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Philips Hue

IEEE 802.15.4

Base station

RESTful API for developers
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WattsApp

Integrates multiple telemetry types together

Standards based for extensibility and compatibility

IEEE 802.15.4, 6LoWPAN, SNMP, mDNS, HTTP/JSON
. . .
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WattsApp Architecture
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mDNS used for auto-discovery of devices

Cloud server functions as gatekeeper to data

Collectors and meters within users’ premises

Multiple access methods to data
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WattsApp Hardware Interface

Lorem Ipsum

Motivation
Telemetry is an important function of the Internet of Things as it is 
being developed and deployed today. Of particular interest are 
energy monitors but also health monitors for elderly people or even 
monitors for leisure activities such as sports monitors for runners. 
Remote monitoring has been a prime application domain of the 
SNMP protocol and there are currently activities underway to 
standardize energy monitoring data models.

We provide the first production ready open source SNMP stack for 
Contiki, a popular operating system for constrained devices in 
IPv6/802.15.4 networks. We have developed basic instrumentation 
to read network statistics, to export information about the RPL 
routing protocol and to export sensor readings using existing 
standardized models. By using an SNMP stack, devices of the 
Internet of Things easily integrate into existing monitoring solutions. 
Furthermore, by using SNMP, new Internet of Things applications 
can easily interface with existing hardware components (e.g., UPS 
devices or smart power distribution units for data centers that come 
with Ethernet interfaces and embedded SNMP agents).

Contributors
- Siarhei Kuryla
- Catalin David, Johannes Schauer
- Vitali Bashko. Vladislav Perelman
- Vaibhav Bajpai. Mihaela Rusu,
- Nikolay Melnikov. Anuj Sehgal
- Jürgen Schönwälder

 Component  Hardware OS Language/Tools

  WattsExport

  WattsPoll

  WattsCollect

  WattsCloud

  WattsApp

AVR Raven Contiki C, Contiki SNMP

PC Ubuntu Python, SQLite

PC Ubuntu JavaScript, Node.js, SQLite

 Xen VM Debian PHP, MySQL, jQuery, Facebook SDK

Smartphone Android Java, Android SDK, Facebook SDK

Blueprint

https://www.wattsapp.net/

The setup shows an S0 device that measures the power 
consumption of the electrical equipment connected to it. We have 
designed a custom circuit that pulls measurements from the S0 
device and sends them to the AVR Raven. The Raven converts  
pulses into equivalent kWh of power consumed and transfers this 
information via IPv6 to the collector that queries for it using SNMP.

S0#Meter# S0#Interface#Circuit# AVR#Raven#

Meters - sensors that feed data into the telemetry system

Electricity, water or gas consumption; Temperature;
Humidity

S0 interface chosen to measure utility consumption

Meters for electricity, water and gas
Based on current pulses (1 kWh = 10-27 mA pulse)

7 / 123



WattsApp Data Processing

Meter

Uses ENTITY-SENSOR-MIB to export data

Describes the type of sensors on each meter
Provides unit information for a sensor
Associates UUIDs with sensors

Collector

Polls meters to retrieve data

SNMP get operation used

Data is stored in SQL database

Reading, unit and timestamps
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WattsApp Web Interface
What is WattsApp?
WattsApp is a telemetry platform that demonstrates remote 
monitoring of sensor readings using our state of the art Contiki 
SNMP implementation. It consists of a hardware interface to read 
data from S0 metering interfaces that is connected to an exporter 
running Contiki SNMP. A data collector is collecting meter readings 
and interfacing to a cloud server. The cloud server provides user 
authentication (via Facebook) and interfaces with a web front end 
and an Android application. All components of the Contiki SNMP 
telemetry application communicate via IPv6.

The WattsApp telemetry application demonstrates that IPv6 is ready 
to build and deploy complete state of the art applications. Tunneling 
solutions like Teredo allow everyone to get easily connected to the 
IPv6 Internet and to interface with WattsApp.

Learn more at: www.wattsapp.net

The graph shows the live power consumption (top) of the fridge and the 
coffee machine connected to our WattsBox through the S0 bus  and 
the signal strength (bottom) of the AVR Raven running our state of the 
art SNMP engine. The WattsBox reads the S0 pulses and reports them 
to the AVR Raven running our Contiki SNMP stack, which pushes the 
data to the collector and is later fetched by the Cloud. The data can be 
viewed by authorized users on their Android WattsApp app, 
www.wattsapp.net website or shared through Facebook. 

Coffee

Fridge

Teapot

What is WattsApp?
WattsApp is a telemetry platform that demonstrates remote 
monitoring of sensor readings using our state of the art Contiki 
SNMP implementation. It consists of a hardware interface to read 
data from S0 metering interfaces that is connected to an exporter 
running Contiki SNMP. A data collector is collecting meter readings 
and interfacing to a cloud server. The cloud server provides user 
authentication (via Facebook) and interfaces with a web front end 
and an Android application. All components of the Contiki SNMP 
telemetry application communicate via IPv6.

The WattsApp telemetry application demonstrates that IPv6 is ready 
to build and deploy complete state of the art applications. Tunneling 
solutions like Teredo allow everyone to get easily connected to the 
IPv6 Internet and to interface with WattsApp.

Learn more at: www.wattsapp.net

The graph shows the live power consumption (top) of the fridge and the 
coffee machine connected to our WattsBox through the S0 bus  and 
the signal strength (bottom) of the AVR Raven running our state of the 
art SNMP engine. The WattsBox reads the S0 pulses and reports them 
to the AVR Raven running our Contiki SNMP stack, which pushes the 
data to the collector and is later fetched by the Cloud. The data can be 
viewed by authorized users on their Android WattsApp app, 
www.wattsapp.net website or shared through Facebook. 

Coffee

Fridge

Teapot

Overview

Single sign-on using Facebook OAuth 2.0

Physical location of meters displayed on map

Telemetry can be graphed over multiple time periods

Web interface fetches data from collectors via cloud server
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WattsApp Mobile Interface

Figure 6: Graph of energy consumption of one of our meters.

view), in which a start date and an end date can be explicitly set. Switching between a Spinner and
a Calendar selector can be done through the Settings page (Figure 7) which can be accessed either
from the main menu of the application, or by choosing Settings after clicking on the Menu button of
the phone when viewing a generated Treemap or a Graph. Moreover, after the user decided to view
the Treemap of certain meters he is able to click on the tiles of the Treemap to select a subset of those
meters; this subset can then be graphed by pressing on Show Graph in the options menu.

Figure 7: Setting page where the user can change the way to select the time interval as well as the
default time interval.

One more feature WattsApp provides is the ability to search for the collectors in the local network
by the means of multicast DNS. From the main menu user can select Nearby Collectors which will
open a new view where all Collectors that have advertised themselves on the local network will show
up. After that user can check whether he has permissions to access a certain collector and if so view
its meters, otherwise the user can request such permissions by providing some justification which will
be shown to the owner of the collector.

4

Overview

All website functionality provided

Can discover collectors on local network using mDNS

TreeMap view provides comparison of different sources
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Reading Material I

V. Bajpai, V. Bashko, C. David, S. Kuryla, V. Perelman, J. Schauer, N. Melnikov, A. Sehgal, and

J. Schönwälder.
Design and Prototype Implementation of the WattsApp Telemetry Platform.
In Proc. of the International Conference on Internet of Things (iThings 2012). IEEE, November 2012.
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Use Cases

Environmental monitoring

Medical applications

Industrial applications

Home automation

Energy management

Transport applications

. . .
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Terminology, Technology and Lifecycle Models
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Constrained Node/Device

Characteristics

Common computing features not available

Cost constraints

Physical constraints (size, weight, power, energy)
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Hardware Platforms

TelosB

8 MHz 16-bit MSP430
(10kB RAM, 16kB ROM, 1MB EEPROM)

IEEE 802.15.4 2.4 GHz radio with antenna

Temperature, humidity and light sensors
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Hardware Platforms

MICAz

8 MHz 8-bit AVR ATMega128
(4kB RAM, 128kB ROM, 4kB EEPROM)

IEEE 802.15.4 2.4 GHz radio with antenna

Sensors through daughter boards
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Hardware Platforms

AVR Raven

8 MHz 8-bit AVR ATMega1284p
(16kB RAM, 128kB ROM, 4kB EEPROM)

8 MHz 8-bit AVR ATMega3290p
(2kB RAM, 32kB ROM, 1kB EEPROM)

IEEE 802.15.4 2.4 GHz radio with antenna

Sensors through GPIO or ADC
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Hardware Platforms

RedBee Econotag

24 MHz 32-bit ARM MC13224v
(96kB RAM, 128kB ROM)

IEEE 802.15.4 2.4 GHz radio with antenna

Sensors through GPIO or ADC
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Hardware Platforms

Raspberry Pi + Nooliberry

700 MHz 32-bit ARM11
(512MB RAM, SD Card Storage, 10/100 Ethernet)

Nooliberry Daughter Card
(IEEE 802.15.4 2.4 GHz radio with antenna)

Sensors through GPIO or ADC daughter cards
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Device Classes

Name Data Size (e.g. RAM) Code Size (e.g. Flash)

Class 0 (C0) � 10 KiB � 100 KiB

Class 1 (C1) ∼ 10 KiB ∼ 100 KiB

Class 2 (C2) ∼ 50 KiB ∼ 250 KiB

C0 Devices

No direct secure Internet connection

Use larger devices as gateways/proxies

Preconfigured and rarely reconfigured

C1 Devices

Can use environment specific protocols (CoAP and etc.)

No access to standard Internet protocols (HTTP, TLS and etc.)

Can be integrated into an IP network
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Device Classes

Name Data Size (e.g. RAM) Code Size (e.g. Flash)

Class 0 (C0) � 10 KiB � 100 KiB

Class 1 (C1) ∼ 10 KiB ∼ 100 KiB

Class 2 (C2) ∼ 50 KiB ∼ 250 KiB

C2 Devices

Can use environment specific protocols (CoAP and etc.)

No access to standard Internet protocols (HTTP, TLS and etc.)

Can be integrated into an IP network
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Constraints

Maximum code complexity (ROM/Flash)

Size of state and buffers (RAM)

Available power

But constrained networks and constrained node networks may
not be the same.
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Constrained Networks

Standard Internet Link-Layer Characteristics Unattainable

Cost constraints

Constrained nodes

Physical constraints (underwater, limited spectrum)

Regulatory constraints

Properties

Low achievable bit-rate

High and variable packet loss

Penalty for larger packets link-layer fragmentation

Lack of advanced services IP multicast
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Constrained Node Networks

Characteristics of the network are influenced due to
constrained nodes.

Low-power Lossy Networks (LLNs)

LoWPAN, 6LoWPAN

Properties

Many embedded devices

Variety of link technologies

Challenges of constrained networks
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Lifecycle Model
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Reading Material I

C. Bormann, M. Ersue, and A. Keranen.

Terminology for Constrained Node Networks.
Internet-Draft (work in progress) <draft-ietf-lwig-terminology-04>, Universitaet Bremen TZI, Nokia
Siemens Networks, Ericsson, April 2013.

O. Garcia-Morchon, S. Keoh, S. Kumar, R. Hummen, and R. Struik.

Security Considerations in the IP-based Internet of Things.
Internet-Draft (work in progress) <draft-garcia-core-security-05>, Philips Research, RWTH Aachen, Struik
Consultancy, April 2013.
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Management Requirements I

Management System/Architecture

Support multiple device classes.

Minimise state maintained on constrained devices.

Support for lossy and unreliable links.

Management Protocols

Modular implementations with a basic set of protocol
primitives.

Compact encoding of management data.

Protocol extensibility.
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Management Requirements II

Configuration Management

Self-configuration capability.

Asynchronous Transaction Support.

Network reconfiguration.

Monitoring

Device status monitoring.

Current and estimated device availability.

Network status monitoring

Network topology discovery.

Notification.

Logging.
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Management Requirements III

Security

Authentication of management systems and managed
devices.

Access control.

Security bootstrapping mechanisms.

Efficient cryptographic algorithms.

Energy Management

Management of energy resources.

Dying gasp.
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Management Requirements IV

Implementation Requirements

Avoid requiring large application layer messages.

Avoid reassembly of messages at multiple layers.
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Reading Material I

M. Ersue, D. Romascanu, and J. Schoenwaelder.

Management of Networks with Constrained Devices: Problem Statement, Use Cases and Requirements.
Internet-Draft (work in progress) <draft-ersue-constrained-mgmt-03>, Nokia Siemens Networks, Avaya,
Jacobs University Bremen, February 2013.
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Part: Internet of Things Protocol Stack

5 IEEE 802.15.4

6 IPv6 over IEEE 802.15.4 (6LoWPAN)

7 IPv6 Routing Protocol for LLNs (RPL)

8 Constrained Application Protocol (CoAP)
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IEEE 802.15.4

5 IEEE 802.15.4

6 IPv6 over IEEE 802.15.4 (6LoWPAN)

7 IPv6 Routing Protocol for LLNs (RPL)

8 Constrained Application Protocol (CoAP)
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IEEE 802.15.4

IEEE 802.15.4

The IEEE standard 802.15.4 offers physical and media access
control layers for low-cost, low-speed, low-power wireless
personal area networks (WPANs)

Application Scenarios

Home Networking

Automotive Networks

Industrial Networks

Interactive Toys

Remote Metering

. . .
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IEEE 802.15.4 Standard Versions

802.15.4-2003

Original version using Direct Sequence Spread Spectrum
(DSSS) with data transfer rates of 20 and 40 kbit/s

802.15.4-2006

Revised version using Direct Sequence Spread Spectrum
(DSSS) with higher data rates and adding Parallel Sequence
Spread Spectrum (PSSS)

802.15.4-2011

Integrating several new physical layers covering frequency
bands in different parts of the world and adding ranging
support for some of the physical layers (UWB and CSS)
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Radio Characteristics (802.15.4-2003)

Frequencies and Data Rates

5 MHz

868.3 MHz

0

928 MHz

1 3 6 7 8 92 4 5 10

902 MHz 2 MHz

Channel

2.4 GHz 2.4835 GHz

11 12 13 14 15 16 17 19 20 21 22 23 24 25 2618

Frequency Channels Region Data Rate Baud Rate
868-868.6 MHz 0 Europe 20 kbit/s 20 kBaud
902-928 MHz 1-10 USA 40 kbit/s 40 kBaud

2400-2483.5 MHz 11-26 global 250 kbit/s 62.5 kBaud
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IEEE 802.15.4 Device Classes

Full Function Device (FFD)

Any topology

PAN coordinator capable

Talks to any other device

Implements complete protocol set

Reduced Function Device (RFD)

Reduced protocol set

Very simple implementation

Cannot become a PAN coordinator

Limited to leafs in more complex topologies
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IEEE 802.15.4 Definitions

Network Device

An RFD or FFD implementation containing an IEEE 802.15.4
medium access control and physical interface to the wireless
medium.

Coordinator

An FFD with network device functionality that provides
coordination and other services to the network.

PAN Coordinator

A coordinator that is the principal controller of the PAN. A
network has exactly one PAN coordinator.
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IEEE 802.15.4 Frame Formats

General Frame Format

mode

Frame

control

Sequence

number

Destination

identifier
PAN

Destination

address

Source
PAN

identifier

Source

address

Frame Frame

check
sequence

octets: 2 0/2 0/2/8

payload

0/2 0/2/8 variable 21

bits: 0−2

Frame

type

Security Ack. Intra

14−153 4 5 6 7−9 10−11 12−13

enabled

Frame

pending requested PAN
Reserved Reserved

mode

Dst addr Src addr

IEEE 64-bit extended addresses (globally unique)

16-bit “short” addresses (unique within a PAN)

Optional 16-bit source / destination PAN identifiers

max. frame size 127 octets; max. frame header 25 octets
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IEEE 802.15.4 Frame Formats

Beacon Frames

Broadcasted by the coordinator to organize the network

Command Frames

Used for association, disassociation, data and beacon
requests, conflict notification, . . .

Data Frames

Carrying user data — this is what we are interested in

Acknowledgement Frames

Acknowledges successful data transmission (if requested)
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IEEE 802.15.4 Media Access Control

Carrier Sense Multiple Access / Collision Avoidance

Basic idea of the CSMA/CA algorithm:

First wait until the channel is idle.

Once the channel is free, start sending the data frame
after some random backoff interval.

Receiver acknowledges the correct reception of a data
frame.

If the sender does not receive an acknowledgement, retry
the data transmission.
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IEEE 802.15.4 Unslotted Mode

Node → PAN, Node → Node

The sender uses CSMA/CA and the receiver sends an
ACK if requested by the sender.

Receiver needs to listen continuously and can’t sleep.

PAN → Node

The receiver polls the PAN whether data is available.

The PAN sends an ACK followed by a data frame.

Receiving node sends an ACK if requested by the sender.

Coordinator needs to listen continuously and can’t sleep.
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IEEE 802.15.4 Slotted Mode

Superframes
SLEEP

CAP CFPB BINACTIVE

GTS1 GTS2 GTS3CSMA/CA

A superframe consists of three periods:
1 During the Contention-Access-Period (CAP), the

channel can be accessed using normal CSMA/CA.
2 The Contention-Free-Period (CFP) has Guaranteed

Time Slots (GTS) assigned by the PAN to each node.
3 During the Inactive-Period (IP), the channel is not used

and all nodes including the coordinator can sleep.

The PAN coordinator delimits superframes using beacons.
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IEEE 802.15.4 Security

Security Services

Security Suite Description
Null No security (default)
AES-CTR Encryption only, CTR Mode
AES-CBC-MAC-128 128 bit MAC
AES-CBC-MAC-64 64 bit MAC
AES-CBC-MAC-32 32 bit MAC
AES-CCM-128 Encryption and 128 bit MAC
AES-CCM-64 Encryption and 64 bit MAC
AES-CCM-32 Encryption and 32 bit MAC

Key management must be provided by higher layers

Implementations must support AES-CCM-64 and Null
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Reading Material I

IEEE.

IEEE Std 802.15.4-2003.
Technical Report 802.15.4-2003, IEEE, October 2003.

IEEE.

IEEE Std 802.15.4-2006.
Technical Report 802.15.4-2006, IEEE, September 2006.

IEEE.

IEEE Std 802.15.4-2011.
Technical Report 802.15.4-2011, IEEE, September 2011.

Y. Xiao, H.-H. Chen, B. Sun, R. Wang, and S. Sethi.

MAC Security and Security Overhead Analysis in the IEEE 802.15.4 Wireless Sensor Networks.
Journal on Wireless Communications and Networking, 2006:1–12, 2006.

E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, M. Naeve, B. Heile, and V. Bahl.

Home Networking with IEEE 802.15.4: A Developing Standard for Low-Rate Wireless Personal Area
Networks.
IEEE Communications Magazine, 40(8):70–77, August 2002.

L. D. Nardis and M.-G. Di Benedetto.

Overview of the IEEE 802.15.4/4a standards for low data rate Wireless Personal Data Networks.
In Proc. of the 4th IEEE Workshop on Positioning, Navigation and Communication 2007 (WPNC’07),
Hannover, March 2007. IEEE.

S. Labella M. Petrova, J. Riihijarvi, P. Mahonen.

Performance Study of IEEE 802.15.4 Using Measurements and Simulations.
In Proc. IEEE Wireless Communications and Networking Conference (WCNC 2006), pages 487–492, 2006.
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Reading Material II

Z. Sahinoglu and S. Gezici.

Ranging in the IEEE 802.15.4a Standard.
In Proc. IEEE Wireless and Microwave Technology Conference (WAMICON 2006), December 2006.
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IPv6 over IEEE 802.15.4 (6LoWPAN)

5 IEEE 802.15.4

6 IPv6 over IEEE 802.15.4 (6LoWPAN)

7 IPv6 Routing Protocol for LLNs (RPL)

8 Constrained Application Protocol (CoAP)
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6LowPAN Motivation

Benefits of IP over 802.15.4 (RFC 4919)

1 The pervasive nature of IP networks allows use of existing
infrastructure.

2 IP-based technologies already exist, are well-known, and
proven to be working.

3 Open and freely available specifications vs. closed
proprietary solutions.

4 Tools for diagnostics, management, and commissioning of
IP networks already exist.

5 IP-based devices can be connected readily to other
IP-based networks, without the need for intermediate
entities like translation gateways or proxies.
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6LowPAN Challenge

Header Size Calculation. . .

IPv6 header is 40 octets, UDP header is 8 octets

802.15.4 MAC header can be up to 25 octets (null
security) or 25+21=46 octets (AES-CCM-128)

With the 802.15.4 frame size of 127 octets, we have

127-25-40-8 = 54 octets (null security)
127-46-40-8 = 33 octets (AES-CCM-128)

of space left for application data!

IPv6 MTU Requirements

IPv6 requires that links support an MTU of 1280 octets

Link-layer fragmentation / reassembly is needed
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6LowPAN Overview (RFC 4944)

Overview

The 6LowPAN protocol is an adaptation layer allowing to
transport IPv6 packets over 802.15.4 links

Uses 802.15.4 in unslotted CSMA/CA mode (strongly
suggests beacons for link-layer device discovery)

Based on IEEE standard 802.15.4-2003

Fragmentation / reassembly of IPv6 packets

Compression of IPv6 and UDP/ICMP headers

Mesh routing support (mesh under)

Low processing / storage costs
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6LowPAN Dispatch Codes

All LoWPAN encapsulated datagrams are prefixed by an
encapsulation header stack.

Each header in the stack starts with a header type field
followed by zero or more header fields.

Bit Pattern Short Code Description
00 xxxxxx NALP Not A LoWPAN Packet
01 000001 IPv6 uncompressed IPv6 addresses
01 000010 LOWPAN HC1 HC1 Compressed IPv6 header
01 010000 LOWPAN BC0 BC0 Broadcast header
01 1xxxxx LOWPAN IPHC IPHC Compressed IPv6 header
10 xxxxxx MESH Mesh routing header
11 000xxx FRAG1 Fragmentation header (first)
11 100xxx FRAGN Fragmentation header (subsequent)
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6LowPAN Frame Formats

Uncompressed IPv6/UDP (worst case scenario)
max. 127 octets

preamble 802.15.4 MAC header F
C

S

2max. 23 / 44

D
S

P

1

UDP

8 up to 54 / 33

payloaduncompressed IPv6 header

40

Dispatch code (010000012) indicates no compression

Up to 54 / 33 octets left for payload with a max. size
MAC header with null / AES-CCM-128 security

The relationship of header information to application
payload is obviously really bad
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6LowPAN Frame Formats

Compressed Link-local IPv6/UDP (best case scenario)
max. 127 octets

802.15.4 MAC headerpreamble F
C

S

2max. 23 / 44

D
S

P
H

C
1

IP
v
6

1 1 1

UDP payload

8 up to 92 / 71

max. 127 octets

preamble 802.15.4 MAC header

max. 23 / 44

D
S

P
H

C
1

1 1 1

H
C

2

U
D

P
IP

v
6

1 3 2

F
C

S

payload

up to 97 / 76

Dispatch code (010000102) indicates HC1 compression

HC1 compression may indicate HC2 compression follows

This shows the maximum compression achievable for
link-local addresses (does not work for global addresses)

Any non-compressable header fields are carried after the
HC1 or HC1/HC2 tags (partial compression)
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Header Compression

Stateless Compression (RFC 4944) [obsolete]

Omit any header fields that can be calculated from the
context, send the remaining fields unmodified

Nodes do not have to maintain compression state

Support (almost) arbitrary combinations of compressed /
uncompressed header fields

Stateful Compression (RFC 6282) [current]

Dispatch code (011xxxxx2) indicates IPHC compression

Compression can be stateless or stateful using a shared
context

The Context Option (6CO) defined in RFC 6775 may be
carried in Routing Advertisements to distribute context
information
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Fragmentation and Reassembly

Fragmentation Principles (RFC 4944)

IPv6 packets to large to fit into a single 802.15.4 frame
are fragmented.

A first fragment carries a header that includes the
datagram size (11 bits) and a datagram tag (16 bits).

Subsequent fragments carry a header that includes the
datagram size, the datagram tag, and the offset (8 bits).

Time limit for reassembly is 60 seconds.
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Fragmentation and Reassembly

Fragmentation Example (compressed link-local IPv6/UDP)

2

preamble 802.15.4 MAC header

max. 127 octets

F
C

S

max. 23 / 44

FRAG1 D
S

P
H

C
1

1 1 1

H
C

2

U
D

P
IP

v
6

1 34

payload

2

preamble 802.15.4 MAC header

max. 127 octets

F
C

S

max. 23 / 44

payloadFRAGN

5

Homework Question (consult RFC 4944 first)

How many fragments are created for an 1280 octet IPv6
packet with no / maximum compression and none /
AES-CCM-128 link-layer security?

How many fragmented datagrams can be in transit
concurrently for a 802.14.5 source / destination pair?
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Reading Material I

N. Kushalnagar, G. Montenegro, and C. Schumacher.

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals.
RFC 4919, Intel Corp, Microsoft Corporation, Danfoss A/S, August 2007.

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler.

Transmission of IPv6 Packets over IEEE 802.15.4 Networks.
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Motivation and Requirements

Routing Requirements

Urban LLNs [RFC5548]

Industrial LLNs [RFC5673]

Home Automation LLNs [RFC5826]

Building Automation LLNs [RFC5867]

Common Characteristics

Low power and Lossy Networks (LLNs) consisting largely
of constrained nodes.

Lossy and unstable links, typically supporting low data
rates, relatively low packet delivery rates.

Traffic patterns are not simply point-to-point, but in
many cases point-to-multipoint or multipoint-to-point.

Potentially comprising up to thousands of nodes.
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RPL Instance and DODAGs

DODAG

RPL Instance

downup

Definition

An RPL Instance consists of multiple Destination Oriented
Directed Acyclic Graphs (DODAGs). Traffic moves either up
towards the DODAG root or down towards the DODAG leafs.
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DODAG and RPL Instance Properties

DODAG Properties

Many-to-one communication: upwards

One-to-many communication: downwards

Point-to-point communication: upwards-downwards

RPL Instance Properties

DODAGS are disjoint (no shared nodes)

Link properties: (reliability, latency, . . . )

Node properties: (powered or not, . . . )

RPL Instance has an optimization objective

Multiple RPL Instances with different optimization
objectives can coexist at the same time
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Version Numbers and Ranks

Version n

R=1 R=1

R=3R=3

R=2

Version n+1

R=0

Definition

A node’s Rank defines the node’s individual position relative to
other nodes with respect to a DODAG root. The scope of a
node’s Rank is a DODAG Version.
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Route Construction and Forwarding Rules

Route Construction

Up routes towards nodes of decreasing rank (parents)

Down routes towards nodes of increasing rank

Nodes inform parents of their presence and reachability
to descendants
Source route for nodes that cannot maintain down routes

Forwarding Rules

All routes go upwards and/or downwards along a DODAG

When going up, always forward to lower rank when
possible, may forward to sibling if no lower rank exists

When going down, forward based on down routes
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RPL Control Messages

DAG Information Object (DIO)

A DIO carries information that allows a node to discover
an RPL Instance, learn its configuration parameters and
select DODAG parents

DAG Information Solicitation (DIS)

A DIS solicits a DODAG Information Object from an RPL
node

Destination Advertisement Object (DAO)

A DAO propagates destination information upwards along
the DODAG
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DODAG Construction

Construction

Nodes periodically send link-local multicast DIO messages

Stability or detection of routing inconsistencies influence
the rate of DIO messages

Nodes listen for DIOs and use their information to join a
new DODAG, or to maintain an existing DODAG

Nodes may use a DIS message to solicit a DIO

Based on information in the DIOs the node chooses
parents that minimize path cost to the DODAG root

Comment

Essentially a distance vector routing protocol with ranks
to prevent count-to-infinity problems.
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Trickle Algorithm: Eventual Consistency

Parameters and Variables

Imin Minimum interval size in units of time
Imax Maximum number of doublings of Imin (Imax = Imin·2N)
k Redundancy constant (a natural number)
I current interval size
t time within the current interval
c counter

Algorithm

initially I = random value in [Imin, Imax]
new interval c = 0, t = random value in [I/2, I)
if t expires if c < k: send data
if I expires I = max(I + I, Imax), start new interval
receive consistent data c++
receive inconsistent data if I > Imin: I = Imin, start new interval
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CoAP Overview

Characteristics

Constrained machine-to-machine web protocol

Representational State Transfer (REST) architecture

Simple proxy and caching capabilities

Asynchronous transaction support

Low header overhead and parsing complexity

URI and content-type support

UDP binding (may use IPsec or DTLS)

Reliable unicast and best-effort multicast support

Built-in resource discovery
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Larger Picture

CoAP Layers in the Protocol Stack

CoAP messages provide
reliable transactions over
unreliable UDP

CoAP requests / responses
resemble HTTP methods

CoAP method calls may
involve multiple CoAP
transactions

Roles at the transaction
layer may change during a
request / response
execution

CoAP Messages

UDP

CoAP Requests / Responses

Application

IPv6 / ICMPv6 / RPL

6LoWPAN

802.15.4
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CoAP Transactions

Messages

Message Description
CON Confirmable messages request that the receiving

peer sends an acknowledgement or a reset
NON Non-confirmable messages do not request any

message being sent by the receiving peer
ACK Acknowledges that a CON has been received,

may carry payload
RST Indicates that a CON has been received but

some context is missing to process it

Transactions are invoked peer to peer (not client/server)

Transactions are identified by a Message ID (MID)
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CoAP Methods

Methods

Method Description
GET Retrieves information of an identified resource
POST Creates a new resource under the requested URI
PUT Updates the resource identified by an URI

DELETE Deletes the resource identified by an URI

Resources are identified by URIs

Methods are very similar to HTTP methods

Response codes are a subset of HTTP response codes

Options carry additional information (similar to HTTP
header lines, but using a more compact encoding)
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CoAP Message Exchanges

Examples

code=000

CON tid=47

code=GET /foo

ACK tid=47

code=200 "..."

CON tid=53

code=GET /bar

code=404 "..."

ACK tid=53

code=GET /foo

CON tid=48

ACK tid=50

CON tid=50

Client Server Client Server ServerClient

code=GET /foo

ACK tid=48

code=000

code=000

ACK tid=49

CON tid=49

code=200 /foo "..."

code=000

CON tid=51

code=200 /foo "..."

RST tid=51

Synchronous transaction (left)

Asynchronous transaction (middle)

Orphaned transaction (right)
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CoAP Message Format

CoAP Header
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Ver| T | TKL | Code | Message ID |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Token (if any, TKL bytes) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options (if any) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|1 1 1 1 1 1 1 1| Payload (if any) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Basic congestion control via exponential back-off

CoAP supports multicasting of messages

Security provided by DTLS (pre-shared keys or raw keys
or X.509 certifcates)
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CoAP Message Format

CoAP Header Fields

The Ver field contains the version number, the T field the
message type, and the TKL field the length of the
variable-length Token field

The Code field carries the method code / response code
(methods are numbers not strings)

The unique Message ID is changed for every new
message but not during retransmissions

The Token is used to correlate requests and responses

The Token is followed by zero or more Options and
finally a one-byte Payload Marker

Options carry information typically found in HTTP
request and response headers
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CoAP Message Format

CoAP Option Format
0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| option delta | length | for 0..14

+---+---+---+---+---+---+---+---+

for 15..270:

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| option delta | 1 1 1 1 | length - 15 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

The option delta identifies the option type, encoded as
the delta (difference) to the previous option code.

The option code implies the type of the encoded data.

URI parameters are carried in options.
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CoAP Observe

Overview

Basic idea: Applying the well-known observer design
pattern to CoAP

Instead of regularly polling a resource, a client registers to
be notified if a resource changes

Implementation through a new Observe option carried in
a GET request

Comments

A client cannot rely on observing every single state that a
resource goes through

Subscriptions are per resource and hence the granularity
of the underlying resource model matters

No definition yet how to filter “interesting” state changes
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CoAP Observe Example

Client subscribes by
including an
Observe header

Server sends
responses including
an Observe option
carrying a sequence
number

Client unsubscribes
by a GET without an
Observe header

Client Server

| |

| GET /temperature |

| Token: 0x4a | Registration

| Observe: (empty) |

+----------------->|

| |

| 2.05 Content |

| Token: 0x4a | Notification of

| Observe: 12 | the current state

| Payload: 22.9 C |

|<-----------------+

| |

| 2.05 Content |

| Token: 0x4a | Notification upon

| Observe: 44 | a state change

| Payload: 22.8 C |

|<-----------------+

| |

| 2.05 Content |

| Token: 0x4a | Notification upon

| Observe: 60 | a state change

| Payload: 23.1 C |

|<-----------------+

| |
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CoAP Block Transfers

Overview

Transfers larger than what can be accommodated in
constrained-network link-layer packets can be performed
in smaller blocks

No hard-to-manage conversation state is created at the
adaptation layer or IP layer for fragmentation

The transfer of each block is acknowledged, enabling
retransmission if required

Both sides have a say in the block size that will be used

The resulting exchanges are easy to understand using
packet analyzer tools and quite accessible to debugging

If needed, the Block options can also be used (without
changes) to provide random access to power-of-two sized
blocks within a resource representation
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SNMP for Constrained Devices

AVR Raven Hardware

ATmega1284PV
microcontroller:

runs at 20 MHz

16K of RAM

128K of ROM (Flash)

Contiki-SNMP

Contiki is an operating system for embedded devices

SNMP engine (written in C) for constrained devices

built on top of the Contiki uIPv6 stack (6LoWPAN)
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Contiki-SNMP Overview

General features / limitations

SNMP messages up to 484-byte length

Get, GetNext and Set operations

SNMPv1 and SNMPv3 message processing models

USM security model, no VACM access control model

API to define and implement managed objects

USM security algorithms

HMAC-MD5-96 authentication protocol (RFC 3414)

CFB128-AES-128 symmetric encryption protocol (RFC
3826)
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MIB Modules and Static Memory Usage

MIB modules

SNMPv2-MIB – SNMP entity information

IF-MIB – network interface information

ENTITY-SENSOR-MIB – temperature sensor readings

SNMPv1 and SNMPv3 enabled

31220 bytes of ROM (around 24% of the available ROM)

235 bytes of statically allocated RAM

SNMPv1 enabled

8860 bytes of ROM (around 7% of the available ROM)

43 bytes of statically allocated RAM
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Flash ROM and Static Memory Usage

Memory usage by software module (bytes)

Module Flash ROM RAM (static)
snmpd.c 172 2
dispatch.c 1076 26
msg-proc-v1.c 634 6
msg-proc-v3.c 1184 30
cmd-responder.c 302 0
mib.c 1996 6
ber.c 4264 3
usm.c 1160 122
aes cfb.c 9752 40
md5.c 10264 0
utils.c 416 0
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Stack and Heap Usage

Maximum observed stack usage

Version Security mode Max. stack size
SNMPv1 – 688 bytes
SNMPv3 noAuthNoPriv 708 bytes
SNMPv3 authNoPriv 1140 bytes
SNMPv3 authPriv 1144 bytes

Heap usage

not more than 910 bytes for storing an SNMPv1 message

approximately 16 bytes for every managed object in the
MIB

if a managed object is of a string-based type, then
additional heap memory is used to store its value
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SNMP Request/Response Latency
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SNMPv1 Request/Response Latency
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MIB for Monitoring 6LoWPAN

IPv6 layer

^ v

InDelivers -+- -+- OutRequests

| |

InDiscards <--+ |

| |

InCompOKs .-->| |-->. OutCompReqds

InCompFails <--| | | +--> OutCompFails

InCompReqds ‘<--+ +<--’ OutCompOKs

| |

| +-->. OutFragReqds

InReasmOKs .-->| | +--> OutFragFails

InReasmFails <--| | | -+- OutFragOKs

InReasmReqds ‘<--+ +<--’ OutFragCreates

| |

| |

InMeshDelivers |<--. |

InMeshForwds | |-->. |

InMeshReceives +-->’ | |

| +--> | OutMeshHopLimitExceeds

| +--> | OutMeshNoRoutes

| | |

| | .<--+ OutMeshRequests

| ‘-->| | OutMeshForwds

| ‘-->| OutMeshTransmits

| |

InHdrErrors <--+ +--> OutDiscards

| |

InReceives -+- -+- OutTransmits

^ v

interface layer
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MIB for Monitoring RPL

-rplMib(1.3.6.1.2.1.XXXX)

+-rplNotifications(0)

+-rplObjects(1)

+-rplDefaults(1) # information about defaults

|

+-rplActive(2) # information about the active instance / dodag

|

+-rplOCPTable(3) # information about the OCPs supported

|

+-rplInstanceTable(4) # information about the instance

|

+-rplDodagTable(5) # information about dodags in the instance

|

+-rplDodagParentTable(6) # information about parent(s)

|

+-rplDodagChildTable(7) # information about children

|

+-rplStats(8) # statistic and error counters

|

+-rplMsgStatsTable(9) # per message statistics
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Evaluation of the Resource Requirements of SNMP Agents on Constrained Devices.
In Proc. of the 5th International Conference on Autonomous Infrastructure, Management and Security
(AIMS 2011), number 6734 in LNCS, pages 100–111. Springer, June 2011.

K. D. Korte, A. Sehgal, and J. Schönwälder.
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Motivation and Approach

Motivation

NETCONF (RFC 6241) provides a fairly feature complete
solution for network devices such as routers and switches.

Constrained devices may not be able to support
NETCONF fully — so how “small” can NETCONF be?

Approach and Assumptions

Define a proper subset of NETCONF that is appropriate
for constrained devices.

Assumption: On constrained devices, the amount of
configuration data is small and the need to interact with
multiple management systems concurrently is small.
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NETCONF Light (NCL)

Reduced Protocol Operations

NCL implementations are not required to support filtering on
<get-config> and <get> operations

NCL implementations are not required to implement the
<edit-config> operation (simply use <copy-config>)

NCL implementations only support the <running> datastore

NCL implementations may choose to only support one concurrent
session (makes <lock> and <unlock> trivial)

NCL uses a different XML namespace to identify itself

Things Unchanged

XML encoding of the configuration data (although XML format is
less relevant since there is no <edit-config>)

RFC 6241 framing (although not that easy to implement)
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NETCONF Light Implementation Experience

Characteristics

Contiki NETCONF Light implemented on AVR Raven motes
(Class 1 devices, 16 KiB RAM, 128 KiB Flash)

Uses NETCONF over plain TCP instead of SSH or TLS

Uses Contiki’s Coffee File System to store the configuration (and
we had lots of “fun” with its implementation)

Supports all the NETCONF operations as described before

Memory Consumption
≈ 13 KiB RAM (10 KiB Contiki, 0.5 KiB System Manager, 2.6 KiB NETCONF)

≈ 87 KiB Flash with ≈ 12 KiB reserved for the four files in the Coffee File
System

Further code optimizations are possible and file sizes in flash memory can be
adapted
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Network Configuration Protocol (NETCONF).
RFC 6241, Juniper Networks, Tail-f Systems, Jacobs University, Brocade, June 2011.
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OMA Lightweight M2M

Overview

Designed by the Open Mobile Alliance (OMA) for
managing/monitoring constrained devices.

Works over multiple transports (SMS, UDP).

Uses CoAP and DTLS for security.

Interfaces

Device Discovery and Registration

Bootstrap

Device Management and Service Enablement

Information Reporting
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Resource Model

OMA-TS-LightweightM2M-V1_0-20130314-D Page 22 (56) 

©  2012 Open Mobile Alliance Ltd.  All Rights Reserved. 
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20060101-I] 

7. Identifiers and Resources  
This section defines the identifiers and resource model for the LWM2M Enabler.  

7.1 Resource Model 
The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M 
Client is a Resource, and Resources are logically organized into Objects. Figure 3 illustrates this structure, and the 
relationship between Resources, Objects and the LWM2M Client. The LWM2M Client may have any number of Resources, 
each of which belongs to an Object. 

 
Figure 3 Relationship between LWM2M Client, Object and Resources 

Resources are defined per Object, and each resource is given a unique identifier within that Object. Each Resource is defined 
to have one or more Operations that it supports. A Resource MAY contain multiple instances as defined in Object 
specification..  

An Object defines a grouping of Resources, for example the Firmware Object contains all the Resources used for firmware 
update purposes. Each Object is assigned a unique OMA Management Object identifier and corresponding index which 
identifies an Object defined in this specification. The LWM2M enabler defines standard Objects and Resources and other 
Objects may be added to enable a certain M2M Services. 

Object MUST be instantiated either by the LWM2M Server or the LWM2M Client, which is called Object Instance before 
using the functionality of an Object. After Object Instance is created, the LWM2M Server can access that Object Istance and 
Resources which belong to that Object Instance. 

The LWM2M Server can perform Operation per Object Instance or Resource in Object Instance only. How to convey 
Operation data is defined in 7.3. 

The LWM2M enabler defines access control mechanism per Object Instance. Object Instances SHOULD have associated 
Access Control Obejct Instance which contains Access Control Lists (ACLs) that control what the LWM2M Server can 
access using what operations. How the mechanism works is defined in 8.2. Figure 4 shows which operations the resources 
support, and how Object Instances and Resources are associated with ACLs. In the example, Resource 1 supports read, write 
and execute, while Resource 2 supports only read operations. 

Overview

Resources always belong to an object.

Multiple resource instances possible.

Each resource can support one or
more operations.

Objects group resources (e.g.
firmware objects).

An instance must be created before
accessing resources.

Observations

A new registry for object and resource IDs is proposed.

Arbitrary nesting of objects/resources is not possible (e.g. tables).
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Device Discovery and Registration

LWM2M%
Client%

LWM2M%
Server%

Register,)Update,)De/register)

Operation

CoAP URI Payload Response

Register POST /rd?ep=<Name>&lt=<LTime>
Supported Objects

and Instances
2.01 Created

<loc>

Update PUT /rd?ep=<loc>&lt=<LTime>
Supported Objects

and Instances
2.04 Changed

De-register DELETE /<loc> 2.02 Deleted
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Bootstrap

LWM2M%
Client%

LWM2M%
Server%

Client'Ini)ated'Bootstrap'

Server'Ini)ated'Bootstrap'

SmartCard%

Flash%

Client Initiated

CoAP URI Response

Request POST /bs?ep=<Name> 2.03 Valid

Write PUT /<Object ID>/<Instance ID>/<Resource ID> 2.04 Changed

Server Initiated

CoAP URI Response

Write PUT /<Object ID>/<Instance ID>/<Resource ID> 2.04 Changed
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Device Management and Service Enablement

LWM2M%
Client%

LWM2M%
Server%

Read,&Write,&Execute&

Operation

CoAP URI Payload Response

Read GET /<Object ID>/<Instance ID>/<Resource ID> Data 2.05 Content

Write PUT /<Object ID>/<Instance ID>/<Resource ID> Data 2.04 Changed

Execute POST /<Object ID>/<Instance ID>/<Resource ID> Data 2.04 Changed

Create POST /<Object ID>/<Instance ID> 2.01 Created

Delete DELETE /<Object ID>/<Instance ID> 2.02 Deleted
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Information Reporting

LWM2M%
Client%

LWM2M%
Server%

Observe,(Cancel(Observa.on(

No.fy(

Operation

CoAP URI Options Response

Subscribe GET
/<ObjID>/<InsID>/<ResID>?pmin=

{minPeriod}&pmax={maxPeriod}
Observe

2.05 Content
(Observe Opt)

Notify
Async

Response
2.04 Changed
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Reading Material I

OMA.

Lightweight Machine to Machine Technical Specification.
Technical Specification Draft Version 1.0, Open Mobile Alliance, March 2013.
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(D)TLS as a Common Security Layer

9 SNMP on Constrained Devices

10 NETCONF (Light) on Constrained Devices

11 CoAP Access to Management Data

12 (D)TLS as a Common Security Layer

13 Summary and Directions
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Security Options

The old question: Which layer to choose?

Link layer
TinySec, ContikiSec, 802.15.4, . . .

Network layer
SIMWSN, IPsec/IKEv2 for Contiki, HIP DEX, . . .

Transport layer
Sizzle, SSNAIL, DTLS, . . .

Application layer
SNMPv3/USM, SSH, . . .

The old answer:

As usual, a secure end-to-end transport layer seems to
win for most use cases
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DTLS Performance on AVR Raven / Contiki

 






 







 












 


 


 





 


 


 


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(D)TLS Memory Usage on AVR Raven / Contiki

Component RAM ROM

Contiki mmem?,� 516 (3%) 238 (0.2%)
Contiki CFS? 92 (0.5%) 7502 (6%)
AES-CCM?,� 310 (2%) 14058 (11%)

HMAC-SHA256?,� 288 (2%) 3594 (3%)
TLS? 655 (4%) 12048 (9%)

DTLS� 847 (5%) 19342 (15%)

TLS Total 1861 (11%) 37440 (29%)
DTLS Total 1961 (12%) 37232 (28%)

Components marked with ? are used by TLS

Components marked with � are used by DTLS

Percentages relative to the memory of the AVR Raven
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Discussion

Lots of work going on with the goal to improve DTLS

New mailing IETF list: <dtls-iot@ietf.org>

Key management remains a big open issue

pre-shared keys?
raw public keys?
X.509 certificates?

Security bootstrapping remains an open issue

Group keys with non-tamper-resistant devices

. . .
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Reading Material I

A. Sehgal, V. Perelman, and J. Schönwälder.

Management of Resource Constrained Devices in the Internet of Things.
IEEE Communications Magazine, 50(12), December 2012.
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Summary and Directions

9 SNMP on Constrained Devices

10 NETCONF (Light) on Constrained Devices

11 CoAP Access to Management Data

12 (D)TLS as a Common Security Layer

13 Summary and Directions
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Memory usage on an AVR Raven with Contiki

Component RAM ROM Stack

SNMPv1+SNMPv3/USM 235 (1%) 31220 (0.2%) 1144 (7%)
SNMPv1 43 (0.2%) 8860 (6%) 688 (4%)
NETCONF 627 (4%) 22768 (11%) 678 (4%)
TLS Total 1861 (11%) 37440 (29%) 1834 (11%)
DTLS Total 1961 (12%) 37232 (28%) 2454 (15%)

Observation

Cryptography in software is a not a viable option

On some platforms, one can use the hardware AES
function of 802.15.4 radio (but usually no hash functions)

For certain deployments, it might make sense to use
Trusted Platform Modules embedded on the devices
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Resource Requirements – Bigger Picture

IPv6%
11.5%kB%ROM%/%1.8%kB%RAM%

RPL%
7.5%kB%ROM%/%
0.01%kB%RAM%

UDP%
1.3%kB%ROM%/%0.2%kB%RAM%

Security%(DTLS,%TLS,%etc.)%
36%kB%ROM%/%1.8%kB%RAM%

mDNS% SNMP%/%
Netconf%

TCP%
4%kB%ROM%/%0.2%kB%RAM%

HTTP%/%
CoAP% …%

5.4%kB%ROM%
0.9%kB%RAM%

8.7%kB%ROM%
0.1%kB%RAM%

4.0%kB%ROM%
0.2%kB%RAM%
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Recap: Introduction

⇒ Technology improvements enable us to connect devices to
the Internet

⇒ Many different use cases with very varying operating
environments and requirements

⇒ Resulting management requirements are deployment
specific

⇒ Terminology: device classes, constrained nodes,
constrained networks, constrained node networks

⇒ Lifecycle model
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Recap: Internet of Things Protocol Stack

⇒ Low power wireless interfaces (e.g., IEEE 802.15.4) with
certain limitations (datarate, frame sizes, . . . )

⇒ 6LoWPAN adaptation layer provides IPv6 support via
header compression and link-layer fragmentation

⇒ RPL IPv6 routing protocol establishes routing “trees” or
“forrests” centered at border routers

⇒ CoAP provides the basis to implement RESTful services
over constrained networks involving constrained nodes
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Recap: Management of the Internet of Things

⇒ SNMP can run fine on Class 1 devices

⇒ NETCONF is difficult to adapt for Class 1 devices

⇒ CoAP-based protocols (OMA DM) are still in early stages
of design

⇒ Security protocols require significant resources

⇒ Crypto-hardware is urgently needed
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Final Comments. . .

Wireless link technologies come and go

Embedded hardware technology evolves

Use old protocols in the Internet of Things?

Create a new protocol suite for the Internet of Things?

Many security related questions not solved

New ideas needed to better exploit network characteristics

Distributed algorithms with in-network data processing
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Reading Material I

A. Sehgal, V. Perelman, and J. Schönwälder.

Management of Resource Constrained Devices in the Internet of Things.
IEEE Communications Magazine, 50(12), December 2012.
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