributeDef: attrName
getOperationDef: opname

getElementDef: elementName
getProperty: name
setProperty: name newVal: val

Figure 4.28: Generated Smalltalk binding for interface GenObj (shortened)

value 2.

Convenience Bindings One of the advantages of the reified object model of GOM is
that message names (selectors in Smalltalk) do not have to be determined at compile time,
but can be constructed at runtime. While the only possibility in strongly typed languages
such as C++ to construct messages at runtime is to use strings for the message names
and to provide a special interface that uses metadata (Get, Set and Call operations in
GenObj), weakly typed languages such as Smalltalk have the ability to construct messages
at runtime and send them to an object.

The Smalltalk convenience binding for GenObj (GomObj) makes use of this feature and
works as follows. Every GomObj instance has a reference to an instance of GenObj. When
a message is sent to an instance of GomObj and the message is not known by the in-
stance’s class, method doesNotUnderstand will be invoked by the Smalltalk runtime
The standard implementation of doesNotUnderstand would produce an error and jump
into the debugger. If, however, this method is overridden in the convenience binding’s
class (Gom0Obj), then we could construct a corresponding message and forward it to the
GenObj instance.?!

The implementation of message doesNotUnderstand is shown in fig. 4.30.

It receives as argument an instance of Message which represents a generic Smalltalk
message with the name of the selector, its arguments etc.

First, the instance of GenObj is used to determine whether a variable should be set or
retrieved or an operation performed. If the target class that the instance of GenObj
represents does not have a variable with the same name as the message selector, it is

21This mechanism is known as Prozy pattern and is described in [GHIV95, P. 215].

4.2. OBJECT MODEL 79

| printer retVal doc num args factory |

printer := NameServer at: ’psp30d’.
factory := Factory new.
doc := factory create: ’CORBA’ className: ’Defs::Document’

instName: nil proxylLocation: nil
targetlLocation: ’adlerhorn.zurich.ibm.com’

args: nil.
doc set: ’name’ newVal: (Str new val: ’/etc/passwd’).
num := (LongVal new) val: 2.
args := Arglist new.

args add: ’doc’ v: doc.
args add: ’number_of_copies’ v: num.

retVal := printer execute: ’Print’ args: args.
retVal printNl1.

Figure 4.29: Use of generated Smalltalk class

assumed that an operation has to be invoked. In this case, an instance of ArgList is
created and populated by iterating through all arguments of the message and, for each
argument, converting it to an instance of a subclass of Val which is then added to the
argument list. Finally the message is forwarded to the instance of GenObj that is the
value of realObject.

In the case of a variable, it has to be determined whether the variable is to be set or
retrieved. This is determined by the argument list: if it is empty, a Get message is sent
to realObject, otherwise a Set message is sent.

Two sorts of conversions have to be performed by the convenience binding: Smalltalk
values have to be converted to GOM values (subclasses of Val) and GOM values have to
be converted to Smalltalk values.

In the first case, each Smalltalk value can be converted to a corresponding GOM value
by looking at the class of the Smalltalk value.

In the second case, since each GOM value has a tag?? that determines its type, it can be
converted to the corresponding Smalltalk value as well.

Use of Convenience Bindings Fig. 4.31 shows how the code shown in fig. 4.29 would
look using the Smalltalk convenience binding for GenObj.

The amount of code to be written using the convenience bindings is considerable less than
if using the generated Smalltalk bindings. Additionally, it fits Smalltalk’s philosophy more
adequately in that 'helper operations’ such as get, set and execute are converted into
message selectors, e.g. obj execute: ’operationname’ becomes obj operationname

22Retrieved using operation GetKind, cf. fig. 4.4 on p. 41.

80 CHAPTER 4. THE GENERIC OBJECT MODEL

| msgName numberOfArgs args arg |
doesNotUnderstand: aMessage
args Arglist new.
msglName aMessage selector.
numberOfArgs := aMessage arguments size.
(realObject getAttributeDef: msgName notNil) "is msgName an attr. 7"
ifTrue: [(numberOfArgs > 0)
ifTrue: [arg := (arguments at: 0) convertToGOM.
" self realObject
set: msgName newVal: arg] "arg is converted val"
ifFalse: [~ self realObject get: msgName]
]
ifFalse:
"process arguments and add to ’args’"

[self realObject execute: msgName args: args]

Figure 4.30: Message doesNotUnderstand of class GomQbj

Evaluation Using the Smalltalk convenience bindings, none of the operations get, set
or execute have to be used. Instead, the attribute names can be used directly for attribute
access/modification and the operation names for operation invocation, which results in
tighter code and conforms to the Smalltalk philosophy.

4.2.4.3 Summary

Convenience bindings allow to adapt an implementation language binding generated from
IDL to the look and feel of the host language at hand. They can be seen as an (optional)
add-on to be employed for more ease of use of the instance model. Clients are free to
write their own convenience bindings for a language if the provided ones are not sufficient
or if there are none available.

Compared to the C++ convenience bindings, the Smalltalk bindings seem to be of greater
use to clients since they eliminate the need to use operations Get, Set and Execute and
instead offer an interface to clients that conforms to the Smalltalk philosophy.

The C++4 convenience bindings provide only small additional ease of use on top of the
generated bindings, with minor cosmetic changes, but no significant semantic modifica-
tion.

4.2.5 Typing

Unlike the static approaches, which are statically typed, GOM is dynamically typed as
shown in fig. 4.32.

Object-oriented languages can either be untyped or strongly typed [Weg90]. Untyped lan-
guages have no explicit type system and no type-checking is performed upon assignment
between values. Examples of untyped languages are Lisp [Ste90a] and Smalltalk [GR89].

4.2. OBJECT MODEL 81

| printer retVal doc num args factory |

printer := NameServer at: ’psp30d’.

doc := factory create: ’CORBA’ className: ’Defs::Document’
instName: nil proxylLocation: nil
targetlLocation: ’adlerhorn.zurich.ibm.com’
args: nil.

doc name: ’/etc/passwd’.

retVal := printer Print: doc numberOfCopies: 2.
retVal printNl1.

Figure 4.31: Use of convenience binding for Smalltalk

Strongly typed languages enforce type-checking, thus avoiding assignment of values of
incompatible types. Type consistency is checked either at compile time or at runtime.
Languages in which the type of expressions can be determined at compile time are called
statically typed, while languages in which types are determined at runtime are called
dynamically typed [Weg90].

Both the XoJIDM (3.1.2) and GOM
approaches are strongly-typed. But

Typing

contrary to XoJIDM’s approach,
which maps GDMO / ASN.1 to C++
code that can be type-checked at com-
pile t‘ime, GOM’s model uses a type WeaK Strong
repository to enforce type-checking at Typ Type(}/
runtime. This approach combines | gagc

the advantages of untyped languages | Lisp

such as Smalltalk (flexibility) with the Smalltalk

ones of typed languages such as C++ Statically Dynamically
(safety). This is possible since, un- Typed Typed
like Smalltalk which is an untyped im- g’;;al GOM
plementation language, GOM handles Ada

target models most of which are speci-
fied using typed interface speciﬁcation Figure 4.32: Typing classification of GOM
languages such as IDL or GDMO which are parsed and fed into a type repository which
can subsequently be used for runtime type- checking. Thus, the GOM model is essentially
strongly typed with type-checking enforced at runtime.?3

4.2.6 Summary

In this section, GOM’s generic object model and its main components, the instance- and
meta models were discussed. It was shown that their genericity helps avoid having to

23Main use of runtime type- checking is in adapters which have to convert values between GOM and a
target model, thereby enforcing type compatibility.

82 CHAPTER 4. THE GENERIC OBJECT MODEL

extend them to represent a number of different (object- and meta-) models. The instance
model allows to manipulate a number of target instances whereas the meta model can be
used to obtain metadata about the classes of a target system.

Convenience bindings contribute to the integration of the proposed model with a num-
ber of host languages. The closer a language adheres to the concept of object-oriented
reification (everything is an object), the better GOM can be integrated using convenience
bindings.

4.3 Metadata Repository

The concept of metadata is essential for GOM. As type information about the classes of
the target systems is not compiled into GOM, information needed to handle these classes
must be available at runtime. Access to metadata is needed by adapters to perform type-
checking and conversion work (cf. 4.4) and can also be used by client applications that
need it, for example, to implement class browsers, persistence services, documentation,
interpreters and so on.

As the target systems to be managed by GOM include a number of different models,
their metadata is necessarily heterogeneous, and this fact must be accounted for by the
metadata repository. The latter’s architecture must therefore accommodate a number
of possibly widely differing object models while giving the impression of homogeneity to
its clients. It is a purpose of the metadata repository to integrate all sorts of specific
metadata into a common model (described in section 4.2.3).

Specific metadata should be converted into the common model as far as possible. Some
idiosyncrasies, however, will simply not fit the common model and therefore the latter
has to be extended using one of two mechanisms shown in the next two sections.

Two alternative designs for a metadata repository will be presented. Then an evaluation
of the two alternatives will be made and the reasons for selecting the second alternative
will be given. Finally, an overview of similar approaches to metadata repositories in the
management domain will be given and compared with the proposed solution.

4.3.1 Extending CORBA'’s Interface Repository

The approach described in this section is based on CORBA’s Interface Repository (IR)
which is proposed as starting point for the common meta model. Besides accommodating
metadata for CORBA, the estended interface repository (EIR) also provides metadata
about other models such as CMIP (GDMO/ASN.1). The architecture of the EIR is
shown in fig. 4.33.

For each target model a separate database is created in which all metadata about that
model is kept. The databases are hidden from clients of the metadata repository and
metadata can be retrieved or added only through the CORBA interface repository read-
and write-access API [OMG95, ch. 6]. This ensures that the CORBA IR API need not
be modified, but only its implementation needs to be changed.

A client of the metadata repository of course has to know from which model metadata is
to be retrieved. Therefore, the name of the database (e.g. "X700”) has to be given when

4.3. METADATA REPOSITORY 83

X700_InterfaceDef OM ="X700"
"circuit" Classname = "circuit"

— 1\ CORBA ‘IR Interfai/e)

Request

"CORBA

"X700"| "SNMP"
‘ . Repository* rep;
- X700_InterfaceDef* circuit_def;
A Ry < i . Contained* ;
. c=rep->lookup_id("X700:/op1vol4/circuit:1.1");

i circuit_def= (/* Castdown */)c;

Figure 4.33: An extended interface repository

querying metadata about X700. As shown in fig. 4.33, this can be achieved by prefixing
a CORBA Repositoryld string (see [OMG95, section 6.6.4]) with the name of the object
model (and thus of the database) to be used for the metadata lookup. In the example
the operation lookup_id is used with the Repositoryld "X700:0pilvol4d/circuit:1.1".
This causes the X700 database to be searched for a GDMO template named circuit in
a module named oplvol4 (with version 1.1). Information about that template is then
returned in the form of an InterfaceDef which has to be narrowed to an instance of
X700_InterfaceDef to get to the subclass-specific information.

Metadata of target models should be described - whenever possible - using the existing
IDL interfaces of CORBA’s Interface Repository. If this is not possible, e.g. in the case of
GDMO packages in a GDMO class template (cf. [GDM92]), the corresponding IR element
(e.g. an InterfaceDef) must be subclassed by the metadata provider to accommodate
the additional information, e.g. in an IDL interface X700 _InterfaceDef.

Another example is the case of the IDL interface AttributeDef which is an element
of the Interface Repository that provides metadata about an attribute of a CORBA
interface. Since an attribute in a GDMO template needs to record more information than
its CORBA counterpart (such as the package to which it belongs and initialization and
access constraints such as initial, default, permitted and required values [GDM92, section
8.4.3.2]), AttributeDef cannot be used. Therefore, a subclass of AttributeDef needs
to be created (X700_AttributeDef) that provides the additional information. This is
demonstrated in fig. 4.34.

As shown, metadata about a GDMO attribute is kept in an instance of a subclass of IR’s
AttributeDef interface. The information in the AttributeDef part of the resulting in-
stance contains the normal information such as the name of the attribute, its type and the
access restrictions (such as for read-only attributes). The subclass X700_AttributeDef
contains additional information that is not covered by the AttributeDef interface such
as the OID for the attribute, initial and default values etc.

When retrieving metadata, a client of the EIR potentially has to narrow the returned
instance to its actual class to be able to access the additional information. As an ex-
ample, a query for an attribute of a GDMO template may return an instance of type
AttributeDef, but its actual class may be X700_AttributeDef so the returned object
needs to be narrowed to X700_AttributeDef to access the additional information about

84 CHAPTER 4. THE GENERIC OBJECT MODEL

InterfaceRepository

InterfaceDef

AttributeDef
.l OperationDef ~

X700_InterfaceRepository

X700_InterfaceDef

.X700_AttributeDef - | Hasa
X700_OperationDef | isa

Figure 4.34: Integration of specific metadata

the GDMO attribute.
In order to integrate a new target model with the metadata repository, the following steps
have to be taken:

1. A new database with the name of the target model must be created in the EIR.

2. A parser must be written that populates this database by parsing specifications
of the new object model and generating input to the EIR as result. The decision
whether to reuse existing elements of CORBA’s IR to represent metadata of the new
model or to create new metadata interfaces is the decision of the parser’s author.
Usually, one would reuse existing elements as much as possible, with a few exceptions
where subclasses are needed.

3. An adapter (cf. 4.4) that converts between the generic object model and the new
model has to be written. This will usually be performed by the same person who
writes the parser and who will therefore know the metadata (e.g. which classes are
subclassed and which ones are reused).

The scheme described above has the advantage that it reuses existing concepts from
CORBA, actually enhancing CORBA’s interface repository towards a multi-domain (ob-
ject model) metadata repository without modifying its interface (API). Such a type repos-
itory could potentially play an important role in future heterogeneous networks as a
common registry for metadata which can be used for several different object models.

4.3.2 Providing Own Metadata

Another approach to providing metadata of multiple object models is shown in fig. 4.35.
With this approach, each generic interface GenObj has a corresponding generic metaclass
MetaObj describing the target object?* in the metadata repository (MR). The metadata
repository is represented by an instance of MetadataRepository (cf. A.4).

24For example, if the GenObj proxy instance represents an OSI managed object (MO), then the corre-
sponding MetaObj would describe the MO’s GDMO template.

4.3. METADATA REPOSITORY 85

Queries Compilers
1 (GDMO, OMG IDL)

E [—
’ Read Interface H Write Interface ‘ :
: CORBA
CORBA : IR
Metadata :
Metadata Adapter :

Repository cMIP
(MR) Metadata
Adapter

GDMO/ASN.1
Type
Repository

Existing Metadata Sources

=
=

Metadata Cache Metadata Cache
(X.700) (CORBA)

Figure 4.35: Providing own metadata

All metadata is located in a number of metadata caches in the client’s address space. A
metadata cache is a database for one specific meta model, e.g. for CORBA. There are
separate caches, one for each object model.

There are two ways to populate a metadata cache: the first is to use a compiler which
parses the specifications of a target object model, generates input to the metadata cache
and uses the metadata repository’s write interface to enter the data.

The second is to use existing metadata sources of a target model and to employ metadata
adapters as bridges to these sources. A metadata adapter is responsible for furnishing
metadata about a target object model to the metadata repository in the generic metadata
format specified in section 4.2.3. It does so by accessing (in most cases) available metadata
sources and converting and copying the information so that the metadata repository can
add this data to one of its caches. A source may for example be CORBA’s Interface
Repository. A metadata adapter acts as a ’just-in-time’ metadata provider; it is contacted
whenever metadata cannot be found in the cache. When a metadata adapter returns
metadata, the latter will be added to the cache so that the next request can be served
directly from the cache.

These two alternatives allow both the integration of existing sources without first having
to parse and enter them into the common metadata model and the (offline) parsing of
specifications by a compiler to add them to the metadata cache, e.g. for performance
reasons or if no existing metadata sources are available.

For a given object model X there can be either a metadata cache and -adapter or only a
metadata cache available.

In the first case, the data is fetched from a specific source and added to the cache for effi-
ciency purposes, populating it over time. Its contents will be deleted when the application
is terminated, or can optionally be saved to a file so that the cache will be immediately
usable when the application is started the next time. The latter scheme will reduce the
need for metadata adapters over time as more and more data is available directly from

86 CHAPTER 4. THE GENERIC OBJECT MODEL

the cache. Actually, in the end this approach achieves the same result as employing a
compiler to parse specifications and input them to the cache (without having to write a
compiler back-end or parser). Of course, when the cache is flushed, metadata adapters
will still have to be contacted to provide metadata.

In the second case, no existing metadata sources may be available for a certain object
model. In that case, it may be feasible to write a compiler (or reuse an existing one) to
parse the specifications and add them to the cache. Thus, the cache essentially acts as a
database for metadata of a certain model.

When metadata is needed by a client, the metadata repository is accessed given the
object model and the name of the element (e.g. a class name) to be looked up. An ex-
ample is FindClass("CORBA:CustomerApplication/customer:2.1") which means that
metadata about an IDL interface in the CORBA object model named customer in module
CustomerApplication with version 2.1 is queried.

The metadata repository will alway first try to find a cache for a certain object model
upon receiving a request. If found, it is used to search for the desired information. If the
cache is not found or the information cannot be located, then a corresponding metadata
adapter is sought. If found, the request will be forwarded to it and the result added to
the cache before returning it to the client. If not found, or if the information cannot be
located, then an error message will be returned to the client application.

To minimize network traffic, whenever a module or class definition is requested, the entire
module or class definition will be shipped to the metadata repository by the metadata
adapter and copied to the cache. This scheme avoids having to keep track of the pieces
that have already been transferred. In addition, using TCP/IP it is more efficient to
transfer one large packet rather than several small ones [Tan92]. Once the metadata is in
the cache, it can be accessed by clients for queries.

The metadata cache can be flushed at any time to accommodate the fact that metadata
from a specific source may have been modified in the meantime. Flushing the cache forces
its subsequent repopulation which has the effect that modified metadata will immediately
be usable. Note that if the cache is used as a database then the contents of it will be
deleted as well.

The metadata repository provides a number of operations to populate the cache manu-
ally, i.e. operations that fetch all information that is available from meta adapters and
copy it to the cache. This is useful for initial metadata discovery, e.g. to list all the
classes available in a target object model. It can also be used to populate a cache in the
background, e.g. by invoking these operations in a separate initialization thread which
starts populating the cache at startup. Note that these operations do not make sense if
there is no corresponding metadata adapter available. In this case, they simply return
the requested information, or — if it cannot be found — an error.

Note that clients will always deal with metadata elements that are owned and main-
tained by the cache so they must not modify retrieved metadata. By giving clients direct
memory pointers to data in the cache, memory ownership problems can be avoided: ev-
erything is owned by the cache and will be deleted by it when flushed or when the cache
is terminated.?®

25The C++ language is assumed here as language binding. Of course, this problem does not occur in
languages with automatic garbage collection.

4.3. METADATA REPOSITORY 87

Whenever a new object model is to be integrated into the generic object model, a new
metadata adapter has to be provided that is able to furnish information about the model to
the metadata repository, or a compiler (back-end) has to be written that parses specifica-
tions for a given model and generates metadata to be input to one of the metadata caches.
The advantage of this scheme is that existing metadata repositories can be ’tapped’ and
their information reused without the need to generate essentially duplicate metadata in
a separate EIR (as proposed in the previous section).

As all elements of the meta model can be marshaled and unmarshaled (using methods Dump
and Read, shown in fig. 4.4), the contents of the cache can be saved across invocations.
This is important in cases where a large amount of metadata is used and initial cache
population from target sources through the meta adapters takes too much time. See also
section 4.6.4.

Since the metadata repository is itself a CORBA interface, it can be located anywhere in
the network. Retrieval of an object reference to it will typically be done by the CORBA
naming service [COS95]. Whenever a new instance of the MR is created, it will be regis-
tered under a certain name with the naming service. Its object reference can subsequently
be retrieved by any client that knows its registration name.

There may be a number of MRs in a network that clients can access. However, for
performance reasons, clients will typically try to access the MR closest to them.

Process group mechanisms [Maf95, Bir96] could be used to increase availability and per-
formance of the MR service. Instead of creating one central instance of an MR, a number
of instances would be created in several locations, forming a group. An operation invo-
cation would be sent to all members of the group and the first response received would
be used. Thus temporary non-availability of an MR instance would not stop the service
from working as long as there is at least one member left in the group. Also, since the
first response is used, performance of the overall service would increase.

4.3.3 Related Work
4.3.3.1 SMK

Work being done on implementing OSI’s Shared Management Knowledge (SMK) manage-
ment function [X7593, TMN95] is described in [HPSK96, PHHS96]. The SMK function is
implemented in CORBA and consists of translating the SMK definitions (GDMO/ASN.1)
to CORBA IDL following XoJIDM’s specification translation proposal [Spe97] and imple-
menting the resulting IDL interfaces in an OSI agent. Management knowledge consists of
the following elements:

e Instance and instance relationship (Instance Model). This function allows to retrieve
information about an agent’s containment tree, it enables e.g. OSI managers to
retrieve the root instance(s) of an agent for traversal of the agent’s MIB.

e Managed object class knowledge and name bindings (Meta Model). Knowledge of
GDMO templates, packages, actions etc. and of ASN.1 types can be retrieved using
this function. This is similar to the meta model of GOM.

26 Actually, these two operations are the main mechanism for making metadata caches persistent.

88 CHAPTER 4. THE GENERIC OBJECT MODEL

e Protocol and association establishment knowledge and systems management func-
tions (SMFs) available at the agent.

Unlike the proposed approach, it is not just metadata that is stored in the SMK, but
also information about the instance model is available, i.e. the containment tree of an
OSI agent. Moreover, information needed by a manager to establish an association to
an agent is available which enables OSI managers to bind dynamically to agents using
the information returned by the SMK function (such as the agent’s presentation address,
application entity name (AE-title) and protocol [ITU92a, ITU92Db]).

The SMK function deals specifically with metadata about OSI agents’ MIB’s and is not
designed to integrate other types of metadata, as this is not its purpose. It would be
impossible or at best awkward to add metadata about CORBA interfaces to the SMK
function. The meta model described in this thesis, however, is specifically designed to
take into account all different types of metadata.

Using the SMK function, an OSI manager typically has to deal with two types of APIs:
one for the exchange of shared management knowledge (CORBA) and another one for the
manipulation of instance data in an agent (CMIP). The interfaces offered for the instance-
and meta-model are therefore — unlike GOM’s approach — not based on the same object
model.

4.3.3.2 Management Interface Repository

The work described in [Hie96a] is part of a proposal for XoJIDM’s Interaction Translation
(cf. section 3.1.2). The Management Interface Repository (MIR) is a meta database for
the purpose of recording information that was lost when translating GDMO/ASN.1 to
IDL or IDL to GDMO/ASN.1, such as the object identifier (OID) of the GDMO template
from which the corresponding OMG IDL interface was generated.

It is for example possible to determine the ACTION template definition from which a
given IDL operation was derived or to retrieve the OMG IDL attribute definition to
which a given GDMO attribute definition was mapped.

This is achieved by MIR’s object model which essentially comprises two hierarchies of
metadata; one consists of elements that describe the OMG IDL definitions and which
are derived from CORBA IR interfaces (similar to 4.3.1), e.g. a MIR::InterfaceDef is
derived from CORBA::InterfaceDef. These elements have as additional members links
to elements of the second hierarchy, the management-specific metadata which essentially
describes GDMO/ASN.1 information from which the OMG IDL definitions were gener-
ated. The two hierarchies are related through bidirectional links which allows to associate
source- and target definitions, e.g. to retrieve the GDMO definition of an element for
which OMG IDL code was generated.

Information in the MIR is used by the gateway that is responsible for converting CORBA
to CMIP (CORBA manager of an OSI agent) and CMIP to CORBA (OSI manager of
a CORBA agent) requests. Also, the MIR API can be used by applications that need
access to metadata.

The main purpose of the MIR is to record the mapping between GDMO/ASN.1 and
generated IDL (and vice versa) which is lost during translation. It proposes that CORBA’s

4.3. METADATA REPOSITORY 89

interface repository be integrated by making the MIR a superset of metadata which
includes the CORBA IR and additional management-specific information.

This concept is similar to what has been described as an alternative to metadata for this
work in section 4.3.1 (EIR). A difference is that, while applications that require access
to management-specific information must use the MIR API, they could continue using
CORBA’s interface repository API to retrieve management metadata in the proposed
solution.

Also, the concept of subclassing existing interfaces that form CORBA’s IR to record
additional management-specific information was described in section 4.3.1. It was not
used, however, in this work for the reasons that will be given in 4.3.4; the main reason
being the inflexibility of this scheme when trying to integrate other object models.
Whereas the goal of MIR 1s to record information about the CMIP and CORBA models,
the current proposal seeks to create a flexible meta model that allows to extend it easily
to integrate metadata about other object models.

4.3.4 Summary

Whereas an extension of CORBA’s interface repository to a multi-domain type repository
(as described in 4.3.1) forces clients of GOM to enter metadata about the elements of their
model into the EIR to enable the manipulation of their instances, the second approach
proposed (4.3.2) allows to reuse ezisting metadata and merely requires an adapter for
converting existing sources to the generic meta model. The latter approach does not
require a client’s knowledge of the IR, but only of the generic meta model which — in the
author’s opinion — is simpler to handle.

In the first approach, there is a gap between the syntax and semantics of GOM’s instance
model and its meta model. In contrast, having GOM provide its own meta model plus
adapters for bridging to specific metadata sources has the advantage that the overall
model of GOM becomes more homogeneous and uniform.

In the second approach, data from specific sources furnished by the metadata adapters is
always copied to the metadata cache. This may initially slow down access to the metadata
repository, but will pay off in the long run owing to locality of access reasons compared
to the first approach where the EIR is always accessed via CORBA, especially in the
scenario when the EIR is not in the address space of the client. In this situation, access
to the EIR would always result in network traffic, while using a cache will merely result
in traffic when the desired information cannot be found in the cache.

A disadvantage of the second approach is that the potential reuse of an existing specifi-
cation for a metadata repository (CORBA’s IR) is not realized, but a basically similar
repository is created. Compared to the advantages described above, this disadvantage
seems acceptable.

The second approach was chosen as the architecture for GOM’s metadata repository
because its meta model (e.g. its interfaces) fits more nicely into the instance model of
GOM. Rather than providing one type of syntax and semantics (GOM) for the instance
model and a different one (the CORBA IR interfaces) for the meta model, in the approach
chosen, the instance- and meta model have similar syntax and semantics.

Moreover, GOM’s meta model allows from the beginning the integration of metadata from

90 CHAPTER 4. THE GENERIC OBJECT MODEL

other models while, with the first approach of extending CORBA’s interface repository,
many IR classes would potentially have to be subclassed when adding metadata for a
model other than CORBA.

Whereas in the first case, metadata providers have to write compilers to add their data
to the EIR, in the second case, the metadata repository offers a choice between writing
compilers and tapping existing metadata sources.

4.4 Adapters

The task of adapters is to enable GOM to communicate with target systems. They are
the only place in GOM where target system- dependent code is located. One adapter is
required per target system and its task is to bridge?” the generic object model and exactly
one target model. It contains knowledge about GOM plus one target model.

4.4.1 Characteristics

To perform the task of mediation between these two worlds, an adapter has to know

e syntax and semantics of GOM,
e syntax and semantics of the 'foreign’ target model,

e metadata of the target model and

e metadata of GOM.

The syntax needed to access a target model may be defined by an interface definition
language (similar to CORBA), as an API in the form of header files and a C library, or
even as exchange of PDUs over a protocol. A description of how to apply the syntax to
manipulate the model and what its effects are comprises the semantics.

Metadata about the target model is needed by the adapter to perform type-checking of
arguments and conversion of values between the generic object model and a specific target
model (and vice versa). Metadata about GOM is needed as well, e.g. when converting
a generic GOM value to a target model value. This form of metadata is available in all
elements of GOM as GomKind (cf. appendix A.1).

Adapters perform mainly three tasks:

1. Type-Checking. When a GOM value is an argument to an operation (e.g. Execute
or Set) a check has to be done whether its type is compatible with the one expected
in the target model as defined in the target model’s specification of the operation.
As the specification is available in the metadata repository (it has previously been
parsed and added to the MR), the adapter has to retrieve metadata about the
operation to perform type-checking.

2"The concept of CORBA’s inter-ORB bridges, which convert requests between different ORBs, is
explained in 2.1.4.

4.4. ADAPTERS 91

2. Conversion. GOM values have to be converted to target model values and vice
versa. The task of conversion of a GOM value to a target system specific value can
actually be done while type- checking the generic value.

3. Communication with Target System. FEventually, an adapter will have to com-
municate with the target model to perform the operation requested by the client
application. To do this it may need to access the proxy instance (on which the op-
eration was invoked) to retrieve specific information needed for this communication,
such as for example a CORBA object reference [OMG95], or an OSI AE-title and
distinguished name [ITU92a].

The flow of a request through the system is depicted in fig. 4.36.

$(3)

® | com () © Target
Cli Ad A =
{ ient @L_Poy @ apter @ Modd A ©) O
Adapter B -l,\;ﬂr,gg Bl — O
Adapter C Iﬂaggg cl=— O

Figure 4.36: Adapters

Consider the case when a client invokes an operation on a proxy instance using operation
Execute (1). The proxy instance has a reference to its adapter (attribute adapter, which
was set when the proxy was created) to which the operation is forwarded (2). The
adapter then retrieves metadata about the operation using GenObj::GetOperationDef
(for the CORBA layout) or the more generic Gen0Obj: :GetElementDef (3). If found, all
arguments of the operation are type-checked and converted to target model values. Then
the operation is dispatched to the target system (4) in whichever form is appropriate.?®
The target system communicates with its local object to perform the operation (5). When
done, the result is received by the adapter (6). This value is still in the target model form
and has to be converted to a corresponding GOM value using the previously retrieved
metadata. The converted generic value is then returned to the caller proxy instance (7)
which finally returns it to the client application (8).

Note that the example uses a synchronous style of execution. For a discussion of an
asynchronous model see section 4.6.5.

4.4.2 IDL Interface

All adapters have to inherit from IDL interface Adapter (cf. appendix A.1) and implement
the operations dictated by the superclass.

?8E.g. a Dynamic Invocation Interface (DII) request [OMG95], or a CMIP or SNMP request.

92 CHAPTER 4. THE GENERIC OBJECT MODEL

The Create operation has to create a target instance at a location given in
target_location and to initialize the resulting instance with an (optional) argument
list. Also, an accompanying proxy instance has to be created and the handle?® returned
as result of the creation operation in the target system which uniquely identifies the target
instance must be stored in that proxy. This enables the proxy instance to later refer to
the target instance whenever a request for the latter is received. Attribute properties of
the proxy instance can be used to store the handle. In the case of CORBA, a stringified
version of the object reference might for example be stored under the key "objref'" in
the properties attribute. It can be later retrieved by the associated adapter to dispatch
requests to the target system. Additionally, the adapter has to store a reference to itself
in the created proxy instance (in attribute adapter), thus allowing later requests to the
proxy to be forwarded to itself.

Operations Get, GetN, Set, SetN, Execute and Delete of an adapter have as first param-
eter a reference to the proxy instance to which they were originally sent. This allows the
adapter to retrieve necessary information such as the handle to the target instance or the
classname from the proxy.

The operations to retrieve metadata make use of the adapter’s attribute object model
which stores the name of the object model the adapter serves. It is used to specify the
object model to choose when accessing the metadata repository (MR) (cf. appendix A.4).
All metadata repository operations that provide metadata need as first parameter the
name of the object model to access the correct metadata cache and/or metadata adapter
(4.3.2).

Operations CreateFilter and SendEvent are used by GOM’s event model. See section
4.5.2 for an in-depth discussion.

The name given to the IDL interface of an adapter has to be constructed according to a
well-defined scheme; it is a concatenation of the name of the object model and the suffix
"_Adapter". This is necessary since factories (cf. 4.2.2.2) will always try to instantiate
a class X_Adapter for an object model named X when creating an adapter. The obtained
name is also necessary to retrieve an existing adapter from a naming service. In this case,
the registration key for an adapter would be the name of its IDL interface as ASCII string,
e.g. "X_Adapter".

In the following sections a brief overview of the implementation of the three adapters for

CORBA, CMIP and SNMP will be given.

4.4.3 CORBA Adapter

A CORBA adapter has to communicate with CORBA instances in a dynamic manner,
with no precompiled knowledge of their classes since there are no included IDL interface
definitions available.

Therefore a mechanism must be used that allows adapters (clients in general) to construct
requests at runtime and dispatch them to CORBA instances, given an object reference to
the instance.

There are essentially two schemes provided by CORBA to achieve this:

2E.g. a CORBA object reference, or an OSI AE-title and distinguished name

4.4. ADAPTERS 93

1. The Dynamic Invocation Interface (DII) [OMG95, ch. 4] and

2. The General Inter-ORB Protocol (GIOP) and its TCP/IP- based implementation,
the Internet Inter-ORB Protocol (IIOP) [OMG95, ch. 12] .

DII allows dynamic construction and dispatching of requests to CORBA objects. It
makes use of CORBA’s Interface Repository (IR) to type-check at runtime whether the
supplied arguments comply with the formal parameters specified in the IDL definition of
the operation.

ITOP is a connection-oriented protocol that allows to send requests to any ORB that
implements it. The main purpose of IIOP is inter-ORB ’on-the-wire’ compatibility which
enables ORBs of different vendors to interoperate.

The difference between DII and IIOP is that the former is an API that transparently
allows clients to invoke operations on (remote) CORBA objects without concern for the
underlying transport whereas IIOP is a protocol implementing the transport to be used.3°
DII may use IIOP as its underlying transport protocol.

Both DII and ITOP can be used to implement a CORBA adapter. The advantage of DII
is that it is more abstract, therefore easier to implement, whereas ITOP is more complex.
In a prototype implementation of a DSOM-based [SOM94] CORBA adapter, the DII was
used [Ban96b, Ban96f, Ban96a] as described below.

The approach is straightforward. Whenever a GOM request is to be dispatched, after
successful type-checking using metadata, a Request object will be created. All generic
GOM values in the argument list will be converted to CORBA values and added to the
Request object. Then the request is dispatched to the corresponding target instance?!
using operation Request: :invoke (synchronous execution). After successful completion,
all arguments having mode INOUT or OUT are converted to GOM values and replace their
corresponding (old) values in the argument list of the operation (Arglist). This allows
clients to retrieve modified arguments after the operation invocation. Finally, the result
value is converted to GOM and returned.

For a discussion of how event handling is performed by the CORBA adapter see section
4.5.2.5.

4.4.4 CMIP Adapter

The task of a CMIP adapter is to convert GOM requests into CMIP requests, send these
to an agent via an OSI stack, collect the CMIP response, convert it to a GOM value and
return it to the caller.

There are a number of APIs, most of them in the form of C-libraries, that communi-
cate with an OSI stack to produce requests for the CMIP protocol. Some examples are
X/Open’s XOM/XMP [XOM94], its successor TMN/C++ [TMN96] or IBM’s cnipWorks
[GMRY4].

The prototype implementation uses the cmipWorks product, which offers a string-based
API for ASN.1 values and implements all requests required by the CMIP protocol.

3In terms of ODP viewpoints [ODP95, Ban96d], DII would be in the computational viewpoint and
IIOP in the engineering viewpoint [ODP95, DHR92].
31The target’s object reference is available in the proxy instance.

94 CHAPTER 4. THE GENERIC OBJECT MODEL

Processing in the adapter is as follows: when a GOM request is received, all generic values
in its argument list are converted to values of the mentioned string-syntax and added to
a list. Then the corresponding (synchronous) cmipWorks function is called.®* Tt will
generate a CMIP PDU and send it to the agent. The response is then received by the
adapter and converted to a GOM value which is subsequently returned to the caller.
The address of the agent to which to send the CMIP request is stored as AE-title in the
proxy instance. Since the latter is part of the parameter list of most operations of the
adapters, it can be accessed to retrieve the AE-title (and other necessary information).
(An AE-title was stored in the resulting proxy instance upon creation of it. It was
indicated in argument target_location of operationFactory: :Create).

For a discussion of how event handling is performed in the CMIP adapter refer to section

4.5.2.5.

4.4.5 SNMP Adapter

The processing taking place in an SNMP adapter will be described in detail in section
4.6.1. The purpose of this section is therefore to describe some issues related to imple-
mentation. Issues related to event handling are discussed in section 4.5.2.5.

As SNMP is based on UDP33, which is a connectionless protocol, there are some pecu-
liarities to be considered when communicating with an SNMP agent. First, the packet
size of UDP 1is limited. This may require SNMP adapters to break up larger packets
into a sequence of smaller ones. One example is the GET request: when getting multiple
variables at once, it may become necessary to issue a number of consecutive GET requests
for each variable separately rather than send a single request.?* An adapter may decide
to implement rather sophisticated logic, or it may refuse to do so and return an error.
Another problem caused by UDP is that there is no such thing as a synchronous request
(as in the case of CMIP): requests return immediately after sending them to the agent
and their responses may arrive later in any order.?® This requires a scheme that matches
requests with responses and possibly an implementation of the sliding window protocol.

4.4.6 Summary

Adapters are the links between the generic object model and specific target models. They
are the only place in GOM where system-dependent code is written. Their task is to
make a target system available for manipulation using GOM and to type-check requests
between the generic- and a specific target system.

Adapters are the main clients of the metadata repository, since they need metadata to
perform their conversion and type-checking.

32There are both synchronous and asynchronous versions of all CMIP requests available. How asyn-
chronous requests could be used is discussed in section 4.6.5.

33This is the most common form as described in RFC 1157; however, other datagram services or even
connection-oriented services may be used to implement SNMP.

34This has been solved in SNMPV2 [CMRW96] with bulk retrieval. However, this version is not yet
widely used.

35 Actually UDP does not guarantee delivery; packets may get lost.

4.5. EVENT HANDLING 95

4.5 Event Handling

There are mainly two flows of communication between a manager and managed entity:
(1) requests from the manager to the managed entity (with responses from the managed
entity) and (2) unsolicited events from managed entities to managers. Events are situa-
tions that occur in a managed entity which may be of interest to a manager and which
are sent from the entity in the managed role to the one in the manager role.

Examples of events are the creation of a new object, a network partition, the shutdown
of a printer and so on. Events always carry information describing the situation, such as
the name of the newly created instance, or the location of the printer that was shut down.
The type of the information is typically defined in the specification language of the model
at hand and should be available in the metadata repository.

Event handling is of interest to GOM because, unlike requests initiated from a manager
and converted to a specific model by adapters, events are initiated by the managed entity
(specific part) and have to be caught by GOM and converted to the generic model. This
is just the opposite flow of control, and a generic event handling model has to be provided
by GOM to cover this important area of the architecture of a management system.

In this section, a generic event handling model for GOM is proposed. Its purpose is
to shield clients from the heterogeneous event models of CORBA, CMIP and SNMP by
offering a higher, generic, abstraction layer conforming to the overall philosophy of GOM
that lets clients perform event handling for all target systems. The provision of a generic
event service also contributes to the uniformity of GOM.

The structure of this section is as follows: first, an overview of the event models of the
three target systems of interest (CORBA, CMIP, SNMP) is given. Additionally a proposal
by X/Open for enhancing CORBA’s event service will be described. Then the generic
event model of GOM will be presented which is on the one hand a synthesis of the models
described above and on the other hand represents a generalization of the (quite specific)
event mechanisms of each model, fitting with the generic nature of GOM.

4.5.1 Overview of Existing Event Models
4.5.1.1 SNMP Traps
The event model of SNMP as defined in RFC 1157 [CFSD90] is very simple and consists

of traps being sent from agents to managers (or from managers to other managers). Traps
carry knowledge about an event that occurred in an agent in the form of a trap PDU which
has as fields (1) the object identifier of the MIB variable that triggered the trap, (2) the
IP address of the SNMP agent that emitted the trap, (3) an enumeration describing a
generic set of traps, if this is not sufficient, (4) an integer value describing a specific reason
(application-dependent), (5) a time stamp and (6) a list of variable bindings (associations
between a name and a value®®) to further describe the cause of the trap.

The address of the target manager to which traps generated by an SNMP agent are to
be sent is implementation dependent and there is no standardized way for managers to

36A value is a choice of the permitted ASN.1 types for SNMP (e.g. INTEGER, OCTET STRING, Gauge
etc.).

96 CHAPTER 4. THE GENERIC OBJECT MODEL

register their interest in certain types of events as in the case of OSI event handling (cf.

below).

4.5.1.2 OSI Event Handling

The event model of OSI is defined in X.734 (Event Report Management Function). When-
ever managed objects (MOs) need to inform the agent about the occurrence of a new
situation they send a notification to the agent’s event forwarding discriminators. These
are special MOs that evaluate the notification against filters set by managers and forward
those that pass the filter to a suitable manager in the form of event reports.

An event report is a structure similar to SNMP traps containing (1) the class object
identifier (OID) and (2) the distinguished name of the managed object that triggered the
event, (3) the event time, (4) the type of the event information (OID) and (5) the event
information itself. The syntax of an event report is defined using ASN.1.

Filters are represented by instances of event forwarding discriminators (EFDs) (derived
from GDMO template discriminator)in an agent. EFDs contain a number of attributes
that can be modified to change their behavior, e.g. suspension, resumption, scheduling
time etc.37

Two important attributes are the discriminator construct, which is a filter containing
constraints on the notification’s parameters, and the event destination, which is a list
of addresses (AE-titles) to which events that pass the filter are to be sent. These will
typically contain the addresses of the managers that registered for the events.

As these attributes may be modified at runtime it is possible to change the destination list
or discriminator construct. This may for example be used to un-subscribe a manager from
event reports or to further restrict the number of event reports being sent to a manager
by putting an additional constraint on the discriminator’s list.

When a notification is generated by a managed object in an OSI agent, it will be sent to
all EFDs present in the agent. These evaluate the EFD’s discriminator construct against
the notification’s parameters and either reject the notification or pass it on in the form of
an event report to each destination specified in the destination list.

4.5.1.3 CORBA Event Service

The OMG event service [COS95, SV97] allows suppliers to send events to consumers either
directly or via event channels which decouple direct communication. A consumer may
be notified (push model) whenever a new event has been added to an event channel, or
it may retrieve (pull model) events actively from the channel. Likewise, suppliers can be
pulled for events or actively push events on the channel.

Event information may be typed (using normal operations and data types of a consumer
object) or untyped (using type any).

A consumer subscribing to an event channel will receive all the events added to the channel
without a possibility to specify filters that discard unwanted events. OMG has issued an

3"Most of the attributes of an EFD may actually be absent since they are contained in conditional
packages.

4.5. EVENT HANDLING 97

RFP for a notification service that should augment the basic event service with more
specialized capabilities such as event filtering.

4.5.1.4 X/Open Event Management Service

X/Open’s Event Management Service (EMS) [X/096] is a proposal for OMG’s notification
service RFP [Obj97] that exceeds the scope of CORBA’s event service. It consists of
consumers and suppliers of events, communicating using an event channel. Consumers
register for certain events by providing filters. When an event is received by an event
channel, it will be matched against all filters and sent to registered consumers if the filter
is passed.3® A filter consists of a list of expressions of a name, a boolean operator and a
(self-describing) value. Each item of the list is matched against the attributes of an event
(which are self-describing as well).

Besides the central event channel, there are 4 repositories: the filter repository stores all
filter constructs defined by consumers and provides an interface for creation, deletion and
modification. The schema repository maintains metadata about event types, optionally
supporting the filter evaluation process.3® The event repository is a volatile queue for
events. Events are dequeued whenever a consumer pulls an event from the queue. Finally,
the consumer/supplier repository maintains a list of all currently connected consumers and
suppliers.

It is noteworthy that all data in events and event filters are self-describing, i.e. they
consist of names and values. The latter is a struct containing a type tag and the actual
value. This facilitates filter evaluation since the algorithm is generic for all possible values.
In this respect, they resemble GOM’s generic values (cf. section 4.2.2.2).

4.5.2 The Generic Event Model of GOM

A synthesis of the systems described above yields a number of commonalities generally
found in event handling systems:

Consumers These are the entities in a system that are interested in the occurrence of
certain events and are therefore notified (push model) by the event service when
an event occurs, or they actively poll the event service periodically for events (pull

model).
Producers Producers generate events and supply them to the event service.
Event Service An event service (or event channel) decouples consumers from producers

and performs some computation on the events supplied by producers. It stores
events in a queue.

3814 is also possible for consumers not to register with the event channel (push model), but to actively
retrieve events from the event channel (pull model).

3°In case either the elements of an event or an event filter are not self-describing, metadata will be
used for filter evaluation.

98 CHAPTER 4. THE GENERIC OBJECT MODEL

Event An event is the occurrence of a situation in a managed system that may be of
interest to a manager. Each event carries information describing its cause in more
detail.

(Target) Filter Filters are usually types or classes whose instances are created in a
target system (1) to constrain which events are sent to management systems and
(2) to specify the destination(s) of consumers to which events that pass the filter
construct are to be sent. The filter construct consists of boolean expressions over
the event information.

In addition to these concepts the generic event model proposed here uses the following
concepts:

Adapters The generic event model of GOM requires adapters (cf. 4.4) to

1. act in the manager role as recipients for events from the target system that the
adapters represent,

2. convert the received event information into a generic form as required by GOM
and

3. dispatch the event (plus information) to all consumers that have registered
their interest in the filter (and add it to the event queue).

Proxy Filter Proxy filters are local handles for remote filters in target systems. Any
operation invoked on proxy filters will be forwarded to the corresponding target

filter.

Local Filter Local filters are present only locally, e.g. in the client’s address space. They
allow to specify (additional) constraints on incoming events, thus deciding whether
to forward or discard them. Their purpose is (1) to emulate filtering capabilities in
GOM for event models that do not possess them (such as SNMP or CORBA’s basic
event service) and (2) to allow for additional filtering stages in the local system e.g.
for temporary testing purposes.

4.5.2.1 Architecture

The architecture of the generic event handling model of GOM is shown in fig. 4.37.

The central piece of GOM’s event handling model is the event service. It is a storage for
events that consumers can access to retrieve events and to which producers can supply
events. Managed systems (in the role of producers) generate events and — with the help
of adapters — add them to the event service, whereas managers (as consumers) use it to
retrieve events.

An instance of the event service interface (cf. EventService, app. A.3.) will typically be
present locally on every machine running a GOM-based management application although
— the event service being merely another CORBA interface — it may be located anywhere
on the network. Initial retrieval of an object reference to the event service will be by

means of the CORBA naming service [COS95].

4.5. EVENT HANDLING 99

Event Service Target System
D BN - Filters

GenPushConsumer : ™ Q

ISA "SNMP" | Proxy Filters | Local Filters | Events O E\%ergtslal

L "CMIP" Proxy Filters | Local Filters | Events<z---{. Q =
Consumer W‘q | "CORBA"| Proxy Filters | Local Filters | Events O
g -,: : : : : ’,;
Filter List Eveni ts
SNMP CORBA
Conversion ConQersi on Conversion Adapters

Communication
Endpoints W \V W

Figure 4.37: Event handling architecture of GOM

Consumers may register their interest for certain types of events by creating prozy filter
objects which represent a target filter object (or type) in a target system. Proxy filters
have an attribute for the destinations to which any incoming event should be sent. All
destination objects have to be subclasses of interface GenPushConsumer. As soon as an
event is received it will be sent to all registered destinations (consumers) by invoking
operation HandleEvent on all object references.*?

Consumers may choose active event polling by calling operation PullEvent on the event
service, which will remove the first element of the queue and return it to the client. This
operation will block if no event is available unless argument wait is false.

When a new filter object is created in a target system, the corresponding adapter will
create a communication endpoint in itself to which all events are to be sent. The destina-
tion (list) of the target filter will then refer to that endpoint. Any event that passes the
filter object will therefore be sent to the adapter (see below).

Local filters allow to specify constraints (in a simple boolean language) that are applied
to incoming events before adding them to the event service.

In the next sections the IDL interfaces of the main components of GOM’s generic event
model will be explained. For the complete definitions see appendix A.3.

4.5.2.2 Events

The event service contains events that are provided by producers and retrieved by con-
sumers. An event carries information which is modeled by interface EventInfo. This is a
Struct, essentially a list of attribute names and values (cf. appendix A.1). All events re-
ceived by adapters from target systems have to be converted to an instance of EventInfo
before being submitted to the event service.

40As this operation may become blocked in consumer code, it will preferably need to be handled in a
separate thread.

100 CHAPTER 4. THE GENERIC OBJECT MODEL

4.5.2.3 Proxy Filters

These are proxy instances for filters located in target systems. Both target and proxy
filter are created using operation EventService::CreateFilter (see fig. 4.38). Proxy
filters have two attributes:

o A reference to the target filter and

o A list of consumers to which incoming events will be forwarded.

The target filter may be an instance (e.g. a managed object of template
eventForwardingDiscriminator in [ITU93]) or a value (e.g. a struct). It will typi-
cally contain a filter construct against which potential events are evaluated (cf. fig. 4.37)
and forwarded or discarded, and accordingly a list of destinations to which passed events
will be forwarded. These destinations will be tweaked by adapters that create the filters
to forward all events to the adapters’ communication endpoints rather than to individual
objects of that target model.

The attributes of a filter may be manipulated using the proxy filter, similar to proxy
instances in GOM’s instance model. A client may for example wish to modify the
administrativeState attribute of an eventForwardingDiscriminator in CMIP to dis-
able/enable a filter for a period of time or to set scheduling times in it.

Note that ProxyFilter objects do not perform any filtering at all, but are only generic
placeholders for filters in target systems which do the real filtering work. However, they
can be used to change the behavior of their corresponding target filter objects by mod-
ification of attributes in the proxy filter (which will transparently be propagated to the
target filter).

4.5.2.4 Event Service

The EventService IDL interface (shown in fig. 4.38) is the main entity of GOM’s generic
event model.

It maintains a filter list (see fig. 4.37). In it, all local- and proxy filters are kept for
each object model, together with the events waiting to be pulled from the event queue by
clients.

Operation CreateFilter instantiates a new filter object in the target system and — if
successful — a corresponding proxy filter which is returned to the caller. The parameters
of this operation are (1) the name of the object model so that the correct adapter can
be selected, (2) the name of the class of the filter®!, (3) the target location which is the
address of the target system in which the filter is to be created??, (4) the name of the newly
created instance®®, (5) an attribute-value list initializing certain attributes of the newly
created instance with values and (6) a list of consumers which will be notified whenever an

41E.g. "eventForwardingDiscriminator". In cases where filters are not modeled through classes,
this may also be the name of a type, e.g. a struct or a simple string.

42E.g. the AE-title of an OSI agent, or the name under which a CORBA event service is registered
with a naming service.

43E.g. the distinguished name of a managed object.

4.5. EVENT HANDLING 101

interface EventService {
ProxyFilter CreateFilter(in string object_model,
in string type,
in string target_location,
in string target_name,
in Arglist args,
in ConsumerlList consumers);

LocalFilter CreatelocalFilter(in string object_model,
in string oql_expr,
in ConsumerlList consumers);

void AddFilter(in string object_model,
in Val new_filter);

FilterList GetFilters(in string object_model);
EventInfo PullEvent(in string object_model, in boolean wait);
void PushEvent (in string object_model, // used by adapters
in FilterList filters,
in EventInfo event_info);
void SendEvent(in string object_model,

in EventInfo event_info,
in string destination_address);

Figure 4.38: Interface EventService

event passes this filter. Each consumer has to be a subclass of GenPushConsumer whose
operation HandleEvent will be called if an event occurs (push model).

A consumer may choose not to subscribe to a certain filter, but rather to retrieve events
from the event service actively. This is done through operation PullEvent which returns
the next available event or waits until one is available (if argument wait is set to true.).
Local filters are objects of their own, i.e. they are not proxies for a target object. They
are used to specify additional constraints on incoming events and are suitable to discard
unwanted events of target systems for which there is currently no filtering scheme available
(such as SNMP).** The difference between filters in target systems and local filters is that
the former perform filtering in the target system and send only those events that pass the
filter to the event service (which saves bandwidth) whereas in the latter case, all events
are sent from the target system to the event service and filtering is performed in the event
service itself.

““Note that in SNMP the Gauge type actually provides some primitive form of filtering.

102 CHAPTER 4. THE GENERIC OBJECT MODEL

Local filters contain a list of consumers and a filter construct which is currently a string
containing a (proprietary) string-based boolean expression*® which has to be evaluated
(i.e., parsed) by adapters against the information carried in the event (EventInfo). Note
that the conversion between the string-based constraints and typed values for evaluation
of filters is easy by means of GOM’s instance model which represents values as objects of
their own and offers access to attributes given their names (in string form). Evaluation
of filters against strongly-typed values (as in the case of XoJIDM’s approach, cf. 3.1.2)
would be awkward, if not impossible.

If operation CreateFilter is not sufficient, e.g. by not offering all parameters to cre-
ate filters in target systems, the latter may be created by the clients themselves and
subsequently added to the filter list for a certain object model.

Operation GetFilters returns all filters for a certain object model.

PushEvent allows adapters to submit an event to the event service for further processing.
When an event is received by the event service, it will perform the following steps: first,
if there are any local filters available for the object model specified in the PushEvent
operation, these will be evaluated against the event information carried in the event. If
the event does not pass the local filter, it will be discarded. Otherwise, it will be pushed to
all registered consumers and afterwards added to the event queue. See use cases (4.5.2.6)
for more details.

Operation SendEvent is used by clients to send events to other management entities,
e.g. in the case when an event cannot be handled by a local manager and has to be
forwarded to a superior management application. Parameter destination_address may
for example be the AE-title of another OSI manager.

4.5.2.5 Adapters

In the event handling model of GOM, adapters have the following major tasks:
1. Creation of target filters and their corresponding proxy objects.
2. Reception of events sent from target filters.

Conversion of target system specific event information EventInfo.

Submission of event to event service.

AR

Sending out of events; conversion of EventInfo to target system specific event
information, dispatching of events to target systems.

The latter task is initiated by a client to emit an event to some other management entity,
whereas the first four deal with receiving and converting events sent by managed or
management entities.

Adapters have to intercept events sent out by target filters by ’'tweaking’ the latter’s
destination to point to an event destination in the adapter so that all events are routed
to the adapter, and not directly to consumers. This is done by the adapter when creating
a new target filter as shown in fig. 4.39.

45The syntax is not yet determined, but syntaxes proposed e.g. for OQL [ADF*94] or the OMG query
service [COS95] could be used.

4.5. EVENT HANDLING 103

Adapter
Target System
ProxyFilter
Event Destination target filter - Potential
Event Destination consumers filter construct Event
Event Destination destination
Conversion” ... -
O OO0 O 00 O
= | Passed
‘{ H H] Event
Event Destinations

Figure 4.39: Event handling in adapters

For each target filter, the adapter creates an event destination to which the target fil-
ter’s destination will point. The association between the resulting proxy filter and the
event destination is recorded in a table within the adapter. When an event is received
at a certain event destination, the latter will be looked up in the table to retrieve the
corresponding proxy filter. Having retrieved the filter, operation PushEvent of the event
service will be called which in turn will push the event to all consumers of the proxy filter
and then store it on the event queue.*®

An event destination may simply be a UNIX socket as in the case of SNMP, an AE-title
in the case of OSI, or a reference to a prozy push consumer (CORBA [COS95]). What to
choose as key in the table and how to match keys is largely implementation dependent. It
might also be the case that keys have multiple associated proxy filters, effectively mapping
multiple filters to the same destination.

An overview of a possible implementation of SNMP, CMIP and CORBA adapters with

respect to event handling is given in the following paragraphs.

CORBA Adapter Whenever a new target filter is created, an adapter has to create
an event sink (event destination) which will receive and process all events sent out by
the filter. An overview of how this can be done using CORBA’s event service [COS95] is
given below.

When a filter is created using as name argument target name of operation CreateFilter,
the name is looked up in a naming service. If not found, a new event channel is created and
registered under that name with the naming service. All subsequent times this reference
will be returned by the naming service.

Next the adapter retrieves a prozy push consumer from the event channel. All events
pushed on the event channel will be received by this instance.

The proxy push consumer is then registered in a table (maintained by the adapter) as key.
Its corresponding value is the reference to the generated proxy filter. This has the effect
that, whenever an event is pushed on the proxy push consumer instance, the following
steps are taken: (1) the corresponding proxy filter is looked up in the table using the
object reference of the proxy push consumer instance on which the event was received.

46 A similar solution is described in [Gen96, ch. 4.5.3].

104 CHAPTER 4. THE GENERIC OBJECT MODEL

(2) The event information carried in the event is converted to a generic GOM event value
and (3) pushed to all consumers registered with the proxy filter instance.

A request for proposal (RFP) for a notification service based on — and more powerful than
— the event service supporting among other things filters has been issued by the OMG

[Obj97]. It will be beneficial for CORBA adapters to support this new service in order to
provide more sophisticated event service capabilities.

CMIP Adapter When a target filter is created, the adapter will create a managed
object of template type as given in the argument list of operation CreateFilter. Its
distinguished name will be taken from argument target name, and target_location
should be the AE-title of the agent in which the filter instance is to be created. Filter
attributes (such as the filter construct) should be defined in the attribute list of the
operation.

The following processing will take place: (1) the target instance will be created (e.g. an
instance of eventForwardingDiscriminator) in the agent with the given AE-title under
the given distinguished name and (2) an event destination to receive and process incoming
events (and to which the destination of the created filter points) will be created (if not
yet existent). The event destination might for example be the address of a manager’s
event reception part in which a thread waits for incoming events. (3) The AE-title will be
added as key to a table and will be associated with the proxy instance that was previously
created for the target filter. Thus, incoming events can later be pushed to all registered
consumers of the proxy filter instance. This is done by looking up the AE-title of the
event destination in the table. Its value will point to a proxy filter in which all consumers
are available in attribute consumers.

SNMP Adapter The address of the target manager to which traps generated by an
SNMP agent are to be sent is implementation dependent. There is no standardized way
for managers to register their interest in certain types of events as in the case of OSI
event handling. Therefore any implementation of an SNMP adapter will have to use a
non-portable mechanism to receive traps from an agent.

The scheme proposed here is to use UNIX sockets on which a thread in the adapter is
listening and to make the agent send traps to that port. How the agent knows to which
ports to send traps is again implementation-dependent (e.g. using configuration files).
Since SNMP does not support filters, operation CreateFilter is a NIL operation and
will not be used. Instead, operation CreateLocalFilter can be used. It adds a num-
ber of consumers to a local filter and adds the latter to the event service’s list for the
SNMP model. A NULL oql_expr argument will pass all events received on to the reg-
istered consumers. This is essentially the SNMP model unchanged. Defining a simple
string-based expression allows to implement filtering capabilities for SNMP as well. The
filter_construct of a local filter will be parsed and evaluated by an SNMP adapter
against incoming events, discarding events that do not pass the filter construct.

Since SNMP does not support the concept of target filters there is no need to register
event destinations with corresponding proxy filters as in the case of CMIP or CORBA.

4.5. EVENT HANDLING 105

Instead, the adapter will simply listen on a UNIX socket at a certain port that has to be
made known to the agent in order to receive traps.

When a trap is received it will be converted to a generic event and normal processing will

continue as discussed above.

4.5.2.6 Use Cases

To illustrate the control flows within the generic event system, two use cases are presented

below.

Creation of a Target Filter

1.

Operation CreateFilter is called by a client on the event service object (created
previously or retrieved from a naming service).

The correct adapter for the indicated object model is retrieved to forward the op-
eration to.

An instance of class classname is created by the adapter in the target system at
location target_location. The location is specified as a string and may be the name
of a CORBA server or an OSI AE-title. An argument list as parameter is used to
initialize the newly created instance. The adapter makes use of a factory (cf. 4.2.2.2)
to create the remote target filter instance. In case a target system does not have
filters, the target filter to be created can be thought of more as a conceptual filter
in that all events will be passed unfiltered to the adapter. In the case of SNMP, the
class name and argument list would be empty, whereas the instance name could, for
example, contain the host name (and optionally the port) of the SNMP agent whose
traps are to be intercepted. In the case of CORBA’s event service, the instance name
could denote the location of an event channel and a ProxyPushComsumer reference
could subsequently be retrieved from the channel [COS95].4" In the case of OSI, the
target filter could be an eventForwardingDiscriminator instance.

A proxy filter instance (ProxyFilter) is created that points to the target filter
(attribute target filter). Attribute consumers is set to the value of the previous
argument of the creation operation (consumers). This instance will subsequently
be used by clients to manipulate the ’real’ filter instance.

A local event destination address is created in the adapter on which, for example,
a thread listens for incoming events.*® The destination address is added as key to
a table*® and associated with the proxy filter instance. This is necessary to later
retrieve all consumers registered for a certain event when dispatching an event (see

below).

47'Real’ filters may be provided in the prospective OMG notification service ([Obj97]) of which the
generic event service could make use in the future.

480ther schemes are possible, such as listening on multiple sockets simultaneously (e.g. using SELECT).

4%If the key already exists, the value (proxy filter) will be added.

106

6.

7.

8.

CHAPTER 4. THE GENERIC OBJECT MODEL

The destination of the newly created target filter representing consumer(s) to which
to send passed events must be tweaked to point to the newly created event destina-
tion in the adapter. Thus, all events will be intercepted by the adapter.

The proxy filter instance is added to the event service’s filter list using operation
EventService: :AddFilter.

The proxy filter instance is returned to the client.

Occurrence of an Event

1.

An entity within a target system emits a potential event (e.g. a managed object in
an OSI agent emits a notification).

The filter in the target system evaluates the attributes of the event against its filter
construct (see fig. 4.39). The event will be discarded if it does not pass the filter
construct.

If the event passes the filter construct, it will be sent to the destination(s) indicated
in the filter. This attribute was tweaked by the adapter that created the filter to
point to a destination address within the adapter. Thus all events that pass the
filter are sent to an address within the adapter. This is the point where an event
enters the generic event model of GOM.

The adapter receives the event (still in the form of the target system).

The information carried by the event is converted into the generic form (an instance
of EventInfo) using the metadata repository.

The address of the communication endpoint (destination) at which the event was re-
ceived is used as lookup key into the table in which destinations and their associated
proxy filters are recorded (see fig. 4.39) to find the relevant proxy filter(s).

. Operation PushEvent of the event service is called with the name of the object

model, the previously retrieved proxy filters and the converted event information.

. PushEvent performs the following steps:

(a) If there are any local filters available in the filter list of the object model at
hand, each local filter’s filter construct will be evaluated against the event
information. If the event passes the filter construct, operation HandleEvent
will be called on all registered consumers of that filter.5°

(b) Then all registered consumers for the proxy filters will be called with the
same operation. The consumers that are to be called are stored in attribute
consumers of each proxy filter of the list that is the value of argument filters.
Note if the proxy filter list is NULL, this step will simply be skipped. This is
for example the case in SNMP. Here, only the local filters (if available) will be
evaluated.

50Consumers have to be derived from interface GenPushConsumer.

4.6. OTHER ISSUES 107

(c) The event is finally added to the event queue. Further PullEvent operations
may retrieve an event by removing it from the event queue.

4.5.3 Summary

The proposed generic event service provides simple event handling capabilities for a num-
ber of target systems (specifically SNMP, CMIP and CORBA) and - in conformance with
the philosophy of GOM - shields clients as much as possible from the differences found
in those systems. Transparency is achieved by providing a generic layer consisting of a
synthesis of the event handling concepts found in SNMP, CMIP and CORBA, which levels
the idiosyncrasies employed by the event handling schemes of different systems.

The event service proposed here is modeled after CORBA'’s event service [COS95], and the
concept of filter objects has been taken from the OSI event report management function
[ITU93].

In line with the philosophy of GOM, new event handling schemes can be integrated by
provisioning additional adapters which constitute a bridge to the new system, knowing
how to create filters in these systems and how to receive and convert events to the generic
form.

The goal of the generic event service was to make event handling of heterogeneous target
systems as transparent as possible, in conformance with GOM’s overall model and bridging
the differences between heterogeneous event models.

4.6 Other Issues

In this section issues that were not (or only briefly) touched upon in the previous sections
are discussed. They do not contribute to the overall conceptual picture of GOM, but are
important for both clients using the framework and developers implementing extensions
(e.g. integration of new target models).

The purpose is to describe ideas that will enhance GOM’s usability, e.g. by adding
functionality, for example for taking into account idiosyncrasies of other object models.
The discussion of the issues presented here is not at a very detailed level. Instead. the
purpose is to make the reader aware of problems/open issues in connection with GOM
and to outline possible schemes for coping with them.

Some of the issues mentioned are targets of further work, some of them have already been
implemented.

4.6.1 Integration of SNMP

The Simple Network Management Protocol [CFSD90, Bla92] has found widespread accep-
tance for management. Unlike the other two models (CORBA, CMIP) that GOM tries
to integrate by providing a uniform API, SNMP is not object-oriented, running counter
to GOM’s basic assumption of the target models being object-oriented.

The purpose of integration of SNMP into GOM is therefore twofold:

108 CHAPTER 4. THE GENERIC OBJECT MODEL

1. SNMP is the de-facto standard for LAN device management. GOM simply has to
integrate it in order to be useful. There are a lot of network resources managed by
an SNMP agent. Access to these from GOM may be crucial.

2. It will be shown that the generic nature of GOM’s framework makes it possible to
integrate even non object-oriented models.

In this section a proposal of how SNMP can be integrated into the overall framework will
be presented. Other integration schemes can be considered which are implemented by
providing metadata and an SNMP adapter.

As described in 2.3, information in an agent’s MIB is represented through variables. A
variable has a type that defines the values it can accept. Variables are arranged in tree
form, with tables representing conceptual collections of variables. The variables in a table
can be retrieved one after another using the SNMP GET-NEXT request.

The term MIB (Management Information Base) is used to denote both the specification
(ASN.1 macros) and the runtime representation (structure in SNMP agent’s memory) of
such a tree.%!

The overall procedure to integrate SNMP into GOM is the same as for other models:
first the specification of an SNMP agent’s model — a MIB — is parsed and added to the

metadata repository.5? Then the agent can be manipulated using GOM’s instance model.

First a description of how the instance model is used to access SNMP variables follows.
Then an overview of the mapping of SNMP MIB’s to GOM’s meta model will be given.

4.6.1.1 Accessing SNMP Agents Using the Instance Model

A possible mapping between SNMP and GOM’s instance model is shown in table 4.7.

SNMP GOM

MIB Instance of GenObj
Variable Attribute of GenObj (Val)
Group / Table | List of Vals

Table 4.7: Mapping of SNMP to GOM.

An SNMP MIB is considered a container with a (potentially large) number of elements
(obeying a certain structure). Translated to object-oriented terms a MIB is seen as a class
and its variables as attributes of the class. Each MIB is represented at runtime by an
instance of that class and access to the MIB’s variables is provided by retrieving attributes
of the instance. A group or table of SNMP variables is seen as a list of attributes.
Adopting this scheme to GOM, MIBs are represented by Gen0Obj, where each instance of
GenObj refers to a different MIB. Operations invoked on these instances retrieve or set
SNMP variables, which are modeled as GOM values.

The mapping of SNMP requests to GOM operations is shown in table 4.8.

5In CMIP, the term Management Information Tree (MIT) is used to denote the runtime structure.
52 Actually, if metadata about a certain MIB is already available, this step may be skipped by using
just-in-time metadata providers in the form of metadata adapters (see section 4.3.2).

4.6. OTHER ISSUES 109

SNMP request GOM operation
Identification of SNMP agent | Creation of MIB (GenObj)
GET (1 variable) GenObj::Get

GET (multiple variables) GenObj::GetN

GET (all variables) GenObj::GetN

GET (table) GenObj::Execute
GET-NEXT GenObj::Execute

SET (1 variable) GenObj::Set

SET (multiple variables) GenObj::SetN

TRAP (send trap) GenObj::Execute

Table 4.8: Mapping of SNMP requests to GOM operations

In order to manipulate SNMP variables, a reference to a MIB (in the form of a GenOb]
instance) has to be retrieved. This is done either by creating a new instance or retrieving
a previously created one, e.g. by using CORBA’s naming service. Using GenObj’s Get-,
Set- and Execute operations, generic values representing SNMP variables can be retrieved
or set.

The following sections describe how operations offered by GOM’s instance model can be
used to manipulate SNMP agents.

Identification of an SNMP Agent A reference to a MIB is created using the
Factory::Create operation (see 4.2.2.2), adopting the following conventions: the
object model parameter must contain the string "SNMP'" and the classname must de-
note the MIB to be manipulated. This may for example be "MIB-II" to denote the
Internet MIB as described in RFC 1213 [RFC91b]. Parameter instance name can be
used to give the resulting instance a description. The location of the proxy instance is
determined by proxy_location (usually this will be NULL to create a local proxy) and
target _location should contain a string identifying the address of the SNMP agent (e.g.
"adlerhorn.zurich.ibm.com:161"). Additional arguments such as the community can
be specified using parameter args. All of this information will be stored by the SNMP
adapter in the resulting proxy instance (GenObj) for further reference. Otherwise, the
creation of a MIB proxy does not generate any communication with an SNMP agent.
Communication will only take place when an operation is invoked on the proxy MIB.

Getting an SNMP Variable The value of a variable can be retrieved using op-
eration Get on the newly created MIB instance. It takes as parameter the name of
the variable either in symbolic form (e.g. system.sysDescr.0) or in OID form (e.g.
1.3.6.1.2.1.1.1.0)% and returns a GOM value that is the result of applying the map-
ping described in table 4.9.

In case of an error, an exception (GenEx, cf. 4.2.2.3) will be thrown that contains the

53The test for discrimination between OID and symbolic form is simply by checking whether the first
character is a digit and, if 1t is, whether it is a 0, 1 or 2.

110 CHAPTER 4. THE GENERIC OBJECT MODEL
SNMP Type GOM Interface
NULL NIL
INTEGER Int
OCTET STRING Str
OBJECT IDENTIFIER | Str
SEQUENCE Struct
SEQUENCE-OF Sequence
NetworkAddress Union
IpAddress Str
Counter Long
Gauge Long
TimeTicks Long
Opaque Str

Table 4.9: Mapping of SNMP types to GOM

following attributes: name will be NULL, ex_type will contain TARGET_EX and members
will contain the keys "errcode" with an integer value and "errstr" with a string value
describing the error as defined in RFC 1157.5% Optionally there may be an additional
key named "ErrorIndex", which has an integer as value. If variables are returned as
part of the exception (corresponding to field "variable-bindings" in SNMP’s GetRe-
sponse PDU), the "members" dictionary will contain the names of the variable bindings
as additional keys and their values as corresponding values.

Operation GetN can be used to retrieve a set of variables at once. It has a dictionary as
parameter which contains name/value pairs (cf. appendix A.1). To retrieve variables a, b
and ¢, a dictionary with keys a, b and ¢ has to be the argument of GetN. Upon completion
of the operation, for each key a corresponding value will be available in the dictionary
(provided the variable was found and readable).

GetN can also be used to retrieve all variables of an SNMP agent by providing an empty
dictionary. The adapter will retrieve all variables by walking through the MIB and adding
them to the dictionary.

A table is a collection of variables that 'belong’ to the same parent. Tables are merely a
conceptual entity and there is no SNMP request available to get all elements of a table in
a single request. Rather, GET-NEXT has to be used to traverse a table sequentially.®®
Unlike SNMP, GOM offers a higher-level API and can thus shield the user from sev-
eral successive GET-NEXT requests (including determination of end of table) by providing
operation Execute to retrieve all elements of a table.

By convention, argument opname of operation Execute will be "GetTable". The only
element of the argument list will be the name of the variable that marks the conceptual
beginning of the table (e.g. "interfaces.ifTable.0"). This element will be removed
from the argument list upon successful completion, and the elements constituting the

54Key "errcode" corresponds to field "ErrorStatus" of an SNMP GetResponse PDU.
55There are algorithms available to determine when a table ends, but they are not described here.

4.6. OTHER ISSUES 111

result set will be added to the argument list.

Request GET-NEXT can be invoked by using operation Execute as well. The convention
adopted in this proposal is to name the operation "GetNext'" and to add all variable
names to be retrieved®® to the argument list (Arglist) of the operation. Upon return of
the operation, the variable names in the modified argument list will contain corresponding
string values (instances of Str) with associated values (instances of Val) that represent
the next element for each variable in the list.

Setting an SNMP Variable A variable in an SNMP agent’s MIB can be modified
(if it is not read-only) using operation Set of the retrieved MIB instance (a GenObj).
Parameter attrname specifies the name of the variable either in symbolic or OID form
(see above), new_val contains a GOM value which is the result of applying the (reverse)
mapping of an SNMP value to a GOM value as shown in table 4.9.

As SNMP’s SET request allows to modify multiple variables at once, GOM has to provide
for this possibility as well using operation SetN. Similar to GetN, it requires a dictionary
as parameter which contains the names and corresponding values of the variables to be
set.

Sending an SNMP Trap SNMP traps are usually sent from agent to manager. How-
ever, a manager may also wish to send traps, e.g. to another manager to inform it of
some problems.

Unlike CMIP’s event report management function [ITU93], SNMP does not define a
mechanism that records to which manager(s) a trap is to be sent, and how managers
register for traps with an SNMP agent; RFC 1157 leaves this behavior implementation-
specific.

Therefore a parameter is added to the TRAP request, thus allowing the sender of a trap
to define the trap’s destination address (see below).

As described in 4.5.1.1 on page 95, an SNMP trap carries fields about the object that
triggered the trap, the address of the management entity that sent the trap, a generic and
a specific integer number describing the problem and a list of bindings between variable
names and values to provide additional information.

The TRAP request can be mapped to operation Execute, with argument opname set
to "SendTrap", thus following a similar solution as the one adopted for GET-NEXT (see

above).57

The operation’s argument list will contain the elements shown in table 4.10.

The names of all parameter are the same as the ones listed in RFC 1157, with the exception
of the destination address to which the trap is to be sent, which is required by GOM.
Fields agent-addr and time-stamp are missing because they will be provided by the
SNMP adapter directly.

56SNMP’s GET-NEXT request allows multiple variables to be specified in the same call.
57Thus the SNMP adapter has to differentiate between "GetNext", "SendTrap'" and possibly other
operation names to invoke the desired behavior.

112 CHAPTER 4. THE GENERIC OBJECT MODEL

Name Value | Description

destination Str Address of recipient, e.g. in the form "9.4.21.218:161"

enterprise Str OID of the object generating the trap (may be empty)

generic-trap Int Generic trap type

specific-trap Int Specific trap type

E%Ue%ble_ Struct | Bindings between variable names and (GOM) values
indings

Table 4.10: Arguments to the TRAP operation

4.6.1.2 Mapping SNMP MIBs to the Meta Model

The Management Information Base (MIB) structure of an SNMP agent is defined in a
document (MIB specification) that lists all variables of the MIB, together with their OIDs,
symbolic names, syntax and access permissions.

In order to manipulate an agent’s variables dynamically at runtime, the MIB’s specifica-
tion has to be available in metadata form. Therefore, the textual description of a MIB
has to be translated to an electronic version.

To this end, a parser is used which reads MIB specifications and adds them to the meta-
data repository. If existing electronic MIB definitions are available online, metadata
adapters can be used to provide metadata in GOM’s generic form by tapping these exist-
ing sources. In the latter case, no MIB parser is needed. See section 4.3.2 for a detailed
discussion of the metadata repository.

As GOM’s meta model (cf. 4.2.3) is generic and allows to represent any type of model,
we have to describe how a specific model is represented in the meta model using a layout
(see 4.2.3.2).

The layout for SNMP is shown in graphical form in fig. 4.40 and in textual form in
appendix B.3.

Metadata Repository (MR)

MIB
1
m
Variable
i
1y 1y 1y 1 1
Symbolic Name QoID Syntax Access Status

Figure 4.40: The layout of SNMP

Conceptually, the metadata repository maintains a separate database for each target
(object) model in which the metadata for that model is available in electronic form. The

4.6. OTHER ISSUES 113

database for SNMP contains a number of MIBs, each identified by a name, e.g. "MIB-II"
defined in RFC 1213 [RFC91b]. A MIB contains a number of variables. Each variable
has an OID (e.g. "1.3.6.1.2.1.4.2"), a symbolic name (e.g. "system.sysUpTime.0"),
a syntax denoting which type the variable has, an access permission (e.g. read-only, not
accessible etc.) and a status indicating the requirement on the presence of the variable
(see appendix B.3).

The SNMP metadata in the metadata repository will be needed first of all by adapters
which need it to perform type-checking and conversion between GOM’s generic values and
SNMP variables, but it can also be used by client applications using the read interface
of the MR to navigate the electronic MIB specifications. Moreover, parsers make use of
MR’s write interface to add new MIB specifications or to update existing ones.

4.6.1.3 Summary

It was shown that it is possible to integrate a non object-oriented model such as SNMP
into the generic framework of GOM.

GOM’s instance model allows to manipulate variables in an SNMP agent, thus shielding
the clients from the more complex details of communication using the SNMP protocol
by providing an abstract higher-level layer on top of SNMP. This abstract layer allows
to comprise multiple primitive SNMP requests into single logical operations. This is
for example the case with SNMP’s GET-NEXT request to traverse a MIB. GOM’s instance
model provides a single operation to retrieve all variables of a MIB, or only all variables of
a conceptual SNMP table. Also, adapters take care of the communication with an SNMP
agent which — being based on UDP —is connectionless and requires some resynchronization
and reassembly mechanisms for multiple response which may arrive out of sequence. (See
section 4.4.5 for a discussion of these issues.)

GOM’s meta model allows to integrate all kinds of metadata due to its flexibility. The
latter makes it relatively straightforward to represent SNMP MIB specifications as shown
in the SNMP layout. The SNMP layout describes the structure of the specific model of
SNMP metadata within the flexible meta model. It is described in appendix B.3.

The proposed approach for integration of SNMP is merely an ezample; other more ele-
gant schemes are conceivable. The point, however, is not whether the proposed integration
model is adequate, but that GOM’s generic and flexible model gives developers consider-
able freedom to choose how to integrate a new model.

4.6.2 Reconciling Idiosyncrasies of Different Object Models

The purpose of this section is to show how characteristics (idiosyncrasies) of various target
systems (in this case; SNMP, CMIP and CORBA) can be taken into account, without
extending the model proposed by GOM.

In this paper, idiosyncrasies are defined as being features of a model outside the intersec-
tion of the features of all target models. The intersection of the features of those models
results in a set of features common to all target models. Any feature not included in this
set is considered idiosyncratic.

114 CHAPTER 4. THE GENERIC OBJECT MODEL

Of course, basing the set of common features in GOM on only three target models may
overly constrain the number of elements considered to be common in the resulting set.
The author acknowledges that such a feature set may grow with the inclusion of further
target models. The goal was to create a feature set that allows to integrate all three target
models without, however, the addition of features found only in one target model.

The general philosophy followed in coping with integration of idiosyncrasies is adopted
from CORBA, which adds new functionality to its architecture in the form of CORBA
services [COS95]. These do not require modifications to the core architecture of CORBA,
but are defined using elements of CORBA’s architecture (e.g. through definition of ad-
ditional CORBA interfaces). Therefore we should try to integrate idiosyncrasies using
mechanisms similar to CORBA’s services and/or, as GOM’s model is based on CORBA,
make use of CORBA’s services whenever possible. This should alleviate the need to mod-
ify GOM’s model in most cases. Thus a feature of a target model will be integrated
according to the following scheme:

1. Is there a CORBA service that covers the functionality needed by the OSI feature ?
If so, it will be used.

2. If not, can we use a related CORBA service and extend it to integrate the feature ?
If so, subclass the existing service (i.e. some of its CORBA interfaces) and use the
new service.

3. If there is no related CORBA service, create a new one that covers the functionality
offered by the feature.

All of these three approaches require no modification of GOM because they are imple-
mented as CORBA services consisting of CORBA interfaces that can already be handled
by GOM (through the CORBA adapter).

In the following sections some selected idiosyncrasies of the OSI model (CMIP) will be
examined and a possible integration scheme will be described for each in turn.

4.6.2.1 OSI Naming Tree

OSI managed objects are arranged within an agent in a naming tree form as discussed in
2.2.4.

Each object has a relative distinguished name (RDN) which has to be different from the
names given to its sibling objects. The concatenation of all RDNs from the root down
to the object yields the distinguished name (DN) with which the managed object can
be uniquely identified within the naming tree. Thus, every managed object that is ever
created will be part of a naming tree.

Management applications may need to navigate the naming tree, e.g. to display all objects
of an agent’s MIT (management information tree) in a topology application. Therefore a
mechanism has to be provided that allows clients to navigate the OSI naming tree.
Keeping in mind that the proposed model is based on CORBA, we should make as much
use as possible of already existing services of CORBA. In this case, the naming service
[COS95] could be used. However, managed objects in an agent are not registered with

4.6. OTHER ISSUES 115

a naming service automatically, but a scheme has to be found that will register newly
created managed objects, deregister ones that have been deleted and — generally speaking
— keep the naming service’s contents synchronized with the OSI naming tree.

Obviously, the events of interest to us here are creation and deletion of managed objects.

Creation and Deletion of Managed Objects Managed objects can be created or
deleted in two ways: either by the management client using operation Factory: :Create
or GenObj: :Delete respectively, or by another management entity that has access (and
proper authorization) to the OSI naming tree.

The first case is easy: any time a managed object is successfully created/deleted, it will
be registered/deregistered by the CMIP adapter with the CORBA naming service using
its distinguished name.

In the second case, OSI notifications can be used. By creating an event forwarding dis-
criminator (EFD) managed object in an OSI agent that sends out event reports about
creation and deletion of managed objects®®, we are able to update the contents of the
naming service accordingly. This synchronization task could be performed by a UNIX
synchronization daemon [Ste90b] (shown in fig. 4.41) that creates EFDs in all agents
whose AE-titles are listed in a configuration file.

OSl Agent A

o

Creation
Naming Service y
UNIX
o%\ o% Update Synchronization
O O

?}) ?}) Daemon

Deletion 0S| Agent B
Events

—
AE-titlel O%&
AE-title2

(©)

Figure 4.41: UNIX synchronization daemon

The list of agents to be monitored for creation- and deletion events could be modified
at runtime by changing the configuration file and sending a signal (e.g. SIGHUP) to
the daemon to re-read its configuration file (and accordingly create or delete EFDs). A
creation event received by the daemon would result in the creation of a new entry in
the CORBA naming service and a deletion would unregister this entry again. Using this
scheme, the naming service would always be in sync with the OSI naming tree.

Note that if both schemes described above are used simultaneously, when an adapter
creates or deletes an object, the naming service will be accessed twice, first by the adapter

58Note that emission of notifications upon creation and deletion of managed objects in an agent is
optional.

116 CHAPTER 4. THE GENERIC OBJECT MODEL

when it creates the object and second by the adapter when it receives the event from the
agent. This can be avoided by using one of three alternatives:

1. The adapter registers and deregisters all objects with the naming service, no noti-
fications are used. This has the advantage that no daemon is required, but raises
the problem of inconsistencies between the naming service and the OSI naming tree
because creations and deletions by other management entities are not ’seen’. This
problem can be solved in part by using the synchronization mechanism of the prozy
agent proposed in 4.6.2.2.

2. Only notifications are used. The adapter does not register/deregister an object when
it creates/deletes it. This has the advantage that naming service and naming tree
are always synchronized, but adds the administrative task of managing the daemon.
Also, the daemon may crash and during its downtime not be able to receive events,
or it may not monitor all relevant agents for notifications due to configuration file
inconsistencies. In this case, synchronization can also be achieved using the prozy
agent’s synchronization mechanism (see 4.6.2.2).

3. Both schemes are used. When an adapter creates/deletes an object, it regis-
ters/deregisters the object with the naming service. The daemon always checks with
the naming service whether an object with the given name already exists. If this is
not the case (object was not created/deleted by adapter), it will register/deregister
the object. Otherwise, the daemon will not do anything. This scheme duplicates
certain tasks, but results in a higher probability that naming service and naming
will be synchronized.

Mapping Distinguished Names to the Naming Service A distinguished name
would be mapped to a Name type in the naming service [COS95] which is a list of structs,
each containing an id and kind field which are both string types. In this proposed
mapping the kind field contains the attribute name of the RDN, and the id field the
attribute value (as a string).%®

Clients may now access the naming service to retrieve a proxy object for a managed
object, given its distinguished name. Also, as the naming service preserves the hierarchy
of OSI naming trees, it can be used to navigate through the naming tree and access its
managed objects via the corresponding proxies registered in the naming service.

4.6.2.2 Discovery of Managed Objects in an Agent

In some cases the above proposal for synchronizing the naming service will not work. This

is for example the case when an agent does not support notifications.®°

59The form of the string is taken from the string-syntax proposed in [GMR94], but other schemes are
also conceivable.

8008I agents are not required to support the entire functionality. The feature set supported by an
agent is given in a functional unit that can be negotiated between manager and agent when establishing
an association [Bla92, p. 158].

4.6. OTHER ISSUES 117

A second reason might be that an agent already exists. Notifications for creation of new
objects may be received, but there is no way to discover the managed objects already
created in the agent.

A third reason is that in some situations a management application does not need to
constantly keep the naming service in sync with the naming tree, but only occasionally
needs to retrieve information from the naming tree. In such cases, it would probably be
better simply to poll an agent for its objects or to perform selective synchronization for a
part of the naming tree, thus avoiding the overhead of constantly keeping naming service
and OSI naming tree synchronized.

CORBA does not currently know about the idiosyncrasies of OSI network management.
Therefore no service exists that can be taken or extended to cover OSI functionality such
as (1) retrieving managed objects from a naming tree, (2) discovering the roots of an OSI
agent, (3) discovering the children of a specific object, (4) performing scoping and filtering
and (5) handling multiple replies associated with (for example) scoping and filtering.
Therefore we have to define this additional functionality in a new service and make it
available to clients as part of the entire system.

The approach taken was to define this new service using CORBA’s object model (i.e., using
CORBA interfaces) and provide the corresponding functionality in form of a CORBA im-
plementation. The advantage of this approach is that clients can manipulate the service’s
components through GOM like any other CORBA objects. A clients sees no difference
between managing its own CORBA interfaces or any prepackaged ones supplied by GOM.
Instances of the new service are created as usual using operation Factory::Create.
OSI functionality mentioned in points 1-3 above are covered in this section, points 4 and
5 in the next two sections.

To this end, a new IDL service interface called ProxyAgent is introduced. It is a local
proxy for a remote CMIP agent and offers operations to synchronize the CORBA naming
service with a specific agent’s naming tree and to retrieve a number of managed objects
given a distinguished name. It is shown in fig. 4.42 and appendix A.5.

A proxy agent is essentially a placeholder for a real OSI agent and allows to perform
operations on the basis of the entire agent rather than single managed objects.

It allows to manually start synchronization of a part of the naming tree with the naming
service and to discover managed objects of an OSI agent.

Attribute agent_address must contain a valid address of an OSI agent, e.g. in the form
of an AE-title. This address is not checked for validity when set, but only when the real
agent is accessed. It can therefore be modified by clients to manipulate different agents.
Operation SyncNamingService accepts a naming contezt of a naming service [COS95] and
a distinguished name (DN). It will use the address of an agent as given in agent_address
to register with the naming service all children below (and including) the managed object
with the indicated name. Parameter level determines how deep into the naming tree the
search will be performed. A value of -1 means that all managed objects will be registered
recursively. If the distinguished name argument is NULL, all managed objects within the
agent will be registered with the naming service.

Operation DiscoverManagedObjects allows a client to retrieve certain managed objects
in an OSI agent. Parameter distinguished name specifies the instance under which all

118 CHAPTER 4. THE GENERIC OBJECT MODEL

typedef sequence<GenObj> GenObjList;
typedef sequence<Val> VallList;

interface ProxyAgent {
attribute string agent_address; // AE-title

boolean SyncNamingService(in CosNaming::NamingContext nc,
in string distinguished_name,
in short level) raises(GenEx);
GenObjList DiscoverManagedObjects(in string distinguished_name,
in short level) raises(GenEx);

Figure 4.42: Interface ProxyAgent

managed objects are to be retrieved, and level is used to restrict the number of objects
returned (see above). This operation allows, for example, to retrieve all children of a
certain managed object (by setting level to 1).

If distinguished name is NULL, this means that the root objects of an agent are to be
retrieved. These are the topmost objects in an agent and constitute the ’entry points’
to the agent’s objects. Being able to retrieve the roots is important when the names of
the roots are not known, allowing to retrieve all managed objects of an agent without
knowing the names of the starting points. To achieve this goal, the operation could, for
example, make use of the OSI shared management knowledge function as defined in X.750

[X7593] (see also 4.3.3.1).

4.6.2.3 Scoping and Filtering in OSI

Scoping and filtering allows managers to select a subset of the managed objects of
an agent as target of a request. It is for example possible to perform an M-GET
request for attribute administrativeState of all managed objects whose class is
eventForwardingDiscriminator. Using M-SET with the same target set, it is possi-
ble to modify the administrativeState attribute of all managed objects in one request.
Scoping and filtering is possible with the CMIP requests M-GET, M-SET, M-ACTION and
M-DELETE (cf. [Bla92, ch. 6]).

There are various ways to add OSI scoping and filtering functionality to GOM. The ap-
proach chosen here is not to add parameters for scoping and filtering to normal operations
such as GenObj: :Get or Gen0Obj: :Delete, which would result in a mapping that is very
close to the CMIP requests.

Instead it was chosen to regard scoping and filtering as a way to select a number of
managed objects on which an operation can then be invoked.

Therefore the concept of a group object [Maf95, Bir96] is introduced. A group object is a
container for a number of group members. A request sent to it will be sent transparently

4.6. OTHER ISSUES 119

to all members of the group. Replies received can be handled either in a transparent
fashion (the first reply is returned to the caller), or the request can collect all replies in
a list and return the list to the client. The IDL interface of the group object is shown in
fig. 4.43 (appendix A.5).

interface Grouplterator;

interface GenGroupObj : GenObj {

void SetAgentAddress(in string agent_address);

void SetScope(in short scope);

void SetFilter(in Val filter); // e.g. GenObj or Str

void PerformSelection() raises(GenEx);

void ClearResultSet();

VallList GroupGet(in string attrname) raises(GenEx);

void GroupSet(in string attrname, in Val new_val)
raises(GenEx) ;

Vallist GroupExecute(in string opname, in Arglist args)

raises(GenEx) ;
GroupIterator GetResultIterator();

boolean Add(in GenObj new_obj);
boolean Remove(in GenObj old_obj);
long Size();

// Operations Get and Execute are overridden to use the first result
// that is returned (failure safety)

Figure 4.43: Interface GenGroupObj

Using this approach, a client has to perform the following steps for scoping and filtering:

1. Create an instance of GenGroupQbj.
2. Set the address of the target agent (SetAgentAddress).

3. Set scope and filter (SetScope, SetFilter). A filter can be a Str instance obeying
a certain syntax, which will be evaluated by the group object, or it could be a GOM
value representing an ASN.1 CMISFilter.

4. Select the target set of managed objects (PerformSelection). The group object will
maintain a list of all proxy objects that make up the result set until ClearResultSet
is called.

120 CHAPTER 4. THE GENERIC OBJECT MODEL

5. Invoke an operation against the target set, e.g. GroupGet.

6. Perform some work with the result (in this case, a list of values).

A client may also access the proxy objects of the result set using an tterator object. An
iterator allows to browse through the result set and perform some work with each of the
proxies in turn. Operations GetN and SetN can be invoked, for example, on each object
to obtain multiple values at once.®!

The group object may not only be used for scoping and filtering, but it can contain any
sort of proxy objects (SNMP, CMIP and CORBA) upon which to call the same operation.
The restriction is that all members in a particular group object have to be able to 'answer’
the same message sent to them (in Smalltalk parlance). This means that members do
not even have to be of the same class (or subclass), or of the same object model, to be
included in a group, but they just have to contain the same operation, that is, the same
operation name and number and types of parameters.

Operations Add and Remove allow to manipulate the group. To make a group appear
like a single object, all operations of the superclass that return a value (such as Get and
Execute) are overridden®® in the subclass and return only the first response received by
any member of the group. This allows for failure resilience and high availability of the
group object.®® Of course, a requirement for such a service is that all members of the
group be actually of the same class.

4.6.2.4 Multiple Replies in OSI

M-ACTION requests in OSI network management may return a number of responses rather
than a single one as result. In static approaches such as XoJIDM (section 3.1.2), a
client must include the signature of an operation (in the generated code) at compile
time, therefore an operation has to return the value exactly as defined in the operation’s
signature. The approach taken by XoJIDM is to include only one return value in an
operation’s signature, and — if multiple replies® are received (which will not happen in
most cases) — to raise an exception which has to be handled by the client, e.g. by iterating
over the result set. The disadvantage of this method is that, since any OSI ACTION can
possibly return multiple results, regardless of its signature, which may return only a single
value, clients always have to wrap code that invokes an operation with exception handling
code, which is quite awkward and increases code size.

The approach followed by GOM is very simple; as operations always return an instance
of Val, multiple responses are returned as an instance of Sequence (cf. 4.2.2). The client
may now check whether the result is a Sequence or a different value using operation
GetKind of the returned value.

61These operations were not included in GenGroupObject for complexity reasons.

52Note that overriding is not yet permitted as of CORBA 2. However, a number of CORBA vendors
have devised (yet) proprietary schemes to provide overriding and it is believed that this will be available
in the CORBA standard eventually.

63Many details of group communication — such as the questions dealing with state transfer to a new
member — have been omitted here. See [Maf95] and [Bir96] for a detailed discussion of fault-tolerant
group communication mechanisms.

4Called linked replies in OSI parlance.

4.6. OTHER ISSUES 121

4.6.2.5 OSI Attribute Groups

Attribute groups are defined in [GDM92, 8.8]. An attribute group consists of a number
of attributes under a single name (OID). The attributes that make up the group may
be defined to be fized in the GDMO specification, which means that no member may be
removed or added at runtime, or they may be extensible. An extensible attribute group
may receive additional members at runtime, or members may be removed from it.

When an attribute group is retrieved, all its member attributes will be returned in the
form of a Struct. The keys of the struct will be the names of the attribute members and
the corresponding values of the actual values of the attributes (subclasses of Val).
When a Gen0Obj: :GetN operation is used to retrieve a number of attributes, and one of
the arguments in the dictionary refers to an attribute group, then its corresponding value
will contain an instance of Struct upon return of the operation.

4.6.2.6 Recursive Types

Recursive types are data types that refer to themselves. CORBA does not allow direct
recursive types (although syntactically possible) such as the one shown in fig. 4.44 (a).

struct foo { struct foo {
long value; long value;
foo recursive_ref; sequence<foo> recursive_ref;
}s };
(a) (b)
CMISFilter ::= CHOICE {

item [8] FilterItem,
and [9] IMPLICIT SET OF CMISFilter,
or [10] IMPLICIT SET OF CMISFilter,
not [11] CMISFilter

(c)

Figure 4.44: Recursive type definitions in GOM.

This type has to be transformed as shown in fig. 4.44 (b) according to [OMG95, 3.8.2].
In the case of ASN.1, recursive types are allowed ([ASN90, 5.5]), e.g. the definition shown
in fig. 4.44 (c) is legal.

We therefore have to provide a way to represent recursive types both in the meta model
and in the instance model, i.e. it should be possible to create meta information about
recursive types using elements of the generic meta model, and to create generic recursive
values. The two cases are described below.

122 CHAPTER 4. THE GENERIC OBJECT MODEL

Recursive Types in the Meta Model A generic example that allows to represent all
sorts of recursive types in the meta model is shown in fig. 4.45.

MetaObj (type of "foo") MetaObj (type of "value")
“name"” Metalong (tk_long)
n " —1
value - "type_code" val:
"recursive_ref" "parm”

MetaObj (type of "recursive ref") MetaString

“name’ val: ["foo” |
"type_code"
"parm"” \M etalong (tk_recursive)
val:
MetaString (fully qualified)
val:

Figure 4.45: Example of a recursive type definition in the meta model

It shows how the (illegal) IDL example shown in fig. 4.44 (a) would be represented.®
Struct foo is represented by an instance of MetaObj which describes its type. In the
example, struct member recursive ref recursively points to the enclosing struct. This
relation is modeled by an instance of MetaObj which describes the type of the member
variable. Property '"name' points to the ASCII name of the struct and "type_code" to an
instance of MetalLong, describing the type code constant (20 — tk.recursive). Finally,
property "parm" contains the fully qualified name of the recursive type. This allows to
retrieve the type definition if needed, using the name of the type as lookup key.

An alternative for representing the recursive structure of the type would be to have
property "parm" recursively refer back to the initial instance of MetaObj which describes
type foo so that the type and "parm" point to the same MetaObj instance. This scheme
has the advantage that no lookup of types using the (recursive) type name has to be
performed. If this alternative is preferred, however, care has to be taken to avoid problems
when for example dumping the MetaObj to a stream or when reading it back. Possible
schemes for marshaling and unmarshaling structures containing circular references are
described in [Gro93, Cra93, Shi94].

Of course, the alternative to be adopted has to be decided by the author of a layout and
described in the layout definition. The flexible and generic structure of the meta model
allows for a number of alternative approaches to handle recursion.

Recursive Values in the Instance Model The recursive IDL type shown in fig.
4.44 (a) would be represented as a GOM Struct value. The flexible nature of GOM
does not require a Struct to have a fixed set of members. Rather, members may be
added or removed at runtime using operations Add and Remove. This allows to construct

65 Although not (yet) legal in CORBA, the example demonstrates how typical recursive types are
usually defined. The same approach would be taken for recursive ASN.1 types such as the one shown in

fig. 4.44 (c).

4.6. OTHER ISSUES 123

an instance of Struct that does not yet contain any members. Then, for example, the
member variable value could be added by creating an instance of Long and adding it to
the struct. Adding the recursive member variable recursive ref is the same: an (initially
empty) instance of Struct is created and added to the initial struct under member name
"recursive ref". Then the members of this new struct may be added and so forth.
GOM’s ability to construct values at runtime is an advantage compared to static mapping
approaches in the case of recursive types. It was shown that both meta- and instance-data
for recursive types can be modeled using GOM.

4.6.3 The Proxy Principle

A proxy ([Sha86] [GHJIV95]) is a placeholder for a different — usually remote — target
object. The proxy is generic in that it can represent instances from various target models.
Proxies 'know’ which targets they represent, whereas target instances do not know about
their proxies (or proxies in general).

Operations invoked on a proxy will be forwarded to its corresponding target. Therefore
a proxy needs to be able to contact the target. This binding is done when the target and
proxy instances are created. Usually, the proxy will store a handle to the target which
enables it to find the target whenever needed.

The handle may be an object reference® as in the case of CORBA, an AE title and a
distinguished name in CMIP, or a host address, a port and an OID in SNMP.

A CORBA object reference uniquely identifies an object. When the object is deleted, its
object reference will not be reused. Any attempt to dereference it will yield an error.
OSI distinguished names may be reused and may thus refer to different managed object
over time. It is therefore theoretically possible that the managed object target instance
to which a proxy refers may be deleted and a new managed object with the same distin-
guished name, but with a different class, may be created. The effect would be that, when
the next operation is invoked on the proxy, it would most probably fail. Genilloud [Gen96,
4.5.4.1] describes a scheme how this problem could be solved using OSI notifications.
SNMP variables are rather static; there is no dynamic creation and deletion of variables,
therefore the problem described above will not occur.

Proxies may cache attributes locally and return cached data according to a caching policy
(described in 4.1.1). This is useful in cases of communication problems because attributes
can be returned even if the target is not reachable, or for performance reasons, because
no traffic is generated between proxy and target locations.

Proxies and targets may have different lifetimes. There are mainly three cases to be
considered:

1. Proxy and target have the same lifetime.
2. Proxy is deleted before target.

3. Proxy is deleted after target.

66 An inter-operable object reference (IOR) may be used to enable access to instances within different

ORBs. An IOR would probably be stored when using IIOP in the CORBA adapter (see 4.4.3).

124 CHAPTER 4. THE GENERIC OBJECT MODEL

In the first case, a proxy will usually be created together with its target and when the
proxy is deleted, it will delete its target as well. However, multiple proxies may refer to
the same target. This may be the case when proxies to existing targets are created, e.g.
by consulting the naming service (see 4.6.2.1, 4.6.2.2). In this case, we cannot simply
delete the target when a proxy is deleted. Reference counting schemes, however, allow to
maintain a reference count for a target object that is incremented with each new proxy
attached to the target and decremented when a proxy is deleted. When the reference
count is zero, the target object will be deleted. For a discussion of reference counted
proxies see [Cop92, GHIV95].

The second case i1s the most frequent in GOM; a proxy lives independently from its target.
That means that a proxy may attach to an existing target by accessing the naming service,
and it may be deleted without deleting the target object.®” It also means that multiple
proxies may refer to the same target. This case is unproblematic as long as the target
instance still exists.

The third case is the most problematic one: a target instance may be deleted by some
third party, e.g. by another management application, or by another proxy. This results
in a dangling reference of the proxy to the target. When the proxy tries to access the
target, an error will occur.

This problem could be circumvented by complex schemes where adapters maintain a list
of proxies created by them and, whenever deletion notifications are received by target
entities, the corresponding proxy’s target reference is invalidated so that access to the
target will not even be attempted and an error will be returned immediately.

However, because of the complexity that this proposal would bring with it and the in-
frequent occurrence of this problem, it was ignored. Therefore, whenever an operation
is invoked on a proxy with a dangling reference, a normal error will be returned to the
caller.

Other problems involve crashed servers or inaccessibility of agents because of network
partitions. Here, several possibilities exist to cope with these communication problems.
The first one is to not hide this fact to clients and return errors or throw exceptions
respectively. This allows clients to cope with these errors and take corrective actions.
An alternative is to store operations to be sent to targets in a queue, and, as soon as
communication is established again, to send these messages to the target instance.®® One
possible solution for retrieval of attributes would be to return them from the cache (if
a cache is used) and for setting of attributes to use the queue mechanism. Operations,
however, that are synchronous and need to return a result immediately will fail. Asyn-
chronous operations (cf. 4.6.5) may be queued similar to attribute access, and be invoked
only when communication is re-established.

The disadvantage of such solutions is that a client never knows whether communication
with the target has taken place, or whether requests are queued. However, for certain
types of application, such transparency may be desirable.

Adapter implementors may choose various strategies for coping with network partitions

67To delete the corresponding target, operation Delete of the proxy can be used.
68 Commercial solutions exist for this problem, e.g. MQSeries [MQS95].

4.6. OTHER ISSUES 125

or communication problems, according to the target system (and the possibilities it offers)
at hand.

4.6.4 Persistence

Proxy instances used in management applications represent instances in various target
systems such as SNMP/CMIP agents or CORBA servers. These usually have a longer
lifetime than the management applications accessing them. An ideal assumption would
be that target systems in which target instances are located live forever’, i.e. they are
constantly up and running.

However, management applications are shut down and restarted and therefore lose their
information about target instances (proxies). A solution to prevent this is to register
instances of proxies with a naming service (see 4.6.2.1) before the management application
is shut down and to retrieve them at a later time, when the manager is restarted again.
Another possibility is to make proxy instances persistent by for example saving their
state to secondary storage. Whenever an application is terminated, it may save some of
its proxy instances to a file and reload them when restarting the next time.

A possible persistence implementation could make use of CORBA’s persistence service
[COS95] which provides generic services to make CORBA instances persistent, ranging
from simple flat file storage to complex database management system capability.

An alternative is to use GOM’s simple externalization operations Dump and Read defined
in interface GomElement (cf. fig. 4.4 and appendix A.l). GomElement is the 'mother’ of
all GOM interfaces, therefore all interfaces are able to be dumped to a stream and be
reconstructed from it.

This characteristic allows proxy instances to be saved to a file and later be re-read from it.
Also, proxies may be dumped to a stream and sent to a remote (GOM-based) management
application which can resurrect them and invoke operations as if it were created there,
allowing for proxies to be exchanged between several management entities.

4.6.5 Execution Model

Operations invoked on proxy objects are always synchronous in GOM. Therefore a caller
is blocked until the operation returns. However, in certain cases it might be useful to
have asynchronous execution semantics in which operation calls return immediately and
results can be fetched at a later time.

Below a proposal is presented which extends GOM to take into account asynchronous
execution.

There are three main kinds of asynchronous execution [Maf95, 3.4]:

Oneway-asynchronous Operations invoked by callers which return no result and which
do not guarantee delivery of operation to receiver. An example of this execution
model are oneway operations in CORBA; these must not have a return value and
are delivered on a best-effort basis.

Adapters may dispatch oneway operations to their targets and then return without
waiting for results.

126 CHAPTER 4. THE GENERIC OBJECT MODEL

Asynchronous with callback Asynchronous operations which return results can be
divided into two sorts: those for which the caller has to collect the results (deferred-
asynchronous) and those that invoke a callback®® provided by the caller to signal
execution termination (asynchronous with callback).

The semantics of callbacks can be modeled using object references containing certain
operations that are called back by entities in the server role. A caller provides such
an object reference as argument to the operation invocation. The operation returns
immediately and — when the results are ready — invokes an operation on the object
reference. This allows callers to be notified immediately when the operation has
returned.

Deferred-asynchronous These asynchronous operations also return results, but — un-
like asynchronous operations with callbacks which invoke a callback when the results
are ready — callers have to poll for results. Deferred-asynchronous operations usu-
ally require a token from the caller on which caller and callee can synchronize. An
example for such tokens are promises [LS88]. These are part of an asynchronous-
deferred operation’s parameter list and are used by the callee to store the results
and signal that the operation has finished, and by the caller to determine whether
the operation has terminated and to fetch the result(s).

An example of how deferred-asynchronous operations can be provided by GOM is
given below.

Every operation on proxy instances can theoretically be executed asynchronously. Of
course some operations will benefit more from this sort of execution than others for which
it would make less sense. As an example of a deferred-asynchronous operation using
a promise, consider operation GenObj::Execute. Because CORBA currently does not
allow overloading of operations [Str91], an additional operation is provided as shown in
fig. 4.46.

Compared to its corresponding synchronous version, ExecuteAsync returns void and
accepts an additional parameter Promise which is a CORBA object. A caller can use
the promise to query the entity in the server role whether the results are ready (Done),
wait until the operation has terminated (Wait) and retrieve the results (GetResult). The
latter will block until the result is available and then return it.

As promises will possibly be used concurrently by callers and callee, its operations have
to be re-entrant.

An example of how to use the operation is given in fig. 4.47.

First, a promise object is created by the caller. Then a deferred-asynchronous operation
is invoked using ExecuteAsync. Note that it will return immediately, without blocking
the caller which may perform other tasks while the operation is performed. A caller may
at any time query the promise object for operation termination using Done which returns
true when the operation has terminated. To retrieve the result, Promise: :GetResult is
finally called, which blocks until a result is available, and the result will then be returned
to the caller. If an operation does not return any value, Wait can be called on the promise
object. This operation will return as soon as the operation has finished.

69Usually a pointer to a function in C/C++.

4.6. OTHER ISSUES 127

interface Promise {

Val GetResult(); // blocks until result is available
boolean Done();
void Wait();

+;
interface GenObj {

void ExecuteAsync(in string opname, in Arglist args,
in Promise p);

};

Figure 4.46: Adding deferred-asynchronous execution to GenObj.

Promise_ptr promise= // create promise object
Long_var result;

Arglist_ptr args= // create argument list
GenObj_var proxy= // retrieve proxy
proxy->ExecuteAsync("Foo", args, promise);

// do something else
if (promise->Done())
result=dynamic_cast<Long_var>promise->GetResult();

Figure 4.47: Example of use of ExecuteAsync.

Deferred-asynchronous operations are useful in situations where a caller wants to start a
number of operations in short succession and retrieve their results at a later time.

4.6.6 Enabling OSI Managers to Access GOM

The topic of this work is to provide CORBA client applications access to instances of
other object models such as CMIP or SNMP by means of the Generic Object Model.
This explicitly excludes managers of domains different from CORBA from using GOM.

Below the discussion briefly touches on how this could nevertheless be achieved and gives
an example of how OSI managers could be enabled to access the Generic Object Model
(and thus instances of other models as well). A similar mechanism could be devised for

SNMP managers.
The architecture is shown in fig. 4.48.

128 CHAPTER 4. THE GENERIC OBJECT MODEL

GOM Pseudo Agent

. ' Delete Converter§
MIP_: : ! 1
Mgnsalger ~ Get e = 03l-GOM
' Set 3 :GOM-0S|
Acdion: A

: CORBA Server

—
s ﬁ}& (= | osem
s
!| Adapters : SNMP Agent

Figure 4.48: Access from OSI managers to GOM

The approach consists of a GOM pseudo agent, mimicking an OSI agent.”® CMIP requests
received are forwarded to a converter which has to map ASN.1 values (e.g. XOM data
structures) to GOM values and back. A naming tree, consisting of GOM objects, keeps
track of the associations between OSI names and GOM object references. As GOM
objects can represent underlying instances of any object model, this scheme allows OSI
managers to manage instances of all models for which adapters are available (CORBA,
CMIP, SNMP).

Unlike other approaches that deal with OSI managers managing CORBA instances
([Spe97, Int95, Mas97, BGG94|) which require a pseudo agent to know all the CORBA
interfaces it can handle at compile-time, this scheme allows any number of CORBA in-
terfaces to be managed from OSI without modification of the pseudo agent. As a matter
of fact there may be only one pseudo agent, or several pseudo agents may share the work
without concern for which interfaces each agent is able to handle.

4.7 Summary

Object-oriented distributed programming techniques such as CORBA are becoming in-
creasingly popular in systems and network management. However, older paradigms to
manage networks such as CMIP and SNMP are still predominantly used: SNMP being
the de-facto management standard for devices in local area networks and CMIP being
popular with carriers and telcos for wide-area network management.

It is the author’s assumption that no single standard will be predominant in the years
to come, but that there will probably be a coexistence of multiple models, resulting in a
heterogeneous 'management mix’.

Integration tools that make this mix transparent and allow end-to-end management with-
out regard for the details of the underlying models will therefore be of major importance.
The CORBA standard seems to be a candidate for such an integrated model. It is gaining
acceptance in building distributed systems, possibly because of its simple object model, its
language neutrality and its distribution transparency which (almost) hides the difference
between local- and remote method calls.

"OExisting OSI agent toolkits can be augmented for this purpose.

4.7. SUMMARY 129

It is therefore feasible to take CORBA as the common denominator for management and
try to integrate existing models such as SNMP and CMIP.

Several approaches were presented in section 3 which take CORBA as common model
and provide bridges or gateways to existing management systems. Most of them are
characterized by static translation of a management model specification to the CORBA
model (specification translation) and runtime conversion between the CORBA- and a
specific target model (interaction translation).

The disadvantages of these static approaches have been described in 3.1.2.1 and 3.2. They
comprise mainly the tight binding between client and server, which requires regeneration of
the client on server modification, the potential mass of generated code bloating the client,
and the inability or at least awkwardness of mapping certain SNMP /CMIP idiosyncrasies
to CORBA.

The Generic Object Model (GOM) presented in this chapter proposes ways to eliminate
some of these problems. It provides a uniform programming model based on CORBA and
uses metadata rather than translation-generated code-inclusion to bridge to target man-
agement models. Bridging code for target models such as SNMP or CMIP is concentrated
in adapters for easier maintainability. Idiosyncrasies of target models can be smoothly
accommodated using CORBA services or by providing own services in the form of IDL
interfaces. An important piece of the proposed model is its metadata repository which
allows communication with target models by means of metadata lookup and dynamic
request dispatching to the corresponding system. The metadata repository can also be
used by clients for metadata queries and documentation purposes.

Benefits

Uniform Model The uniform programming model of GOM allows management appli-
cations to be based entirely on GOM/CORBA with minimal (or ideally no) knowledge
of the target management model. This contributes to the homogeneity of management
applications, which can use a single API for all target models rather than having to use a
number of different APIs. Also, learning costs for other models can be reduced, which is
important especially in the telecommunications market in which new services have to be
introduced rapidly to be successful. A uniform model with bridges to older management
models allows to build new GOM/CORBA-based applications with immediate integration
of legacy managed entities. Because significant investment in the SNMP/CMIP models
has been made in the past decade, such an approach protects this investment and al-
lows at the same time the gradual replacement of SNMP/CMIP managed entities with
CORBA-based ones.

Based on CORBA The fact that GOM is based on CORBA has a number of advan-
tages: first of all, all elements of GOM are specified in OMG IDL, which allows to use any
language for which a binding exists to manipulate (and implement !) them. This enables
access to GOM from any existing (or yet to be devised) language for which a binding
exists.

Second, all elements of GOM can be distributed in a network, resulting in better load-
balancing and availability of management services. For example the metadata repository

130 CHAPTER 4. THE GENERIC OBJECT MODEL

might be replicated on multiple nodes, effectively forming a process group [Maf95, Bir96].
A request sent to the CORBA (group) object reference that represents the metadata
repository might use the first response returned, which makes the MR reliable, highly
available and efficient.

Moreover, management of wide-area networks is becoming increasingly decentralized be-
cause applications and services are distributed themselves. Management of distributed
objects requires distribution of management as well.

Third, the CORBA services are available, which offer additional standardized functional-

1ty.

Convenience Bindings A language binding for GOM’s IDL interfaces may not be
compliant with the host language at hand, or it may not make use of the special features
a host language offers because IDL has to be a common denominator of all languages and
should not make use of any specific language’s features. Therefore, convenience bindings
have been proposed (4.2.4) which are layered on top of the generated language binding in
a host language X and may be used by management applications written in language X.
These make use of the special features available in a host language to adapt the generated
bindings to the corresponding host language.

Dynamic Access The dynamic aspect of GOM eliminates the strong dependency of
clients on servers as is the case in static translation approaches where clients include
classes generated as result of target model translation. Clients do not need to include
knowledge of all target models’ classes at compile-time; instead GOM allows clients to
discover them at runtime. In addition, client applications benefit from dynamic class
loading in that they are typically smaller than compile-time based approaches.

It was shown that GOM can be used as an alternative to the static approaches if flexibility,
client-server independence and code size reduction are important. However, in cases where
the number of classes of a target model is finite (and small) and where the flexibility
offered by GOM would not have any benefits, it may be desirable to use one of the
static approaches to avoid runtime type-checking and -conversions. Static and dynamic
approaches complement each other and the decision concerning which one to employ
should depend on the requirements of the management application at hand.

In the next chapter, an overview of two applications that make use of and benefit from
the flexibility and uniformity of the model proposed by GOM will be presented.

Chapter 5
Applicability

As stated in the motivation section (1.1), the major goals of this thesis are (1) the creation
of a uniform programming model, (2) flexibility of binding between client and servers and
(3) reduction of client size.

Two applications are presented in the next two sections that benefit from the achieve-
ment of these goals, validating that an approach such as the one proposed for GOM can
profitably be used for certain types of applications.

5.1 GOMscript

GOM allows to create instances without requiring clients to have compiled-in class knowl-
edge. Rather, the name of the class can be given as a string, e.g. to create an instance.
GOM will then look up the name in the metadata repository and — if found — retrieve
metadata about the class and ’assemble’ a generic GOM instance using the metadata.
Operations are invoked the same way, namely by indicating the name of the operation
and a list of generic arguments.

Moreover, attributes can be retrieved by giving their name as a string.

GOM’s ability to perform these things at runtime without having compile-time knowledge
about the classes to be handled is an ideal basis for the creation of interpreters. These
process programs — either typed-in interactively or in the form of scripts — and execute
them by evaluating all statements sequentially.

To validate GOM’s flexibility and uniform programming model, an interpreter called
GOMscriptt has been written. It is based on GOM’s instance model, that is, every value
is represented by a GOM value or instance.

GOMscript allows to manipulate GOM instances interactively or through scripts. There-
fore, classes of those target models for which an adapter is provided may be handled?
using GOMscript.

GOMscript has a syntax similar to C++. It has simple values such as numbers, booleans,
strings, and aggregate values such as structs, unions and lists. It has the usual control

!The language description can be found in appendix C and further details in [Ban96c, Ban96b, Ban96e].
2Any prospective object model to be integrated with GOM will automatically be manageable by
GOMscript.

131

132 CHAPTER 5. APPLICABILITY

statements, e.g. for repetition (for, while) and conditional branching (if, else). The
language is object-oriented in the sense that it has classes, (single) inheritance, poly-
morphism and encapsulation. It consists of a small core that can be extended through
user-written eztenstons located in shared libraries.

A simple example of GOMscript code that flips the attribute value of a managed object
in an OSI agent is shown in fig. 5.1.

name_srv= // retrieve initial reference to CORBA naming service
obj=name_srv.resolve('"netId=TelcoNet;circuitID=(name IBM)");
if(a != NULL) {
ad_state=obj.administrativeState;
if(ad_state == "unlocked") {
obj.administrativeState="locked";

b

else {
obj.administrativeState="unlocked";

b

Figure 5.1: GOMscript sample code

The example demonstrates how two different target object models (CORBA and CMIP)
can be accessed at the same time.

First, a reference to a CORBA naming service is retrieved and assigned to variable
name _srv. This is a CORBA instance, and normal operations can be invoked on it.
In the sample code, operation resolve is called to retrieve a managed object (CMIP
target model) given its distinguished name® which is then assigned to obj.*

Then, the value of attribute administrativeState is retrieved. Depending on the value,
the opposite value is set in the retrieved managed object. Note that both attribute
access (obj.administrativeState) and operation invocation (name_srv.resolve) have
the same simple syntax, which eliminates the need for Get-, Set- and Execute operations.

GOMscript enables manipulation of instances of several target models. This allows for
interactive exploration of existing target system classes by creating instances, setting and
getting attribute values and invoking operations. Also, newly written classes can be tested
against desired behavior immediately without having to write a client test program.
This validates the author’s assumption that a flexible and highly dynamic API as provided
by GOM supports the creation of interpreters which could not be built using compiled-in
knowledge of the target system classes.

The uniform programming model of GOM enables an interpreter writer to base the inter-
preter on the same homogeneous API, rather than having to use a separate API for each

3In string-syntaz form as defined in [GMR94].
“Note that both name_srv and obj internally point to a GOM prozy instance, which itself has a
reference to the corresponding target instance in either the CORBA- or CMIP object model.

5.2. ROAMING AGENTS 133

model. Also, if a new model is integrated, the interpreter does not have to be changed
because the API remains the same.

There are other interpreters (e.g. CorbaScript [MGG96] or TeclDII [Tcl95]) that allow
to manipulate CORBA instances interactively. Both employ the Dynamic Invocation
Interface (DII) to access CORBA instances. Unlike them, GOM is not tied to managing
CORBA instances. Rather, any (object) model should be manageable if a suitable adapter
is available. GOM capsules the DII in an adapter to access CORBA instances, but this
fact is transparent to clients of GOM. Actually, a CORBA adapter could use ITOP rather
than DII without the clients noting this. Note that both CorbaScript and TcIDII could
have been written using GOM as a more abstract layer for DII than directly accessing
the DII. This would have enabled them to handle instances of other models as well. Also,
they would not have to be modified to handle new object models, but could just have
made use of a new adapter.

5.2 Roaming Agents

A GOMscript interpreter process can be started in a special mode in which it listens on
a socket, waiting for code to be sent by clients. For each connection established, a new
process is spawned and the received code is interpreted. The general architecture is shown

in fig. 5.2.

@

GOMscript I ®) I GOMscript
GOM GOM
|corBA|| cmip || sumP | |corBa|| cmiP || snmp |

Figure 5.2: Roaming Code.

There are two ways of sending code to an interpreter process: (a) clients may open a TCP
connection and send the code, or (b) a GOMscript send function® allows to specify from
within GOMscript code the destination machine to which the currently running script
should migrate. The latter case involves dumping the current state of the interpreter (i.e.

SImplemented as a GOMscript extension loaded at startup. This is a good example of how new
functionality can be added to the interpreter without modifying its core.

134 CHAPTER 5. APPLICABILITY

all variables together with their values), establishing a TCP connection to the remote
interpreter, sending the currently running script and its state, resurrecting the state at the
destination and continuing interpretation at the new location. It is at the programmer’s
discretion whether the script on the old machine will continue its processing or terminate.
This scheme allows to implement simple roaming agents. These are pieces of code with
associated state that migrate from machine to machine in the network, performing certain
tasks [ME96, Whi94], [Mue96, p. 299-424].

A roaming agent has two important characteristics: first, it is stateful because all state (i.e.
all variable/value bindings) is carried along when migrating to a new location. Second, it
is active in the sense that it can make its own decisions when and where to migrate using
GOMscript’s send primitive.

An important characteristic of GOMscript-based roaming agents is that they can handle
CORBA, CMIP and SNMP instances. Actually, instances of any (object) model for which
a suitable adapter exists can be handled immediately since GOMscript is based on GOM.
Assuming that (physical or logical) resources such as switches, routers or customer
databases will have to be accessed by roaming agents to perform their management tasks,
and assuming that these resources will (at least partly) be represented by instances of
models such as SNMP, CMIP or CORBA, it will be useful for roaming agents to have the
capability to manipulate them.

A roaming agent can never know what types of instances representing resources will be
available on a certain machine on which management chores have to be performed. It
is for example possible that a roaming agent has the task of rebooting all print servers
on a certain segment of the network that have been online for more than 200 hours.
Given a query to a naming- or trading service, the result may be a list of instances
representing print servers, but of which the types (classes) are not known, i.e. not included
at compile-time. The only knowledge might be that these instances offer an operation
called "Shutdown" or "Reboot". Being (indirectly) based on GOM, a GOMscript roaming
agent can still handle the task by examining the metadata for each instance, retrieving
the correct operation and dynamically invoking it. This can be done without having static
compiled-in knowledge of the instances’ classes, but by just having metadata about them
in GOM.

In this example a roaming agent still has to know what the semantics of classes it encoun-
ters is and what the names of operations to invoke are. This is because instances that
will be encountered are not semantically attributed, which means that we know nothing
about the semantics of a hitherto unknown class, but only about its syntax (using meta-
data). Attaching semantics to classes would allow an agent to ask an instance what the
semantics of an operation is and, based on the response, invoke a suitable operation. This
approach, however, requires both roaming agents and instances to 'understand’ a common
language describing semantics.” Combining GOM’s dynamic metadata-based manipula-
tion capability and a facility for semantically attributing instances, the roaming agent

60f course, roaming agents must have adequate privileges to perform tasks such as rebooting a ma-
chine. How these are acquired and verified is outside the scope of this work, for more information see
[ME96, Whi94].

"To understand semantics, we first have to establish categories of concepts allowing us to agree on
how to name concepts within the domain of discourse.

5.2. ROAMING AGENTS 135

implementation would be yet more flexible in reasoning about unknown classes. While
semantically attributed languages are still largely a research topic with many differing
schemes being proposed, a standard has been evolving that proposes to merge various

approaches [KQM95].

From the discussion above, it is clear that roaming agents have to be very flexible. They
cannot possibly know the extent of classes they will encounter on their trips since the set of
classes to handle will likely be non-finite. Therefore an approach that requires a roaming
agent to have compiled-in knowledge of target classes such as the static ones proposed in
section 3 cannot be employed here. GOM, however, allows to manage instances of classes
that were not known when the roaming agent was written. Provided that metadata about
these classes is available in the metadata repository, GOM allows to create instances of
instances about which it has no compiled knowledge, get and set attributes and invoke
operations.

Another advantage of not having to know all classes that will ever have to be handled
(besides that this is not possible !) is the fact that clients (i.e. roaming agents) can be
very small in terms of memory size since they do not have to include all generated classes
as proposed by XoJIDM’s approach (3.1.2). This allows them to be sent to different
locations efficiently and quickly. Sending large agents around the network would involve
delays because of their size.

The two applications presented in this section represent the type of applications for which
GOM can profitably be used because of its flexibility and uniform programming model.
In the author’s opinion, highly dynamic and rapidly moving areas — especially in the
telecommunications domain in which the liberalization of the market in 1998 brings with
it increased competition and thus pressure on telcos to introduce new services quickly —
ask for highly dynamic and flexible systems. These must take into account heterogeneous
network management worlds, be able to provide uninterrupted service and allow for rapid
implementation of new services.

Dynamic management schemes such as the one presented in this thesis are a step in this
direction.

Chapter 6

Conclusion and Outlook

Goals

The main objective of this thesis was to propose a CORBA-based network management
integration model for SNMP, CMIP and CORBA. The motivation was the assumption
that CORBA will gain major importance in network management, both on the managed-
and management side. However, other management models have to be accommodated to
be able to manage existing systems. Therefore we proposed that CORBA be taken as the
common middleware layer for management and be extended to embrace other models with
which managed entities are implemented, such as SNMP, CMIP and CORBA.! (Note that
GOM focuses on the client side; as an interface to invoke, and not implement management
functionality).

The target user for such a model is someone who uses CORBA and wants to access
SNMP /CMIP objects without having to know SNMP /CMIP, and not necessarily someone
who is already familiar with SNMP/CMIP. Therefore the idiosyncrasies of the various
models (such as OSI scoping and filtering) need not be supported 1:1 in the common
CORBA-based model, but rather their functionality should be emulated by a CORBA-

conformant implementation.

Contribution

The contribution of this thesis consists of a proposal for a more dynamic and uniform
interface for building CORBA-based management applications, the Generic Object Model
(GOM). Moreover, an implementation in the form of a research prototype is provided as
a feasibility study of the ideas presented in GOM.

The proposal uses well-known concepts such as metadata, a reified object model and
adapters, and applies them in combination to the domain of network management in
which approaches to CORBA-based management have hitherto predominantly been of a

!The author assumes that the distinction between managed- and management entities will fade over
time as CORBA objects assume management tasks. Although CORBA 1is predominantly used to imple-
ment client applications, we envisage that management server- (or agent) functionality will increasingly
be implemented using the CORBA model.

137

138 CHAPTER 6. CONCLUSION AND OUTLOOK

static nature.

The proposal consists of an object model that comprises an instance and meta model.
Convenience bindings for the instance model facilitate the task of writing management
applications. The metadata repository serves as central storage of metadata information.
Adapters perform type-checking and convert requests between the generic- and specific
management models. An event handling proposal supplements the generic management
functionality required by management applications. Idiosyncrasies of different target mod-
els are integrated using CORBAseruices.

The benefits gained from such an approach can be summarized as follows:

Uniform Programming Model Rather than having to use a number of heterogeneous
management APIs, a management application requires only a single homogeneous
API. However, instead of creating yet another API, the model is based on CORBA
which is already established in the market. The reasons for using CORBA as com-
mon platform were as follows:

1. Language neutrality. Management clients and implementations may be written
in different languages (if a language binding is available).

2. To support highly distributed managed entities, a manager has to be dis-
tributed as well.

3. The ever increasing size of resources, networks and information forces network
management applications to be partitioned into smaller, distributed manage-
ment 'chunks’, resulting in better scalability.

4. CORBA services [COS95] allow for reuse of functionality.

Flexibility In network management there are usually a large number of managed entities,
compared to only a few managers. The chance that one or more of the managed
entities is modified is high. The flexible model based on metadata as proposed in
this thesis avoids the need for management applications to be recompiled when one
of the agents it manages is changed, but allows for uninterrupted operation. Also,
management applications do not have to include managed classes at compile time,
but can do so with the help of metadata at run time.

Small clients As client management applications do not have to include 'the world’ at
compile-time, their size will not be large. This is a benefit, considering that an
application usually also has to include other libraries which increase its size, such
as GUI or database functionality. Using the proposed model, clients only ’pay’ for
what they actually use.

Language Bindings

As GOM is based on reification (everything is an object), it fits best with languages
that are reified as well, such as Smalltalk or Lisp [GR89, Ste90a]. With these languages,

139

GOM objects can be manipulated in a way that is natural to Smalltalk using convenience
bindings, without having to resort to auxiliary methods such as Get-, Set or Execute.
With statically typed languages such as C++, GOM’s model fits less nicely with the over-
all language philosophy because auxiliary methods have to be used (Get, Set, Execute),
memory management of returned values (e.g. result of a Get method) has to be taken
care of, returned values have to be narrowed to the actual class and arguments have to be
assembled in an argument list object before operations are invoked. Convenience bindings
may hide only a part of the difficulties of the model mismatch.

Therefore, with statically typed languages such as C4++, GOM’s intended use can be
regarded primarily as a value-adding toolkit — to be used for example by interpreter writers
— which is not directly accessed by client applications, but which serves as a foundation
for other application-specific layers on top of it.

Security

Security is important nowadays, especially in the light of distribution, which introduces
a number of security issues not present in non-distributed systems. However, given the
scope of this thesis, security problems have not been tackled here. It is hoped that they
can be integrated after the fact ...

Prototype

A prototype implementation of some of the concepts presented has been made. It currently
comprises the generic object model, metadata repository and two adapters (for CORBA
[SOM94] and CMIP [GMRY4]).

On the basis of this prototype, a few test applications have been developed for feasibility
study. These comprise (1) a CGI [CGI94] based topology application, which displays the
managed objects within OSI agents and which can be accessed using any Web browser
[TBLP92], (2) Java bindings [Sun95], which can be included by clients to manipulate
GOM instances, (3) the GOMscript interpreter as described in 5.1, and (4) a simple
roaming agent facility (5.2). See [Ban96g, Ban96b, Ban96a, Ban96e, Ban96¢c, BD97] for

more details.

Outlook

Currently, the situation on the Web [TBLP92] can be compared to that of structured
programming in the seventies: information (data) and behavior (programs) are separated,;
programs are used to manipulate data, and the associations that determine which program
is to be invoked for which datum? are maintained in a file using MIME [BF92]. This brings
with it all the disadvantages of structured programming, which will not be dealt with here.

2For example which application has to be started when an MPEG file is received by the browser.

140 CHAPTER 6. CONCLUSION AND OUTLOOK

Second, the information on the Web is untyped (in the sense of types as used in program-
ming languages)® and has no inherent structure; most of the information available on the
Web is in the form of ASCII or binary files.

Third, access to the distributed information space is performed via an ASCII-based pro-
tocol (HTTP) [BLFF96].

It is the author’s assumption that these three points may change in the future as follows.
First, the Web may move from the ’structured programming’ philosophy to an object-
oriented paradigm in which data and programs are encapsulated together, yielding au-
tonomous data entities which have a behavior; that is, they know how to manipulate
themselves. For advantages of an object-oriented approach over a structured one, refer to
the respective literature (e.g. [Mey88]).

Second, information on the Web may become typed, that is, instances of classes.

Third, HTTP as a protocol may be superseded by either IIOP [OMG95] as an ’object-
protocol’ on the protocol level, or, better, with an RPC-like CORBA API, which is not
concerned with protocols, but offers a higher level of abstraction.

In a line, in the future the universal request for information in the form of:
http://www.zurich.ibm.com/” bba/gom.ps

might be replaced by

orb://com/ibm/zurich/ban/papers/gom.

The form of information on the Web may move from flat files to objects, which would
be specified using CORBA interfaces and instantiated by creating instances of those in-
terfaces. The above request typed within a browser would therefore, for example, call a
CORBA naming service to request an object reference to an instance of class Paper called
gom in the hierarchical naming context com/ibm/zurich/ban/papers.

CORBA objects can be classified into two categories: those that know how to display
themselves within a container and those that do not. The paper instance retrieved above
would have to know how to display itself in the browser’s context, otherwise it could
not be displayed (maybe only the data members would be shown). But, of course, any
‘displayable’ object may use other non-graphical objects to fulfill its task.

If this vision of a ’typed object-oriented” Web becomes reality, then the need to access
objects distributed across the Web will arise. It is impossible for a browser to know all
the types (interfaces) of all the objects it will ever encounter during a session, since the
objects to be manipulated are typically chosen by a user pointing his/her browser to a
random URL. Although it is envisaged that a few frequently used types such as files,
images, audio and video data, directories etc. will be known by a browser, the entire
range of other types available on the Web cannot be known.

Therefore, a model based on the concept of generic types / classes and runtime instance-
creation / operation-dispatching using metadata as exemplified by GOM will be needed
to handle information on the Web. The association between an instance that represents
a piece of information and its type, which is located in an interface repository, can be
compared to that of a piece of information and its MIME ’type’ as determined in a
configuration file in the Web server. But unlike information in the current Web, ’object-
oriented information’ is structured in the form of classes and have behavior.

3SMIME associations can hardly be called types.

141

Research on how object-oriented concepts can be integrated with the Web, and what
potential benefits can be achieved has just started. It is hoped that some of the ideas
presented in this thesis may contribute to that research.

Appendix A
OMG IDL Definition of GOM

Interfaces

The OMG IDL definitions of all interfaces the the Generic Object Model defines are given
in the following sections. To prevent name space collisions, all interfaces are contained
in an IDL module called GOM. However, for space and readability reasons, the module
definition was omitted from the code.

A.1 Instance Model

#ifndef INSTANCE_MODEL
#define INSTANCE_MODEL

interface Adapter;
interface Val;
interface Arglist;
interface Dictionary;
interface InputStream;
interface OutputStream;

#include <MetaModel.idl>
#include <EventModel.idl>

const string ttl_policy="ttl=60";
const string never_cache='"never_cache";
const string always_cache="always_cache";

enum GomKind {
GenObjKind, ValKind, NILKind, ObjRefKind, BoolKind, CharKind,
ShortKind, IntKind, LongKind, DoubleKind, StrKind, EnumKind,
StructKind, SequenceKind, UnionKind, ArrayKind, AnyKind,
MetaObjKind, MetalongKind, MetaFloatKind, MetaStringKind, MetalistKind

143

144 APPENDIX A. OMG IDL DEFINITION OF GOM INTERFACES

interface GomElement {
GomKind
string
GomElement
boolean
boolean

};

enum GomErrcode { ATTR_

GetKind();
AsString();

Copy) ;
Read(in InputStream is);
Dump (in OutputStream os);

NOT_FOUND, ATTR_READONLY, TYPE_MISMATCH, INDEX_ERR };

enum ExType {GOM_EX, TARGET_EX};

exception GenEx {
string
ExType
Dictionary

};

interface Dictionary {
Val
Val
void
boolean
long
3

interface Arglist {
long
void
Val
Val
s

interface GenObj : Val
attribute Adapter
attribute string
attribute string

name;
ex_type;
members;

Get(in string key);

GetAt(in long index);

Set(in string key, in Val new_val);
SetAt(in long index, in Val new_val);
Size();

Size();

Add(in string parameter_name, in Val v);
Get(in string parameter_name);

At(in long index);

{ // An object can also be a value
adapter;
classname;
instance_name;

attribute Dictionary properties;

Val
void

void
void

Val
void

Metalbj

Get(in string attrname) raises(GenEx);
GetN(in Dictionary values) raises(GenEx);

Set(in string attrname, in Val new_val) raises(GenEx);
SetN(in Dictionary values) raises(GenEx);

Execute(in string opname, in Arglist args) raises(GenEx);
Delete() raises(GenEx);

GetClassDef() raises(GenEx);

A.1. INSTANCE MODEL 145

MetaObj GetAttributeDef (in string attrname) raises(GenEx);
MetaObj GetOperationDef (in string opname) raises(GenEx);
MetaObj GetElementDef (in string element_name) raises(GenEx) ;
Val GetProperty(in string name) ;

boolean SetProperty(in string name, in Val new_val);

string GetPolicy();

void SetPolicy(in string new_policy);

};

interface Adapter {
attribute string object_model;
GenObj Create(in string classname, in string inst_name,
in string target_location, in Arglist args);

Val Get(in GenObj objref, in string attrname) ;
void GetN(in GenObj objref, in Dictionary values);
void Set(in GenObj objref, in string attrname, in Val new_val);
void SetN(in GenObj objref, in Dictionary values);
Val Execute(in GenObj objref, in string opname,

in Arglist args);
void Delete(in GenObj objref);
MetaObj GetClassDef (in GenObj objref);
MetaObj GetAttributeDef (in GenObj objref, in string attrname) ;
Metalbj GetOperationDef (in GenObj objref, in string opname) ;
Metalbj GetElementDef (in GenObj objref, in string element_name);
ProxyFilter CreateFilter(in string type, // class or struct

in string target_location,
in string target_name,

in Arglist attrs,

in ConsumerlList consumers);

void SendEvent(in EventInfo event_info,
in string destination_address);

};

interface Factory {
GenObj Create(in string object_model, in string classname,
in string inst_name,
in string proxy_location,
in string target_location,

146 APPENDIX A. OMG IDL DEFINITION OF GOM INTERFACES

in Arglist args) raises(GenEx);

Val GetConstant(in string object_model, in string const_name);

string GetPolicy(in string object_model);

void SetPolicy(in string object_model, in string new_policy);
+;
interface Val : GomElement {};
interface NIL : Val {};
interface Bool : Val { attribute boolean val; };
interface Char : Val { attribute char val; };
interface Short : Val { attribute short val; };
interface Int : Val { attribute long val; };
interface Long : Val { attribute long val; };
interface Double : Val { attribute double val; };
interface Str : Val { attribute string val; };
interface Enum : Str { attribute long long_val; };
interface Struct : Val {

Val Get(in string key);

Val GetIndex(in long index);

boolean Set(in string key, in Val val);

boolean Add(in string key, in Val val);

boolean Remove(in string key);

long Size();
+;
interface Sequence : Val {

boolean Add(in Val new_val);

long Size();

Val At(in long index);

};

interface Union : Val {
attribute string name;

attribute Val val;
+;
interface Array : Val {
Val Get(in long index);
boolean Set(in long index, in Val new_val);
long Size();

};

#tendif

A.2. META MODEL 147
A.2 Meta Model

#ifndef META_MODEL
#define META_MODEL

interface GomElement;

interface MetaElement;

interface Metalong;

interface MetaFloat;

interface MetaString;

interface Metalist;

interface MetaObj;

interface Dictionary; // associations of <string , MetaObj>

#include "InstanceModel.idl"
typedef sequence<MetaElement> MetaElementList;

interface MetaElement : GomElement {
attribute string name; // e.g. "ConstantDef", "ClassDef" etc.

};

interface Metalong : MetaElement {
attribute long val;

};

interface MetaFloat : MetaElement {
attribute double val;
};

interface MetaString : MetaElement {
attribute string val;

};

interface Metalist : MetaElement {
attribute MetaElementList val;

};

B
// Metalbj:

//

// Generic container for metadata. It contains a dictionary

// with strings as keys and MetaElement instances as values.

// The values can be instances of Metalong, MetaString and

// (recursively) MetaObj.

/] =

interface MetaObj : MetaElement {

148 APPENDIX A. OMG IDL DEFINITION OF GOM INTERFACES

attribute Dictionary dict;
MetaElement Get(in string name) ;
boolean Set(in string name, in MetaElement new_el);
long Size();
3
#endif

A.3 Event Model

#ifndef EVENT_MODEL
#define EVENT_MODEL

interface GenPushConsumer;
interface ProxyFilter;
interface EventService;
interface Struct;

typedef sequence<GenPushConsumer> ConsumerlList;
typedef sequence<ProxyFilter> FilterList;
typedef Struct EventInfo;

#include "InstanceModel.idl"

interface GenPushConsumer {
void HandleEvent(in EventInfo event_info);

};

interface ProxyFilter {
attribute ConsumerlList consumers;

attribute Val target_filter;
void AddConsumer (in GenPushConsumer consumer);
void RemoveConsumer (in GenPushConsumer consumer);
+;
interface LocalFilter {
attribute string filter_construct;
attribute ConsumerlList consumers;
void AddConsumer (in GenPushConsumer consumer);
void RemoveConsumer (in GenPushConsumer consumer);
boolean Evaluate(in EventInfo event_info);

};

interface EventService {
ProxyFilter CreateFilter(in string object_model,
in string type,

A.4. METADATA REPOSITORY 149

in string target_location,
in string target_name,

in Arglist args,

in ConsumerlList consumers);

LocalFilter CreatelocalFilter(in string object_model,
in string oql_expr,
in ConsumerlList consumers);

void AddFilter(in string object_model,
in Val new_filter);

FilterList GetFilters(in string object_model);
EventInfo PullEvent(in string object_model, in boolean wait);
void PushEvent (in string object_model, // used by adapters

in FilterList filters,
in EventInfo event_info);

void SendEvent(in string object_model,
in EventInfo event_info,
in string destination_address);

};

#tendif

A.4 Metadata Repository

#ifndef MR_REP
#define MR_REP

#include "MetaModel.idl"

interface MetadataRepository;

interface MetadataAdapter;

interface MetadataCache;

interface Dictionary; // associations of <string , MetaObj>
interface InputStream;

interface OutputStream;

struct TypeCodeConstant {
long type_code;
string name;

};

typedef sequence<MetadataAdapter> AdapterList;

150

typ
typ

int

APPENDIX A. OMG IDL DEFINITION OF GOM INTERFACES
edef sequence<MetadataCache> Cachelist;
edef sequence<TypeCodeConstant> TypeCodelist;

erface MetadataRepository {
attribute AdapterList adapters;

attribute Cachelist caches;

void AddAdapter(in MetadataAdapter new_adapter);

void AddCache(in MetadataCache new_cache);

boolean Read(in InputStream is); // Reads the db

boolean Dump(in OutputStream os); // Dumps the db

Metalbj Find(in string object_model, // e.g. "X.700"
in string key, // e.g. "classes"

in string property_name); // e.g. "circuit"

// Methods specifically provided for the one instantiation of the
// generic meta model: CORBA

B
Metalbj FindConstant(in string object_model,

in string constant_name) ;
Metalbj FindTypedef (in string object_model,

in string typedef_name);
Metalbj FindException(in string object_model,

in string exception_name);

Metalbj FindModule(in string object_model,

in string module_name);

// Fully scoped name, e.g. "X700:oplvol4/circuit:1.1"
Metalbj FindClass(in string object_model,
in string classname);

// The attribute name has to be fully scoped,

// that is the classname has to be given as well, e.g.:

// "CORBA:/MyProject/Person:2.0:salary"

Metalbj FindAttribute(in string object_model,
in string attrname) ;

// The operation name has to be fully scoped,
// that is the classname has to be given as well, e.g.:
// "CORBA:/MyProject/Person:2.0:IncreaseSalary"

A.4. METADATA REPOSITORY

Metalbj

// Write interface: add data to MR. Existing metadata is replaced

[=
Add(in string object_model, in string key,

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

FindOperation(in string object_model,
in string opname);

in string property_name, in MetaObj data);

AddConstant(in string object_model,
in string constant_name,
in MetaObj data);

AddTypedef (in string object_model,
in string typedef_name,
in MetaObj data);

AddException(in string object_model,
in string exception_name,
in MetaObj data);

AddModule(in string object_model,
in string module_name,
in MetaObj data);

AddClass(in string object_model,
in string classname,
in MetaObj data);

AddAttribute(in string object_model,
in string attrname,
in MetaObj data);

AddOperation(in string object_model,
in string opname,
in MetaObj data);

// Gets all metadata from a specific source using adapters.
// This is important in the case where e.g. all classes in

// a system have to be discovered. All methods will call

// LoadAllXXX() of the adapter for the object_model given.

// All cache data will be deleted before copying of the new
// information to the cache.

long
long
long
long

LoadAllConstants(in string object_model);
LoadAllTypedefs(in string object_model);
LoadAllExceptions(in string object_model);

LoadAllModules(in string object_model) ;

151

152 APPENDIX A. OMG IDL DEFINITION OF GOM INTERFACES

long LoadAllClasses(in string object_model) ;
TypeCodelList GetTypeCodes(in string object_model) ;
string GetTypeCodeName(in string object_model,
in short type_code);

s

/] —==———— e

// MetadataAdapter (Abstract):

//

// For each specific object model, a separate subclass of

// MetadataAdapter has to be created which retrieves metadata

// from a specific source (e.g. CORBA’s interface repository (IR)
// and returns a copy of the desired information in the form

// dictated by the MetadataAdapter interface. The methods ’Find’
// and ’GetAll’ have to be overwritten.

/] = -
interface MetadataAdapter {

attribute string object_model;

attribute string location; // of specific metadata source

MetaObj Find(in string key, // e.g. "classes"

in string property_name); // e.g. "circuit"

MetaObj GetAll(in string key);

/]

// Specific functions

/]

MetaObj FindConstant(in string constant_name);

MetaObj FindTypedef (in string typedef_name);

Metalbj FindException(in string exception_name) ;

// fully scoped name, e.g. "IBM::Zurich::bba"
MetaObj FindModule(in string module_name) ;

// fully scoped name, e.g. "IBM::Zurich:bba::MyProject::Customer"

MetaObj FindClass(in string classname);
MetaObj GetAllConstants();

MetaObj GetAllTypedefs();

MetaObj GetAllExceptions();

MetaObj GetAllModules();

MetaObj GetAllClasses();

TypeCodelList GetTypeCodes () ;

string GetTypeCodeName(in short type_code);

A.5. OSI AGENT SPECIFIC CODE 153

interface MetadataCache : MetadataAdapter {
attribute Dictionary dict;

MetaElement Get(in string key);

// create new key if not present

void Set(in string key, in MetaElement new_val);
long Size();

// override operations ’Find’, ’GetAll’ and ’GetTypeCodeName’

boolean Read(in InputStream is); // Reconstructs the dict
boolean Dump(in OutputStream os); // Dumps the dict
void Flush();

3

#endif

A.5 OSI Agent Specific Code

#ifndef OSI_SPEC
#define OSI_SPEC

#include <InstanceModel.idl>
#include <CosNaming.idl>

module OsiSpecific {

typedef sequence<GenObj> GenObjList;
typedef sequence<Val> VallList;

interface ProxyAgent {
attribute string agent_address; // AE-title

boolean SyncNamingService(in CosNaming::NamingContext nc,
in string distinguished_name,
in short level) raises(GenEx);
GenObjList DiscoverManagedObjects(in string distinguished_name,
in short level) raises(GenEx);

};

interface GroupIlterator {
long Size();

154 APPENDIX A. OMG IDL DEFINITION OF GOM INTERFACES

GenObj Next();
void Reset();
boolean Remove() ;
boolean More();
s
interface GenGroupObj : GenObj {
void SetAgentAddress(in string agent_address);
void SetScope(in short scope);
void SetFilter(in Val filter); // e.g. GenObj or Str
void PerformSelection() raises(GenEx);
void ClearResultSet();
VallList GroupGet(in string attrname) raises(GenEx);
void GroupSet(in string attrname, in Val new_val)
raises(GenEx) ;
Vallist GroupExecute(in string opname, in Arglist args)

raises(GenEx) ;
Grouplterator GetResultIterator();

boolean Add(in GenObj new_obj);
boolean Remove(in GenObj old_obj);
long Size();

// Operations Get and Execute are overridden to use the first result
// that is returned (failure safety)

};
};

#tendif

Appendix B

Layout Definitions

B.1 CORBA Layout

1. Type code constants

0 tk_null 10 tk_octet

1 tk_void 11 tk_any

2 tk_short 12 tk_objref

3 tk_long 13 tk_struct

4 tk_ushort 14 tk_union

5 tk_ulong 15 tk_enum

6 tk_float 16 tk_string

7 tk_double 17 tk_sequence

8 tk_boolean 18 tk_array

9 tk_char 19 tk_except
20 tk_recursive

2. Elements

2.0 Metadata Repository (MR)

Keys:

"modules"
"classes"
"constants"
"typedefs"

"exceptions"

Keys:

Values:

Modules (MetaObj) -> c.f. Modules

Classes (MetaObj) -> c.f. Classes

Constants (MetaObj) -> c.f. Constants

Type definitions (MetaObj) -> c.f. Typedefs
Exceptions (MetaObj) -> c.f. Exceptions

.1 Modules (MetaObj)

Values:

155

156 APPENDIX B. LAYOUT DEFINITIONS

"<module name>" Module (MetaObj)

Module (MetaObj):

Keys: Values:

"name" Name of module (MetaString)

"constants" Constants (MetaObj) -> c.f. Constants
"typedefs" Type definitions (MetaObj) c.f. Typedefs
"exceptions" Exceptions (MetaObj) -> c.f. Exceptions
"modules" Modules (MetaObj) -> c.f. Modules
"classes" Classes (MetaObj) -> c.f. Classes

Descr: Models a name space in CORBA. Can contain other modules or
classes.
2.2 Classes (MetaObj)

Keys: Values:
"<class name>" Class (MetaObj)

Class (MetaObj):

Keys: Values:

"name" Name of class (MetaString)

"superclasses" Superclasses (MetaObj) -> c.f. Classes
"subclasses" Subclasses (MetaObj) -> c.f. Classes
"attributes" Attributes (MetaObj) -> c.f. Attributes
"operations" Operations (MetaObj) -> c.f. Operations
"constants" Constants (MetaObj) -> c.f. Constants
"typedefs" Type definitions (MetaObj) -> c.f. Typedefs
"exceptions" Exceptions (MetaObj) -> c.f. Exceptions

Descr: Models a class (e.g. CORBA interface or GDMO template)
(GDMO Notifications are not yet modeled)
2.3 Attributes (MetaObj)

Keys: Values:
"<attrname>" Attribute

Attribute (Metalbj):

Keys: Values:
"name" Name of attribute (MetaString)
"type" Type (MetaObj) -> c.f. Type

"access_mode" Access mode, e.g. read-only, writable (Metalong)

B.1. CORBA LAYOUT 157

(0 == read-only, 1 == writable)

Descr: Models an attribute (e.g. CORBA attribute or ASN.1 attribute)

2.4 Type (MetalObj)

Keys: Values:

"name" Name of type

"type_code" Type code constant (Metalong)

“parm" Parameter(s) (subclass of MetaElement)

Descr: Models a type. Depending on the type code constant, the
parameter may be empty, simple of constructed (c.f. CORBA
TypeCodes) . Examples:

type ’short’:
"name" --> NULL (only constructed types have names)
"type_code" --> Metalong (5)
"parm" --> <null>

type ’struct’

"name" --> Name of struct
"type_code'" --> Metalong (13)
"parm" --> MetaObj (keys == names of members,
values == Subclasses of MetaElement

2.5 Operations (MetaObj)

Keys: Values:
"<opname>" Operation (MetaObj)

Operation (MetaObj):

Keys: Values:
"name" Name of operation (MetaString)
"mode" Execution mode, e.g. synchronous, asynchronous
(MetaLong)
"return_type" Return value. Same members as ’Type’. (MetaObj)
"parameters" List of parameter descriptions
(Parameter). (MetaObj) -> c.f. Parameters
"exceptions" Metalist of MetaStrings. Lists all

exceptions that may be thrown. Note that CORBA
stadard exception may not be listed, but can be
thrown as well.

158 APPENDIX B. LAYOUT DEFINITIONS

Descr: Describes a list of parameters (c.f. below).

2.6 Parameters (MetaObj)

Keys: Values:
"<parm name>" Parameter (MetaObj)

Parameter (MetaObj):

Keys: Values:

"name" Name of parameter (MetaString)

"mode" Parameter mode (e.g. in, out, in/out) (Metalong)
"type" Type of parameter (c.f. ’Type’) (MetaObj)

Descr: Describes a parameter.

2.7 Constants (MetaObj)

Keys: Values:
"<const name>" Constant (MetaObj)

Constant (Metalbj):

Keys: Values:

"name" Name of constant (MetaString)

"type" Type of constant (MetaObj)

"value" Value of constant. (GomElement; MetaElement or Val)

Descr: The "value" property points to a subclass of MetaElement or
Val which both inherit from GomElement. Thus, the kind of the element
can be retrieved using method GetKind(). If the constant has a simple
value, probably subclasses of MetaElement are used, otherwise

subclasses of Val can be used.
2.8 Typedefs (Metalbj)

Keys: Values:
"<typedef name>" Typedef (Metalbj)

Typedef (Metalbj):

Keys: Values:
“"name" Name of type definition (MetaString)
"type" Type of type definition (Metalbj)

B.2. GDMO LAYOUT

Descr: Models a type definition, e.g. in OMG IDL:
struct Info { short age; string name; };
2.9 Exceptions (MetaObj)

Keys: Values:
"<exception name>" Exception (MetaObj)

Exception (Metalbj):

Keys: Values:

"<\member name>" Type of member (MetaObj) -> c.f.

Descr: Describes an exception

B.2 GDMO Layout

1. Type code constants

1 BOOLEAN 21 PrintableString
2 INTEGER 22 TeletexString

3 BITSTRING 23 VideotexString
4 OCTETSTRING 24 IABString

5 NULL 25 UTCString

6 OBJECT IDENTIFIER 26 GeneralizedTime
7 ObjectDescription 27 GraphicString

8 EXTERNAL 28 VisibleString

9 REAL 29 GeneralString
10 ENUMERATED 30 CharacterString
11 ENCRYPTED 31 CHOICE

12-15 <reserved> 32 ANY

16 SEQUENCE 33 ANY DEFINED BY
17 SEQUENCE-OF 34 SELECTION

18 SET 35 TAGGED

19 SET-0F 36 recursive

20 NumericString

2. Elements

2.0 Metadata Repository (MR)

Keys: Values:

Type

159

160

APPENDIX B.

"templates" Templates (MetaObj).
"name_bindings" NameBindings (MetaObj).
"packages" Packages (MetaObj).
"parameters'" Parameters (MetaObj).
"attributes" Attributes (Metalbj).

"attr_groups"

AttrGroups (Metalbj).

LAYOUT DEFINITIONS

"behaviors" Behaviors (MetaObj).
"actions" Actions (MetaObj).
"notifications" Notifications (MetaObj).

"oid_mappings"
"asnl_types"

Mappings
AsniTypes (MetaObj).
2.1 NameBindings (MetaObj)

Values:
Subordinate class (MetaObj).

Keys:
"<0ID of subordinate class>"

Subordinate Class (MetaObj):

Keys: Values:
"name" Symbolic name of name binding (MetaString)
"oid" 0ID of name binding (MetaString)

List of OIDs (Metalist)
Symbolic name of naming attribute (MetaString)

"superior_classes"
"naming_attr"

"behavior" A1l behavior clauses are merged (MetaString)
"creation" Creation modifier clause (MetaObj).
"deletion" Deletion modifier clause (MetaObj).

Creation Modifier (MetaObj):

Values:

List of parameter 0IDs (Metalist)
or NULL if absent.

List of parameter 0IDs (Metalist)
or NULL if absent.

Keys:
"with_reference_object"

"with_automatic_instance_naming"

Deletion Modifier (MetaObj):
Keys: Values:
"only_if_no_contained_objects" |
"deletes_contained_objects" List of parameter OIDs

(Metalist) or NULL.

Descr: Defines the constraints under which managed objects can be
created and deleted. Metadata contains a number of name bindings which

B.2. GDMO LAYOUT 161

are keyed by the OID of the subordinate class for faster lookup.

2.2 Templates (MetaObj)

Keys: Values:
"<templ. name (0ID)>" Template (MetaObj)

Template (MetaObj):

Keys: Values:

“"name" Symbolic name of template (MetaString)

"oid" 0ID of template (MetaString)

"document" Document name in which template is defined (MetaString)
"superclasses" List of superclass 0IDs (Metalist)

"mand_packages" List of mandatory package OIDs (Metalist of MetaStrings)
"cond_packages" List of conditional packages (MetaObj)

Conditional packages (MetaObj):
Keys: Values:
"<package name (0OID)>" Condition under which package is to be

included (MetaString)

Descr: Defines a GDMO template.

2.3 Packages (MetaObj)

Keys: Values:
"<package name (0ID)>" Package (MetaObj)

Package (MetaObj):

Keys: Values:

"name" Symbolic name of package (MetaString)

"oid" 0ID of package (MetaString)

"behavior" A1l behavior clauses of a package are merged into
one single string (MetaString)

"attributes" Attributes of package (MetaObj).

"attr_groups" Attribute groups (MetaObj). Keys are symbolic names
of attribute groups

"actions" List of action 0IDs (Metalist)

"notifications" List of notification 0IDs (Metalist)
Attribute of package (MetalObj):

Keys: Values:

162 APPENDIX B. LAYOUT DEFINITIONS

"<attrname>" Attribute (MetalObj)

Attribute (Metalbj):

Keys: Values:

"oid" 0ID of attribute (MetaString)

"name" Symbolic name of attribute (MetaString)
"properties" Properties of atttribute (MetaObj)
"parameters' List of parameter 0IDs (Metalist)

Properties of attribute (MetaObj):

Keys: Values:

"replace_with_default" NULL

"default_value" Default value (GomElement).
Instance of ASN.1 value

"initial_value" Default value (GomElement).
Instance of ASN.1 type

"permitted_values" ASN.1 type (MetaString)

"required_values" ASN.1 type (MetaString)

"get_replace" NULL

"add_remove" NULL

Attribute groups of package (MetaObj):

Keys: Values:
"<attrgroup name>" AttributeGroup (Metalbj)

AttributeGroup (Metalbj):

Keys: Values:
"name" Symbolic name of attribute group (MetaString)
"oid" 0ID of attribute group (MetaString)

"attributes" List of attribute 0IDs (Metalist)

Descr: If the attributes of an attribute group are defined inline,
then "o0id" will have a NULL value.

Descr: Defines mandatory or conditional packages.

2.4 Parameters (MetaObj)

Keys: Values:
"<parmname (0ID)>" Parameter (MetaObj)

Parameter (MetaObj):

B.2. GDMO LAYOUT

Keys:
Ilnamell
Iloidll

"context"

"syntax"

"behavior"

Values:

Symbolic name of parameter (MetaString)

0ID of parameter (MetaString)

Context (MetaString). Values are one of the

following strings: "action_info'", "action_reply",
"event_info'", "event_reply" or
"specific_error"

Name of ASN.1 type (MetaString). In the form

"<documentname>.<typename>"

A1l behavior clauses of a package are merged into

one single string (MetaString)

2.5 Attributes (MetaObj)

Keys:

"<attrname (0ID)>"

Values:
Attribute (Metalbj)

Attribute (Metalbj):

Keys:
Ilnamell
Iloidll
"syntax"

"matches_for"

"behavior"

"parameters"

Values:

Symbolic name of attribute (MetaString)

0ID of attribute (MetaString)

Name of ASN.1 type (MetaString). In the form
"<documentname>.<typename>"

List of matching specifiers (MetaList of MetaStrings).

Specifiers are one of the following strings:

"equality", "ordering", '"substrings'", "set_comparison"

or "set_intersection'

A1l behavior clauses of a package are merged into
one single string (MetaString)

List of parameter 0IDs (Metalist)

2.6 AttrGroups (MetaObj)

Keys:

Values:

"<attrgroup name (0ID)>" AttributeGroup (MetaObj)

AttributeGroup

Keys:

Ilnamell

Iloidll
"attributes"
"fixed"

(Metalbj):
Values:
Symbolic name of attribute group (MetaString)
0ID of attribute group (MetaString)
List of attribute 0IDs (Metalist)
NULL. If this key is present, the attribute group

cannot be extended, otherwise it is extensible.

163

164 APPENDIX B. LAYOUT DEFINITIONS

"description" Description of attribute group (MetaString)

2.7 Behaviors (MetaObj)

Keys: Values:
"<beh. name (0ID)>" Behavior (MetaObj)

Behavior (MetaObj):

Keys: Values:

"name" Symbolic name of behavior (MetaString)
"oid" 0ID of behavior (MetaString)
"description" Description of behavior (MetaString)

2.8 Actions (MetaObj)

Keys: Values:
"<action name (0ID)>" Action (MetaObj)

Action (MetaObj):

Keys: Values:

"name" Symbolic name of action (MetaString)

"oid" 0ID of action (MetaString)

"behavior" A1l behavior clauses of a package are merged into
one single string (MetaString)

"mode" NULL. If this key is present, mode is confirmed,
otherwise, it may be confirmed or unconfirmed.

"parameters'" List of parameter 0IDs (Metalist)

"info_syntax" Name of ASN.1 type (MetaString). In the form

"<documentname>.<typename>"
"reply_syntax" Name of ASN.1 type (MetaString). In the form
"<documentname>.<typename>"

2.9 Notifications (MetaObj)

Keys: Values:
"<notif. name (0ID)>" Notification (MetaObj)

Notification (MetaObj):

Keys: Values:
"name" Symbolic name of notification (MetaString)
"oid" 0ID of notification (MetaString)

"parameters'" List of parameter 0IDs (Metalist)

B.3. SNMP LAYOUT 165
"info_syntax" Name of ASN.1 type (MetaString). In the form
"<documentname>.<typename>"
"reply_syntax" Name of ASN.1 type (MetaString). In the form
"<documentname>.<typename>"
2.10 Mappings (MetaObj)
Keys: Values:
"<0ID name>" Mapping (Metalbj)
Mapping (MetaObj):
Keys: Values:
"name" Symbolic form (MetaString)
"oid" 0ID form (MetaString)
"document" Name of document in which element is defined (MetaString)

Descr: Mappings are keyed by 0ID. Maybe an additional mapping table
that is keyed by symbolic name has to be introduced.

2.11 AsniTypes (MetaObj)

Keys: Values:

"<document name>" ASN.1 types defined in this document
(MetaObj). Keys are ASN.1 type names

ASN.1 type (MetaObj):

Keys: Values:

“"name" Name of ASN.1 type (MetaString)

"document" Name of document (MetaString)

"type_code" Type code constant (Metalong)

“parm" Parameter(s). See next section (Mapping of ASN.1 Types)

B.3 SNMP Layout

1. Type code constants

0 NULL 6
1 INTEGER 7
2 OCTET STRING 8
3 OBJECT IDENTIFIER 9
4 SEQUENCE 10
5 SEQUENCE-OF 11

NetworkAddress
IpAddress
Counter

Gauge
TimeTicks
Opaque

166 APPENDIX B. LAYOUT DEFINITIONS

2. Elements

2.0 Metadata Repository (MR)

Keys: Values:
"<MIB name>" MIB (MetaObj)

2.1 MIB (MetaObj)

Keys: Values:
"<symb. variable name>" Variable (MetaObj)

Variable (MetaObj):

Keys: Values:

"name" Symbolic name of variable (MetaString)
"oid" 0ID of variable (MetaString)

"syntax" Type of variable (MetaObj) -> c.f. Type
"access" Access restrictions (Metalong)

0: read-only

1: read-write

2: write-only

3: not accessible

"status" Status os object (Metalong)

0: mandatory

1: optional

2: obsolete

2.2 Type (MetalObj)

Keys: Values:

“"name" Name of ASN.1 type (MetaString)
(e.g. "OCTET STRING", "INTEGER" etc.)

"type_code" Type code constant (Metalong) (see pt. 1)

"parm" Parameter(s). Describes aggregate types such as
SEQUENCE, SEQUENCE-OF etc. The use of the parameter
is the same as for the GDMO layout (c.f GDMO layout)

Appendix C

GOMscript Language Overview

C.1 Overview

GOMscript is an interpreter for a simple C+-+-like language. It contains the usual control
flow statements such as if-then-else, while and for, and allows to define functions and
classes. GOMscript may be extended by adding functions and classes located in shared
libraries. These are called extensions.

Unlike C++4, GOMscript is untyped. This means that values will only be assigned an
(implicit) type at runtime and not at compile time as in C++. This eliminates the
necessity of a compiler, resulting in faster development, but also adds overhead to the
running program. However, GOMscript was not written to compete with C++, but to
produce a tool that allows to interactively put together small applications and to write
simple scripts.

GOMscript is publicly available and can be downloaded in binary- (AIX 3.2.5, 4.1.1, Linux
2.X) and source code form from

http://sunsite.unc.edu/pub/Linux/devel/lang/gomscript/.

or
http://SAL.KachinaTech.COM/F/1/GOMSCRIPT.html

In the following sections the language is described.

C.2 Types

GOMscript recognizes the following built-in types:
Null Represents the 'nil’ value. It is often returned in the case of a failure.

Number Both real and integer values can be represented by this type. Example: 3,
3.145.

String Example: "Hello world"

List A collection of elements, e.g. #(1, 2, 3), #("Bela'", "Janet", 3.23, null) or
#(1, 2, #(-34, 4.3), 56). Lists can also be created using the new operator:

167

168 APPENDIX C. GOMSCRIPT LANGUAGE OVERVIEW

a=new List(1,2,3);. As a list is a class, its member functions can be inspected
using inspect, e.g. inspect MyClass;. New elements can be added to a list using
method Add. Sample code for lists is shown below (the ’>’ sign is the prompt):

1=#(1,2,3);
1;

#(1, 2, 3);
1.Length();
3

inspect 1;
#(1, 2, 3)
Methods:

VvV V V V V V

AtPut

AddFirst

Delete

1.Add(34);
1.AtPut(1, 100);
1;

#(1, 100, 3, 34);

vV V V V

Struct Represents a struct that contains other named values. Each member has a name
and a value: a=new Struct(''name", "Bela", "age'", 31);. Each member of the
struct can be accessed using the dereference operator ’.’; e.g. mystruct.age=23;.

Union Represents a C-like union with a name and a value: a=new Union("age", 31);.

C.3 Identifiers

Identifiers denote variables, function- and class names and have to consist of the characters
a-zA-Z plus the underscore (’_’) and period (’.’) characters, as well as digits. Digits,
however, may not be in the first position. Valid identifiers are e.g. a, number of bytes,
a.Length and person.age.

C.4 Expressions

The following expressions are present in GOMscript:

C.5. STATEMENTS

Expression | Description
expr + expr Addition

expr - expr Subtraction
expr * expr Multiplication
expr / expr Division

expr MOD expr

Modulo division

- expr Unary minus
(expr) Parentheses
1dentifier Value of identifier
NUMBER Number

STRING String

NULL Null

List List

Function call | Value of function call
NEW New expression

C.5 Statements

169

Each program consists of a (possibly empty) list of statements. Each statement is termi-
nated by a semicolon ’;’ character. GOMscript starts at the first statement and processes

all statements in the order they are read until no more statements are left (or the user

terminates the program). The following statements are available in GOMscript:

Statement Description

ident = expr | Assignment

expr Expression

vars Definition of variables in class or function scope

function def

Function definition

class def Class definition

quit Exits the interpreter

symbols Shows all symbols that are currently defined in the symbol table
classes Shows all the classes currently defined

inspect expr

Shows variables and methods of an instance

reload

Reloads all extensions

load string

Interprets the contents of the string

print(1ln)

Prints a variable or value

dump string

Dumps the contents of the symbol table to file string

read string

Populates the symbol table with the values stored in file string

while while statement
if if statement

for for statement
return return statement
break break statement

eval string

Interprets the contents of string

170 APPENDIX C. GOMSCRIPT LANGUAGE OVERVIEW

Symbols Statement

This statement prints the contents of the symbol table, i.e. all bindings between identifiers
and their values. Identifiers may denote both variables and functions. Classes are not
stored in the symbol table, but are located in a separate table. The contents of that table
can be printed using the classes statement.

Note that both the symbols- and the classes-statements do not have a termi-
nating semicolon !

While Statement

while (condition) { block }

The while statement continuously executes block, which is a list of statements, until
condition becomes false.
Example:

a=0;
while(a < 10) {a=a+l; println a;}

If Statement

if (condition) { block } [else { block }]

The if statement evaluates condition. If true, the block immediately following it is
executed, otherwise the block after a potential else is executed. The else-part is optional.

Example:

if(a < 5) {println '"smaller";}
else {println "greater";}

For Statement

for (identifier = ezpr (to | downto) ezpr) { block }

The for statement iterates through a range of numbers between two expressions. Both
expressions have to evaluate to numeric values. With each iteration, block is executed and
variable identifier is incremented or decremented.

Example:

for(i=0 to 100) {println "Number: " + i;}

C.5. STATEMENTS 171

Return statement

return [ezpr]

The return statement allows to return from a function of method.
Example:

define sqr(x) {return x*x;}

Break Statement

break

The break statement allows to leave the current block in for- and while statements.
Example:

for(i=0 to 100) {
println i;
if(i == 10) {
break;
}
}

Eval Statement

eval expr

The eval statement allows to interpret a string which must contain GOMscript code.
Note that strings within a string have to be escaped.
Example:

> code="println \"Hello, world !'\";";
> eval code;
> Hello, world !

Function Definition

define identifier (parameters) { block }

The function definition statement allows to define new functions. It must have an identi-
fler, a number of parameters, and a function body, which is a block (list of statements).
Example:

172 APPENDIX C. GOMSCRIPT LANGUAGE OVERVIEW

> define fib(x) {
if(x == 1 or x == 2) { return 1; }
else {
return fib(x-1) + fib(x-2);

}

> £fib(12);
> 144

Class Definition

class identifier [inherits from identifier 1 {
[vars: variable declarations]
[methods: method definitions]

}

The class definition statement allows to define new classes. It must have a class name,

optional parent class, a number of variables (optional), and a number of method definitions
(optional as well).

Variables defined after vars will be visible only within instances.! These are usually called
local or instance variables.

Method definitions have the same syntax as functions and can additionally access member
variables.

When a class inherits from a parent class, all variables and methods of the parent class
are available as well.?

Variables and methods inherited from a parent class can be overridden, and do not even
have to have the same type or signature, respectively. Instances are created using keyword
new.

Example:

class Person {
vars:
salary, name, age, personnel_number;
methods:
define Person(s, n, a, p) { // Constructor
salary=s; name=n; age=a; personnel_number=p;
}

define WhoAreYou() {println "I am a normal person';}

class Manager inherits from Person {
vars: manages;
methods:

!There are currently no class variables available, i.e. variables visible by all instances of a class.
2Unlike C++, there are no inheritance restrictions such as private or protected.

C.5. STATEMENTS 173

define Manager(s, n, a, p, managed_persons) {
super.Person(s, n, a, p); // Call parent’s ctor
manages=managed_persons;
}
define WhoAreYou() {
print "I am a manager";
if (manages !'= null) {
print " and I manage "
for(i=0 to manages.Length()-1) {
print manages.At(i); print " “;
}

println;

m=new Manager (120000, "John Smith", 32, 322649, #("Frank", "Ann"));
m.salary=m.salary*1.2;

m.salary;

120000

m.WhoAreYou() ;

I am a manager and I manage Bela Ann George

vV V V V V

Constructors

Constructors are methods that are invoked when a new instance is created, before it is
returned to the caller. They must have the same name as the class and may accept none,
one or several parameters.

Keyword super

If a method of the parent is overridden in the subclass, and the parent’s method should
be invoked, then keyword super can be used. In the example above, the constructor of
Manager calls the constructor of Person before it performs its own processing.

Object-Oriented Features

Encapsulation Variables and methods together form a unit. Methods are defined in
the class, whereas each instance gets its separate copy of the instance variables. There
are currently no access modifiers for member variables; therefore each variable can be
modified at will.3

Inheritance and Overriding Only single inheritance is supported. Methods of super-
classes can be overridden in subclasses (see method WhoAreYou in the example above),
allowing to specialize behavior.

31t is planned to introduce private variables, however, which would better enforce encapsulation.

174 APPENDIX C. GOMSCRIPT LANGUAGE OVERVIEW

Polymorphism Depending on the type of the class, a method invoked may behave
differently. As shown above, method WhoAreYou sent to an instance of Manager triggers
behavior different from Person.

Overloading Overloading is the definition of one or more methods within a class which
have the same name, but different parameters (both in terms of types and number of
parameters). This is currently not allowed in GOMscript (similar to CORBA !). The
current behavior is that this is not impossible to do (syntactically), but when the method
is looked up in the instance’s class, the first method found that matches the method name
will be taken.

C.6 Extensions

Extensions allow to add user-defined functions and classes to GOMscript. They are
shared libraries* which contain a number of functions and classes. Extensions are located
in a certain directory (default or designated by the user) and loaded when GOMscript is
started.

The concept of extensions is very important in GOMscript, since these practically rep-
resent the equivalent of a runtime library (e.g. 1ibc.a in C). All functions of a runtime
library such as printf or write in C would be found in extensions in GOMscript. As
will be shown below, an extension has been written that allows to create and manipulate

GOM instances.

An extension example is shown below that adds a number of mathematical functions to
GOMscript. For sample class extensions, refer to the source code (see the beginning of
this chapter).

C.6.1 Example

The common definitions for extensions are shown below (shortened):

4Also called dynamic link libraries (DLLs) on certain operating systems.

C.6. EXTENSIONS 175

#include '"Grammar.h"

typedef CL_List<Expr*> Elist;

typedef NativeInstance* (*Constructor)(Elist&);
typedef void (*FuncPtr)();

struct FuncDescr {

charx* name;

voidx* addr;

int number_of_args;

BType* parm_types; // Array of BTypes...
3
struct MethodDescr {

charx* name;

MethodPtr mptr;

int number_of_formal_parms;

BType* parm_types; // Array of BTypes
3
struct ClassDescr {

charx* name;

char* superclass;

Constructor ctor;
MethodDescr* methods;

};
struct Contents {
FuncDescr* functions;
ClassDescr* classes;
FuncPtr load_func; /* called when DLL is loaded */
FuncPtr unload_func; /* called when DLL is unloaded */

};

Every entry point® of a shared library has to be a function which returns the address of a
struct of type Contents. This contains a list of function description structures, a list of
class description structures, a function that is to be executed when the library is loaded
into memory, and a function that is to be executed when it is unloaded again.

The FuncDescr struct contains the name of the function, its address, the number of
parameters and an array of types (one for each parameter). The latter two members can
be NULL, in which case argument type-checking has to be done by the author of the
extension rather than by the GOMscript runtime.

The code below shows how two functions are defined in an extension:

5 An entry point is returned by the operating system function loading the shared library into memory.
How this 1s done is OS-dependent.

176

#include <math.h>
#include "defs.h"

/* ---- Function prototypes ---- */

APPENDIX C. GOMSCRIPT LANGUAGE OVERVIEW

Expr* Fibonacci(Elist& arglist); BType Fibonacci_types[]={INT_TYPE};

Expr* Exp(Elist& arglist); BType Exp_types[]={INT_TYPE};
/* ---- Function list and entry point ---- */

static FuncDescr functions[]={

/* name address num of parms parm types */

J* ———————— mmmmme e e - */
{"Fibonacci", Fibonacci, 1, Fibonacci_types},
{"Exp", Exp, 1, Exp_types},

0]

};

static Contents contents={functions, 0, 0, 0};
Contents* EntryPoint() {return &contents;}

/* ---- Function implementations ---- */
long fib(long x) {

return (x == 1 || x == 2)7 1 : fib(x-1)+fib(x-2);
}

Expr* Fibonacci(CL_List<Expr*>& arglist) {
Expr* ex=arglist.GetFirst()->GetElement();
long x=(long) ((Int*)ex)->GetInt();
return new Int(fib(x));

Expr* Exp(CL_List<Expr#*>& args) {
Expr* ex=args.GetFirst()->GetElement();
long inp=((Int*)ex)->GetInt();
long res=exp(inp);
return new Int(res);

The sample extension defines functions Fibonacci and Exp. These will be available in the
GOMscript interpreter and can be used like any other function (built-in or user-defined).

Every function has to accept a list of expressions, where each expression has to be down-
cast to the actual type, e.g. when an integer value is expected, the expression value has

to be narrowed to a value of type integer.

Variable contents contains all functions, classes, and the entry- and exit-points of the

shared library. The address of function EntryPoint is returned by the OS function that
loads a shared library into memory. This address can then be dereferenced and executed

C.6. EXTENSIONS 177

to obtain the address of struct contents. This is exactly what is done when GOMscript
loads the shared libraries. Additionally, all function- and class-descriptions are added to
GOMscript’s internal function- and class-list, respectively.

Variable functions, which is an array of FuncDescr structs, is the first member of
contents and contains all the description of all functions in the library. FuncDescr
structs are used to associate the name of a function with its address, number of parame-
ters and types.

Fibonacci is an example of a function. It expects one numeric argument. Since the
number and types of parameters was provided above, the GOMscript runtime performs
type-checking, and the argument can be directly converted to a C++ type (an int). The
the result is computed and converted to a GOMscript numeric type, which is subsequently
returned to GOMscript.

C.6.2 Writing an Extension for GOM

The ability of GOMscript to manage GOM instances is provided as a GOMscript ex-
tension (cf. file GomObj.C). Class Gom represents GOM proxies and contains methods
corresponding to the ones defined in GenObj (cf. 4.7). Instances of Gom may be cre-
ated, their attributes modified, and methods may be called interactively, triggering the
corresponding actions on the target object.

The details of the GOM extension are not described here due to space limitations. How-
ever, registration of class Gom and its methods is done similarly to the way functions are
registered (see above). The difference between classes defined in extensions and classes
defined using GOMscript is hidden: built-in classes and user-defined ones can be manip-
ulated in the same manner.

Bibliography

[ACH93]

[ADF+94]

[ANS93]

[ASN9O]

[ASUS6]

[Bac86]

[Ban96a)

[Ban96b)]

[Ban96¢]

[Ban96d|

[Ban96e]

Sebastian Abeck, Alexander Clemm, and Ulf Hollberg. Simply Open Network
Management. In INM [INM93], pages 361-375.

Tom Atwood, Joshua Duhl, Guy Ferran, Mary Loomis, and Drew Wade. The
Object Database Standard: ODMG-93. Morgan Kaufmann Publishers, release
1.1 edition, 1994.

Architecture Project Management, Poseidon House, Castle Park. Cambridge.
The ANSAware 4.1 manual set, 1993.

ISO / IEC 8824. Specification of Abstract Syntaz Notation One (ASN.1),
April 1990.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, Reading, MA, 1986.

Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall,
1986.

Bela Ban. Design of a CORBA-Based GOM Prototype. Internal paper,
IBM Research Division, IBM Zurich Research Laboratory, Saumerstr. 4, 8803
Riuschlikon, June 1996.

Bela Ban. Extending CORBA For Multi-Domain Management. In Pro-
ceedings of Distributed Object-Oriented Computing For Telecom (DOCT’96)
Workshop, ObjectWorld’96, Frankfurt, Germany, 1996.

Bela Ban. GOMscript User’s Guide. IBM Corporation, 1996. Internal Paper.

Bela Ban. Open Distributed Processing: A Reference Model For Distributed
Computing. Technical report, Institute of Computer Science, University of

Zurich, 1996.

Bela Ban. Towards A Generic Object-Oriented Model For Multi-Domain
Management. In Muehlhaeuser [Mue96|, pages 272-276. Workshop

Reader of the 10th European Conference on Object-Oriented Programming
(ECOOP’96), Linz.

179

180

[Ban96f]

[Ban96g]

[BDY7]

[BF92]

[BGGY4]

[Bir96]

[BK6]

[Bla92]

[BLFF96]

[BN84]

[Box95]

[Bro94|
[Cat91]

[CB94]

[CFSDY0]

[CGI94]

BIBLIOGRAPHY

Bela Ban. Towards an Object-Oriented Framework For Multi-Domain Man-
agement. Technical Report RZ 2789 (#89267), IBM Research Division, IBM
Zurich Research Laboratory, Saumerstr. 4, 8803 Ruschlikon, February 1996.

Bela Ban. Using Java For Dynamic Access to Multiple Object Models. Tech-
nical report, IBM Zurich Research Laboratory, October 1996.

Bela Ban and Luca Deri. Static vs. Dynamic Network Management Based

on CORBA. In Proceedings of ISE&N, Como, May 1997.

N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Extensions):
Mechanisms for Specifying and Describing the Format of Internet Message
Bodies, November 1992. RFC 1343.

Karim Berrah, David Gay, and Guy Genilloud. Accessing ANSA Objects
from OSI Network Management. In Proceedings of the Fifth IFIP / IEEFE In-

ternational Workshop on Distributed Systems: Operations and Management

(DSOM’94). IFIP / IEEE, 1994. Toulouse, France.

Kenneth P. Birman. Building Secure and Reliable Network Applications. Man-
ning Publications Co., 1996.

Nat Brown and Charlie Kindel. Distributed Component Object Model Pro-
tocol - DCOM/1.0. Internet draft, Microsoft Corporation, November 1996.

Uyless Black. Network Management Standards. The OSI, SNMP and CMOL
Standards. Mc Graw-Hill, 1992.

T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertezt Transfer Protocol —
HTTP/1.0, May 1996.

A.D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2:39 — 59, February 1984.

Don Box. Building C++ Components Using OLE2. C++ Report, 7(3):28-34,
April 1995.

K. Brockschmidt. Inside OLE2. Microsoft Press, Redmont, WA, 1994.

Roderic G. G. Cattell. Object Data Management: Object-Oriented and Ezx-
tended Relational Database Systems. Addison-Wesley, 1991.

William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security.
Addison-Wesley, 1994.

J. Case, M. Fedor, M. Schoffstall, and C. Davin. The Simple Network Man-
agement Protocol. RFC 1157, May 1990.

NCSA. The Common Gateway Interface, 1994.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

BIBLIOGRAPHY 181

[Cha93]

[Cha94]

[CMI]

[CMRWO6]

[Cop92]

[COS95]

[Cra93]

[Der96]

[Der97]

[DHR92]

[DSOY6]

[GDM92]
[Gen96]

[GGY5]

[GHIV95]

Chang. ISO/CCITT to Internet Management Proxy. Technical Report Issue
1.0, Network Management Forum, October 1993.

Siva Challa. Towards an Interoperable, Reflective Common Object Model for
Statically-Typed Object-Oriented Languages. PhD thesis, Dept. of Computer
Science, Blacksburg, Virginia, 1994.

International Standards Organization. Common Management Information

Protocol (CMIP). 1SO / IEC 9596.
J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. Structure of Manage-

ment Information for Version 2 of the Simple Network Management Protocol

(SNMPv2). RFC 1902, January 1996.

James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-
Wesley, 1992.

Object Management Group. CORBAservices: Common Object Services Spec-
ification, document 95-3-31 edition, March 1995. Revised Edition.

Daniel H. Craft. A study of pickling. Journal of Object-Oriented Program-
ming, 5(8):54-66, January 1993.

Luca Deri. Surfing Resources Across the Network. Technical report, IBM
Zurich Research Laboratory, 1996.

Luca Deri. A Component-based Architecture for Open, Independently FExten-
sible Distributed Systems. PhD thesis, University of Berne, 1997.

De Meer, J., V. Heymer, and R. Roth, editors. Open Distributed Processing.
IFIP Transactions C-1. Elsevier Science Publishers (North-Holland), 1992.

Proceedings of the Seventh IFIP / IEEE International Workshop on Dis-
tributed Systems: Operations and Management (DSOM’96). IFIP / IEEE,
1996. L’Aquila, Italy.

ISO / IEC 10165-4. Guidelines for the Definition of Managed Objects, 1992.

Guy Genilloud. Towards A Distributed Architecture For Systems Manage-
ment. PhD thesis, Ecole Polytechnique Federale de Lausanne, 1996. Thesis
No. 1588.

Genilloud Guy and David Gay. Accessing OSI Managed Objects From AN-
SAware. In Proceedings of the Sizth IFIP / IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM’95). IFIP / IEEE,
1995. Ottawa, Canada.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

182

[GMRO4]

[GP95]

[GR8Y)]

[Gro93]

[Hie94]

[Hie96a]

[Hie96b]

[HPSKO6]

[IBMO6]

[INM93]

[Int95]

[Ion96]

[ITU92a]

[ITU92b]

[ITU92]

BIBLIOGRAPHY

G. Geiger, A. Majtenyi, and P. Reder. IBM cmipWorks. Technical report,
IBM Corporation, March 1994.

Guy Genilloud and Marc Polizzi. Managing ANSA Objects with OSI Network
Management Tools. Technical report, EPFL, 1995.

Adele Goldberg and David Robson. Smalltalk-80. The Language. Addison-
Wesley, 1989.

Mark Grossman. Object I/O and runtime type information via automatic
code generation in C++. Journal of Object-Oriented Programming, 6(4):34—
42 July 1993.

Juan J. Hierro. Architectural Issues for Using CORBA Technology in OSI
Systems Management. Append to XoJIDM mailing list, July 1994.

Juan Hierro. Management information repository. Submitted by Telefonica
I&D to the NMF - X/Open Joint Inter-Domain Management Taskforce as
proposal for Interaction Translation, March 1996.

Juan J. Hierro. Common Facilities for OSI Management. Submitted to Xo-
JIDM mailing list, February 1996. Submitted as proposal for XoJIDM Inter-

action Translation.

James Won-Ki Hong, Jong-Tae Park, Joong-Gu Song, and Sung-Bum Kim.
Implementation and Performance of a TMN SMK System. In DSOM
[DSO96]. L’Aquila, Italy.

IBM Corporation. IBM SOMobjects Java Client, 1996.

Information Systems Integrated Network Management III. Elsevier North-
Holland, 1993.

Joint Inter Domain Management Working Group, X/Open and Network
Management Forum. Inter Domain Management Specifications: Preliminary

CORBA / CMISE Interaction Translation Architecture, April 1995.
http://www.rdg.opengroup.org/mem only/tech/sysman/jidm /it.htm.

Iona Technolgies. OrbizWeb For Java, 1996.

ITU-T — ISO/IEC. ITU-T X.700 — ISO/IEC 74/98-4: Management Frame-
work For Open Systems Interconnection, September 1992.

ITU-T —ISO/IEC. ITU-T X.701 — ISO/IEC 10040: Information Technol-

ogy - Open Systems Interconnection - Systems Management Overview, 1992.

ITU-T — ISO/IEC. ITU-T X.720 — ISO/IEC 10165-1: Information Tech-
nology - Open Systems Interconnection - Structure Of Management Informa-
tion: Management Information Model, January 1992.

BIBLIOGRAPHY 183

[ITU93]

[Joe96]

[Kam90]

[KQMO5]

[KS93]

[LaB93a]

[LaB93b]

[LF93]

[LS88]

[Mae87]

[Maf95]

[Mas97]

[Maz96]

[MBL93]

ITU-T. ITU-T X.734: Data Communication Networks. Information Technol-
ogy — Open Systems Interconnection — Systems Management: Fuvent Report
Management Function, 1993. Recommendation X.734.

Sun Microsystems. Joe: Developing Client/Server Applications for the Web,
1996.

Samuel N. Kamin. Programming Languages: An Interpreter-Based Approach.

Addison-Wesley, Reading, MA, 1990.

Knowledge Query and Manipulation Language, 1995.
http://www.cs.umbc.edu/kqml/kqml95/kqml95.html.

Pramod Kalyanasundaram and Adarshpal S. Sethi. An Application Gateway
Design for OSI-Internet Management. In INM [INM93|, pages 389-401.

Lee LaBarre. Translation of Internet MIB-II (RFC1213) to ISO/CCITT
GDMO MIB. Technical Report Issue 1.0, Network Management Forum, Oc-
tober 1993.

Lee LaBarre. Translation of Internet MIBs to ISO/CCITT GDMO MIBs.
Technical Report Issue 1.0, Network Management Forum, October 1993.

Allan Leinwand and Karen Fang. Network Management. A Practical Per-
spective. Addison-Wesley, 1993.

B. Liskov and L. Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. ACM SIGPLAN Notices,
23(7), July 1988.

Pattie Maes. Concepts and experiments in computational reflection. In Pro-
ceedings OOPSLA 87, ACM SIGPLAN Notices, pages 147-155, December
1987. Published as Proceedings OOPSLA 87, ACM SIGPLAN Notices, vol-

ume 22, number 12.

Silvano Maffeis. Run-Time Support for Object-Oriented Distributed Program-
ming. PhD thesis, Institute of Computer Science, University of Zurich, 1995.

Introduction to Mascotte. White Paper, May 1997. Esprit Project: 20804,
version 2.0.

Subrata Mazumdar. Inter-Domain Management between CORBA and
SNMP: CORBA/SNMP Gateway Approach to WEB-based Management. In
DSOM [DS096]. L’Aquila, Italy.

Subrata Mazumdar, Stephen Brady, and David L. Levine. Design of Protocol
Independent Management Agent to Support SNMP and CMIP Queries. In
INM [INM93], pages 377-389.

184

[ME96]

[Mey88]

[MGG96]

[MOA94]

[MPBS95]

[MQS95]

[Mue96]

[New93]

[Obj95]

[0bj97]

[ODP95]

[OMG95]

[Pav93]

[PHHSO6]

BIBLIOGRAPHY

T. Magedanz and T. Eckardt. Mobile Software Agents: A New Paradigm
for Telecommunications Management. In Proceedings of IEEE/IFIP Network
Operations and Management Symposium (NOMS), pages 360-369, Kyoto,
Japan, April 1996. IEEE Press. ISBN 0-7803-2518-4,.

Betrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

Philippe Merle, Christoph Gransart, and Jean-Marc Geib. CorbaScript
and CorbaWeb: A Generic Object-Oriented Dynamic Environment upon
CORBA. Technical report, Universite de Lille, 1996.

IBM Corporation. The Managed Object Agent Composer User’s Guide, 1994.

Kevin McCarthy, George Pavlou, Saleem Bhatti, and Jose N. De Souza. Ex-
ploiting the power of OSI Management for the control of SNMP-capable re-
sources using generic application level gateways. In Information Systems
Integrated Network Management IV, pages 440-453. Elsevier North-Holland,
1995.

IBM Corporation. M@)Series, 1995. http://www.hursley.ibm.com/mgseries/.

Max Muehlhaeuser, editor. Special Issues in Object-Oriented Programming.
dpunkt.verlag, 1996. Workshop Reader of the 10th European Conference on
Object-Oriented Programming (ECOOP’96), Linz.

Owen (ed.) Newman. Translation of ISO/CCITT MIBs to Internet MIBs.
Technical Report Issue 1.0, Network Management Forum, October 1993.

Object Management Group. Object Property Services, June 1995. OMG TC
Document 95-6-1.

Object Management Group. Notification Service RFP (Telecom RFP3),
March 1997. Document 97-01-03.

ITU-T — ISO/IEC. ITU-T X.901 — ISO/IEC 107/6-1: ODP Reference
Model Part1: QOuverview, draft international standard edition, May 1995.

Object Management Group. The Common Object Request Broker: Architec-
ture And Specification, July 1995. Revision 2.0.

G. Pavlou. The OSIMIS TMN Platform: Support for Multiple Technology
Integrated Management Systems. In Proceedings of the 1st RACE IS&N
Conference, Paris, November 1993.

Jong-Tae Park, Su-Ho Ha, James W. Hong, and Joong-Goo Song. Design
and Implementation of a CORBA-based TMN SMK System. In Proceedings
of NOMS96, 1996.

BIBLIOGRAPHY 185

[QP93]

[RFC91a]

[RFCO1b]

[RMSS]

[RMIO6]

[Ros90a]

[Ros90b]

[Rut93]

[Sat96]
[SG94]

[Shag6]

[Shi94]

[Slo94]

[SOMO4]

[Sou94a]

[Sou94b]

[Sou94c]

Peggy Quinn and George Preoteasa. Reconciling Object Models for Systems
and Network Management. Technical report, UNIX Systems Laboratories,
Inc., 1993.

OSI Internet Management, April 1991.

Management Information Base for Network Management of TCP/IP-based
Internets: MIB II, March 1991.

M. Rose and K. McCloghrie. Structure and Identification of Management
Information for TCP/IP-based Internets. RFC 1065, August 1988.

Sun Microsystems Inc. Java Remote Method Invocation Specification, 1.1
edition, November 1996. Draft.

Marshall T. Rose. The Open Book. A Practical Perspective on OSI. Prentice
Hall, 1990.

Marshall T. Rose. Transition and Coexistence Strategies for TCP/IP to OSI.
IEEE Journal on Selected Areas in Communications, 8(1):57 — 66, January
1990.

Tom Rutt. Comparison of the OSI management, OMG and Internet manage-
ment Object Models. Technical report, AT&T Bell Labs, December 1993.

Hirano Satoshi. HORB: Distributed Ezecution of Java Programs, 1996.

Ute Schurfeld and Dieter Gantenbein. Bilingual Agent. DSOM Access to
X.700 Agent. Technical report, IBM Zurich Research Laboratory, May 1994.

M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy
Principle. In International Conference On Distributed Computing Systems,
Massachusetts, Boston, May 1986.

John J. Shilling. How to roll your own persistent objects in C+4. Journal
of Object-Oriented Programming, 7(4):25-32, July 1994.

Morris Sloman, editor. Network and Distributed Systems Management.

Addison-Wesley, 1994.

IBM. SOM Developer’s Toolkit: An Introductory Guide To The System Object
Model And Its Accompanying Frameworks, 1994.

Nader Soukouti. Inter Domain Management. Append to XoJIDM mailing
list, 1994. draft.

Nader Soukouti. Managing CORBA Objects Using an OSI Manager. Append
to XoJIDM mailing list, 1994.

Nader Soukouti. Managing OSI Objects Using a CORBA Manager. Append
to XoJIDM mailing list, 1994. draft.

186

[Sou94d]

[Sou94e]

[Sped7]

[Ste90al

[Ste90b]

[Strol]

[Sun95]
[Sun96]

[SV97)

[Tan92]

[TBLP92]

[Tcl95]

[Tel96]

[TIN95]

[Tivo5]

[TMN95]

[TMN96]
[UCCH91]

BIBLIOGRAPHY

Nader Soukouti. Toward Managing CORBA Objects Via OSI Network Man-
agement Mechanisms. Append to XoJIDM mailing list, July 1994. draft.

Nader Soukouti. Using CORBA Technology for SNMP Management. Append
to XoJIDM mailing list, 1994. draft.

Joint Inter-Domain Management Working Group. Inter-Domain Manage-
ment: Spectfication Translation, April 1997.
http://www.rdg.opengroup.org/mem only/tech/sysman/jidm/st.htm.

Guy L. Steele. Common LISP. The Language. Digital Press, 1990.

W. Richard Stevens. UNIX Network Programming. Prentice Hall, 1990.

B. Stroustrup. The C++ Programmaing Language. Addison-Wesley, Reading,
MA, 1991.

Sun Microsystems. The Java Language Environment: A Whaite Paper, 1995.

Sun Microsystems Inc. Java Core Reflection. API and Specification, October
1996.

Douglas C. Schmidt and Steve Vinoski. The OMG Events Service. C++
Report, 9(2):37 — 46, February 1997.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

J. Groff T. Berners-Lee, R. Cailliau and B. Pollermann. World-Wide Web:
The Information Universe. Electronic Networking, 1(2), 1992.

West Virginia University. Tecl Dynamic Invocation Interface, 1995.
http://www.cerc.wvu.edu/dice/iss/TclDii/TclDii.html.

OMG White Paper: CORBA-Based Telecommunication Network Manage-
ment System, May 1996.

Telecommunications Information Networking Architecture Consortium.

Querall Concepts And Principles Of TINA, 1.0 edition, Feb 1995.

Tivoli Systems Inc. Object-Ortentation Brings Advantages To Distributed
Systems Management, 1995.

ITU-T. M.3010: Principles of Telecommunication Management Network,
1995.

TMN/C++, 1.0 draft 7a edition, May 1996. cmiswg@nmf.org.

Dave Ungar, Craig Chambers, Bay-Wei Chang, and Urs Holzle. Organizing
programs without classes. Lisp and Symbolic Computation: An International

Journal, 4(3), 1991.

BIBLIOGRAPHY 187

[US91]

[Weg90]

[Whio4]

[WMBLO?]

[X7593]
[X/096]

[XOM94]

Dave Ungar and Randall B. Smith. Self: The power of simplicity. Lisp and
Symbolic Computation: An International Journal, 4(3), 1991.

Peter Wegner. Concepts and Paradigms of Object-Oriented Programming.
OOPS Messenger, 1(1):7 — 87, August 1990.

J. E. White. Telescript Technology: The Foundation for the Electronic Mar-
ketplace. General Magic, 1994.
http://www.genmagic.com/WhitePapers.

S. F. Wu, S. Mazumdar, S. Brady, and D. W. Levine. On Implementing a
Protocol Independent MIB. Technical Report RC 18248, IBM T. J. Watson
Research Center, Yorktown Heights, NY, August 1992.

ITU-T. X.750: Management Knowledge Management Function, 1993.

X/Open Company Ltd. Systems Management: Event Management Service,
draft v0.3 edition, June 1996. Preliminary Specification.

X/Open Company Ltd. OSI Abstract Data Manipulation API (XOM), 315
edition, February 1994.

Glossary and Acronyms

The glossary defines terms and acronyms. Where appropriate, a section number at the
end refers to the location where the term or acronym is used or defined.
Adapter Converts between generic- and specific object models. 4.4.

AE-title Application entity title. Used to denote the address of an OSI manager or
agent.

Agent Entity in the OSI model which represents resources for the purpose of manage-
ment. 2.2.1, 1.2.

ANSA Advanced Networked Systems Architecture. Another model for creation of dis-
tributed applications, similar to CORBA, but predating it.

ASN.1 Abstract Syntax Notation One. 2.2.3.
Bridge See Adapter.

CGI Common Gateway Interface. Used by HTTP servers to invoke external programs
for request handling.

Client Program requesting services from a server. 1.2.

CMIP Common Management Information Protocol. Used between OSI managers and
agents. Used synonymously with ’OSI’ in a pars pro toto fashion in this thesis.
2.2.1.

COM Component Object Model. Microsoft’s core document-centric model underlying
OLE. See DCOM, OLE.

CORBA Common Object Request Broker Architecture. 2.1.
CORBA services See COSS.

COSS Common Object Services Specification. Set of IDL interfaces defining frequently
used services in the CORBA world. Used to extend the functionality of CORBA

without modification of the core architecture.

DCE Distributed Computing Environment. Open Software Foundation’s procedural dis-
tribution model.

DCOM Distributed Component Object Model. See COM. 1.3.7.

DII See Dynamic Invocation Interface. 2.1.

189

190 GLOSSARY AND ACRONYMS

DIR Dynamic Invocation Routine. Part of CORBA’s DSI. This routine can be installed
by the programmer and is called every time an implementation (e.g. a server)
receives a request.

Distinguished name (DN) Name to identify a managed object in an OSI agent. Con-
sists of several relative distinguished names (RDNs). 2.2.4.

Dynamic Invocation Interface (DII) Used in the CORBA model to dynamically dis-
patch requests to objects. Used extensively by GOM. 2.1.

Dynamic Skeleton Interface (DSI) Equivalent of DII on the implementation side.
Allows to handle requests received by a CORBA implementation in a dynamic and
generic manner. 2.1.

Domain Used in the meaning given by XoJIDM [Spe97]: (object) model such as CMIP,
CORBA, SNMP etc. 3.1.

DSI See Dynamic Skeleton Interface.
DSOM Distributed System Object Model. IBM’s CORBA implementation.
EFD Event Forwarding Discriminator. 4.5.1.2.

GDMO Guideline for the Definition of Managed Objects. OSI-defined language to spec-
ify managed object classes. Equivalent in the CORBA world i1s IDL. 2.2.

GIOP General Inter-ORB Protocol. Defined by OMG. Used for communication between
different ORB implementation. The version of TCP/IP is called IIOP. 4.4.3.

HTTP Hypertext Transfer Protocol. Used in the WWW between browsers and HT'TP

servers.
IAB Internet Architecture Board.

IDL Interface Definition Language. Used to specify CORBA classes. 2.1.3.
IDM See Inter-Domain Management. 3.1.

ITOP Internet Inter-ORB Protocol. See GIOP. 4.4.3.

Inter-Domain Management Access of model B from model A in a transparent way:
model B is translated to A. 3.1.

Interface (a) Set of operations offered by a class. (b) CORBA class (interface). In
unclear cases the term (OMG) 'IDL interface’ is used for disambiguation.

IOR Interoperable Object Reference. CORBA object reference used to ensure uniqueness
among several ORBs. See ITIOP.

IR Interface Repository. Used in CORBA to store metadata information. 2.1.1.
ISO International Standards Organization.
ITU-T International Telecommunications Union.

JIDM Joint Inter-Domain Management task force. Subgroup within X/Open working
on CORBA-CMIP interoperability. 3.1.2.

GLOSSARY AND ACRONYMS 191

KQML Knowledge Query and Manipulation Language. A proposal for electronic repre-
sentation of knowledge. 5.2.

Language binding Code in a specific language generated from CORBA IDL interfaces.
Used by clients to access and by servers to implement functionality (i.e. objects).
4.2.4.

Manager Entity in the OSI world which accesses services offered by agents. 1.2.

Metadata Layout A layout defines which elements are available in an object model, the
semantics of each element and the relations between elements, e.g.: a class element
is a template for the creation of instances (definition and semantics) and contains
attribute- and operation elements (relation). 4.2.3.2.

MIB Management Information Base. Denotes the set of classes in the OSI- and SNMP
models that comprise a certain domain, e.g. a MIB for ATM, for Internet manage-
ment (MIB II) etc. Sometimes also used in the OSI world to describe the set of
instances in an OSI agent (see also MIT). 2.2.

MIME Multipurpose Internet Mail Extensions. Standard for attaching different sorts of
data to a mail message, defined in RFC 1343 [BF92]. 6.

MIR Management Information Repository. 4.3.3.2.

MIT Management Information Tree. The containment tree of managed objects in an

OSI agent. 2.2.
MO Managed Object. Instance in an OSI agent representing a GDMO class. 2.2.1.

MR Metadata Repository. Central piece of GOM which stores metadata about target
models (CORBA, CMIP and SNMP). 4.3.2.

Network management Set of tasks dealing with management of network-specific de-
vices, such as routers, printers etc. Subset of systems management.

NMF Network Management Forum.

Object reference Client’s local proxy instance (handle) to a (possibly) remote CORBA
instance. Any request invoked on it is transparently forwarded to the target instance.
Whether the target instance is local, in a different process, or on a different machine,
is transparent. 2.1.1.

ODL Object Definition Language. Superset of OMG IDL, used in TINA and ODP. 1.3.6.

ODP Open Distributed Processing. Framework standardized by OSI to describe dis-
tributed systems.

OID Object Identifier. Used in SNMP to denote variables (SNMP) and in the OSI model
to denote GDMO classes, ASN.1 types etc. 4.6.1.

OLE Object Linking and Embedding. Microsoft’s compound document architecture.
4.1.1.

OMG Object Management Group. Industry consortium to develop the CORBA stan-
dard.

192 GLOSSARY AND ACRONYMS

OODP Object-Oriented Distributed Processing.

OQL Object Query Language. 4.5.2.4.

ORB Object Request Broker. Central distributed message bus of CORBA. 2.1.1.
OSF Open Software Foundation.

OSI Open Systems Interconnection. ISO’s 7-layer standard for communication between
open systems. See CMIP.

PDU Protocol Data Unit.
PIM Protocol-Independent MIB (see [WMBL92]). 3.1.1.

Proxy object A local instance of GenObj acting as place-holder for a (remote) target
instance. All requests sent to a proxy will be transparently forwarded to its corre-
sponding target object. 4.1.1.

Reification Representation of concepts of a system by elements of the system itself. For
example, concepts such as method dispatching or inheritance can be modeled and
implemented using objects (Object-Oriented Reification). 4.2.2.

RDN Relative Distinguished Name. Parts of a Distinguished Name. 2.2.4.
Relative Distinguished Name (RDN) See RDN.
RFC Request For Comments. Proposal in the Internet community for a new standard.

RMI Remote Method Invocation. Java’s mechanism of dispatching methods to remote
objects. 1.3.7.

RPC Remote Procedure Call. See [BN84].

RTTI Run Time Type Identification. Used in C++ to maintain a certain degree of type
information about an object. Mainly used for safe narrowing of instances. 4.2.4.1.

Server Program providing services to clients. 1.2.
SMF Systems Management Functions. OSI’s equivalent of CORBA’s services. 2.2.

SMK Shared Management Knowledge. OSI SMF, maintaining information about classes
and instances of an OSI agent. 4.3.3.1.

SNMP Simple Network Management Protocol. 2.3.

Systems management Set of tasks dealing with application management, e.g. user
administration, starting- and shutting down of servers, software distribution etc.

Target instance Instance in a target system, e.g. a managed object in an OSI agent, a

CORBA instance in a CORBA server, or a variable in an SNMP agent. 1.2.

Target system (or specific system) A system that is to be managed by GOM (e.g.
a CMIP/SNMP agent or a CORBA server). 1.2.

TINA Telecommunications Information Networking Architecture. Standard for systems
management based on ODP.

GLOSSARY AND ACRONYMS 193

TMN Telecommunications Management Network. Standard refining the OSI network

management standards.
URL Universal Resource Locator. Symbolic address of a Web page.

XEMS Extended Event Management Services. Standard defined by X/Open for event
management. 4.5.1.4.

Curriculum Vitae

Personalia
Last name Ban
First name Bela
Address Stahlistr. 33a
8280 Kreuzlingen
Switzerland

Nationality Swiss

Date of birth ~ Jan 26 1965

Place of birth Miinsterlingen (Switzerland)
Email BelaBanQacm.org

Education

1972-1978 Primary school, Kreuzlingen
1978-1980 Secondary school, Kreuzlingen
1980-1984 Gymnasium (Type B), Kreuzlingen
1985 Military Service (17 weeks)
1986-1992 University of Zurich
Studies in English, Computer Science and Economics
Graduation in 1993, summa cum laude
1988 Exchange student Detroit, MI, and Sta. Cruz, CA (8 months)
1993-1997 Ph.D. candidate University of Zurich
and IBM Zurich Research Laboratory

Work Experience

1988-1991 IBM Switzerland, Zurich (SW engineer)
1992-1993 ISE AG, Tagerwilen, Switzerland (SW/Knowledge engineer)
1993-1997 IBM Research Laboratory, Ruschlikon, Switzerland

60% Pre-Doc contract

Work on IBM’s TMN /6000 OSI agent product

195

196 CURRICULUM VITAE

Publications

e Ban, Bela and Luca Deri. Abstract Factory Pattern Revisited. Research Re-
port RZ2787 (#89265). IBM Research Division, IBM Zurich Research Laboratory,
Ruschlikon, 1996.

e Ban, Bela. Towards a Generic Object-Oriented Model for Multi-Domain Manage-
ment. Workshop reader, 10th FEuropean Conference on Object-Oriented Program-
ming (ECOOP’96), Linz, Austria (dpunkt, CITY, 1996).

e Ban, Bela. Extending Corba for Multi-Domain Management. In Proceedings of

Distributed Object-Oriented Computing For Telecom (DOCT’96), ObjectWorld’96,
Frankfurt.

e Ban, Bela. Using Java for Dynamic Access to Multiple Object Models. Inter-
nal Research Paper. IBM Research Division, IBM Zurich Research Laboratory,
Ruschlikon, 1996.

e Ban, Bela. Towards an Object Oriented Framework for Multi Domain Management.
Research Report RZ2789 (#89267). IBM Research Division, IBM Zurich Research
Laboratory, Ruschlikon, 1996.

e Ban, Bela. Design of a CORBA-Based GOM Prototype. IBM Research Division,
IBM Zurich Research Laboratory, Ruschlikon, 1996.

e Ban, Bela. GOMscript User’s Guitde. IBM Research Division, IBM Zurich Research
Laboratory, Ruschlikon, 1996.

e Ban, Bela. Open Distributed Processing: A Reference Model for Distributed Pro-
cessing. Technical Report. Institute of Computer Science, University of Zurich,

1996.

e Ban, Bela and Luca Deri. Static vs. Dynamic CMIP/SNMP Network Management
Using CORBA. In Intelligence in Services and Networks: Technology for Cooperative
Competition, ed. by A. Mullery et al. (Springer, Berlin, 1997).

