
ROUTING MANAGEMENT APPLICATION BASED
ON MOBILE AGENTS ON THE INTERNET2

Angélica Reyes, Ernesto Sánchez, Antonio Barba 1

Dept. of Applied Mathematics and Telematics.
Escuela Técnica Superior de Ingenieros de Telecomunicación de Barcelona

Technical University of Catalonia (UPC).
c/ Jordi Girona 1-3, Module C-3, Campus Nord, 08034 Barcelona, Spain.

angelica@mat.upc.es; ernesto@mat.upc.es; telabm@mat.upc.es

1 This work has the support of CICYT

TIC1998-0495-C02-01

ABSTRACT
In this work, the design and development of a routing
management application based on mobile agents in an
Internet 2 (I2) environment is proposed. The
objective of the application is to provide a routing
based on the quality of service defined on a Service
Level Agreement (SLA). For this purpose, the
application obtains in each moment the best route
according to a traffic and congestion control. As a
consequence of the distributed operation scenario and
the requirement of real time functionality, the
application uses CORBA and intelligent mobile agent
technologies.

1. INTRODUCTION
Nowadays, the Internet only offers one Quality of
Service (QoS) level based on delivery of "best
effort”. Currently some applications do not work
properly with this network model, because of varying
delays and losses due to congestion.

Routing is one mechanism to alleviate congestion.
The problem is that the current Internet routing
protocols do not consider QoS explicitly, for example
Open Shortest Path First (OSPF) and Routing
Information Protocol (RIP), etc. are based on traffic
parameters, number of hops, level of congestion,
links, costs, etc. This paper presents a routing
management application from another point of view,
where the principal element is a QoS according to a
predefined SLA (Service Level Agreement). The user
terminal has a client where the QoS parametrs are
specified. This information is negotiated with the
server application. The server application, with the
information of the intelligent agents, defines the best
routing for the connection. In this case, the quality of
network service depends basically on two issues: the
sufficiency of network resources and the capability of
a traffic-handling mechanism to efficiently utilize the
available resources.

Routing is a mechanism implemented in the networks
nodes to collect, maintain and distribute information
about paths to different destination in the network.
The node may treat the packets differently based on
the field type of service (TOS) of the Internet
protocol version 4 (Ipv4) packet header. The basic
philosophy of Differentiated Services is to use the
TOS octet in a way that enables service
differentiation throughout the network, without
keeping track of all flows at every node.

To allow different levels of service in the network it
is necessary that the nodes have all the mechanisms to
control QoS. Our application uses the potential of
Differentiated Services to work with requirements of
different applications, different QoSs, and to allow
several tariffing levels in the Internet service use.

In this paper, the management Corba application
chooses paths in every I2 domain that follow the
packets. This choice is related to the contract between
customer and service provider that specifies the
forwarding service. This Service Level Agreement
(SLA) is stored on an integrated Oracle database.
Furthermore, an intelligent mobile agent application
(Grasshopper) provides the control information to
support this routing decision.

The article is structured as follows, the following
chapter describes the basic operations scenario for the
network management applications. Chapter three
describes the routing Corba-based application.
Chapter four talks about the traffic and congestion
agent application. Finally, in the fifth chapter,
different mathematical expressions are provided for
the validation of the proposed scenario.

2. NETWORK SCENARIO
2.1 Internet2
Internet2 aim to develop common standards and
support services for new classes of applications and
to encourage the development of advanced real-time
multimedia applications. Also, it will develop the

network infrastructure and service differentiation
needed to support them. Future applications may
require additional types of services. It is important
that the Internet2 design be flexible enough to
accommodate both currently anticipated requirements
as well as new requirements, as they become known.

When multiple levels of service are available some
form of resource control or cost accounting must be
implemented with feedback to the end user to ensure
that the appropriate level of service is requested.
Since the best charging model for Internet2 is not
obvious, Internet 2 will be used initially to develop
and test methods of cost allocation. The management
application proposed in this paper envisages the
possibility of tariffing approaches to resolve this
problem. The defined client application would
provide different QoS level and management requests
for at least five parameters: transmission speed,
bounded delay and delay variance, throughput,
schedule and loss rate.

2.2 Differentiated Services
The Differentiated Services architecture allows
supporting different quality of service levels in a
network. The ability to provide these services
depends on management tools used in router
monitoring. The Corba application proposed in this
paper is intended to facilitate policy management to
the nodes. Considering differentiated services, the
treatment of flows should be similar in every node
and over every hop to provide reasonable network
service. From this perspective, different Per-Hop
Behaviour (PHB) classes are proposed. This section
defines four PHB groups.

1. Class selector Per-Hop Behaviour (CS PHB): CS
PHB should give packets a probability of timely
forwarding that is not lower than that given to packets
marked with a lower class selector PHB, under
reasonable operating conditions and traffic loads.
Particularly CS PHB can conflict during congestion.

2. Expedited forwarding Per-Hop Behaviour (EF-
PHB): the objective of EF-PHB is to provide tools to
build a low loss, low latency, low jitter, assured
bandwidth. EF-PHB means a strict bit-rate control in
the boundary node and as quick forwarding in the
core routers as possible.

3. Assured forwarding Per-Hop Behaviour (AF-
PHB): AF-PHB can have a number of PHB classes
(N), each with a number of drop precedence levels
(M). It requires an active queue-management
algorithm.

4. Dynamic RT/NRT Per-Hop Behaviour (DRT-
PHB): The DRT-PHB group defines a system with
two PHB classes and six PHBs in each of the classes.
PHB classes offer two distinctly different delay

characteristics: RT class is for flows needing real-
time service, and NRT is for flows without strictly
delay requirements. Six importance levels offer wide
dynamics for various traffic-control and pricing
schemes.[8]

The lowest importance level of each PHB class forms
a best-effort service that has essentially the same
characteristics all the time.

2.3 Multiprotocol Label Switching (MPLS)
In the Corba management application, Multiprotocol
Label Switching (MPLS) is used in every domain to
make the routing easier. MPLS makes use of labels
for routing and forwarding packets, and potentially
allows a common approach to traffic engineering,
QoS routing, and other aspects of operation.

MPLS adds a 32-bit label, which has specific
information of routing in every IP packet. The label
allows address packets to the routers by
predetermined paths. In the edge router, a label with
information to alert the router about the next hop, is
added to every packet,. When the router sends a
packet to the next hop, this packet carries the label.
Consequently, the network does not need to examine
the packet header, only to read the MPLS label, to
add it in a routing table and specify the next hop. As
the packet crosses the network, if necessary, the
packet is labelled again to indicate a better path.

In a Differentiated Services Network, the MPLS label
should refer to a PHB class. Differentiated Services
use various PHBs to operate packets with different
traffic. To know which PHB is to be applied, it is
necessary to indicate the PHB in the IP header of
every packet. In this way, the same path and the same
buffer transmit packets of the same PHB class. [8]

3. ROUTING MANAGEMENT APPLICATION
3.1 Introduction
As it was seen before, it is clear now that I2
architecture will need a network and service
management platform in order to support new
services evolution and implementation. This
management platform should, among others,
permanently monitor the network resources allocated
to an application with a given QoS, perform actions
over these resources in order to dinamically adapt
them to the instantaneous traffic characteristics
allowing supporting the QoS parameters initially
agreed in the SLA. Furthermore, to implement
security mechanisms like user authentication and
establish a fair way to tariffing the service provided.

In order to reach some of the main objectives stated
before, the management application proposed in this
work could be divided in two parts: a CORBA –

based routing service management application,
database directory, and a intelligent agents – based
network resources management application.

The first part or server application will use the latest
CORBA version, to take advantage of interoperability
between different manufacturer platform whether
hardware and software, and facilities for clients and
servers in various programming languages [3]. It is
composed by a Oracle database in which the Service
– Level Agreement (SLA) between user and network
will be saved, as well as routing and network
resources availability information gathered by agents.
Every time a user tries to establish a connection
through the Network, he or she must to agree the
required QoS parameters with the management
application, using a SLA and through the edge router
at which the user is connected. The management
application consults its own database to know how
much available the network resources are and then
establish either the QoS parameters of user
application and the route the user packets must follow
in the network. This SLA is saved in the Oracle
database, the routing information is communicated to
the edge router and the connection is established.

Once the user connection has started, the
management application creates static agents inside
each node belonging to the followed path. These
agents will permanently monitor the QoS parameters
all along the connection, and mobile agents will be
sent from the management platform, through every
node in the connection, taking the information
gathered by static agents in return to management
application. If it detects some loss in the connection
performance, it will use management mobile agents
to take control over those affected network nodes
adapting routing algorithms and queue strategies.

Figure 1. Scheme of routing management application

Furthermore, the Corba management application uses
the Lightweight Directory Access Protocol (LDAP)

to provide to each router with the service disciplines
stored in the directories. The directory (Directory
Enabled Network, DEN), implemented by Oracle,
extends the information model to describe how the
network elements and services behave. A directory
service is a physically distributed, logically
centralized repository of infrequently changing data
that is used to manage the network. The directory
service that is used by the application provides a
means for locating and identifying users and available
resources in a distributed system. Directory services
also provide the foundation for adding, modifying,
removing, renaming, and managing system
components without disrupting the services provided
by other systems components. DEN’s use of LDAPv3
enables DEN schema information to be shared
between any directory and any client that uses
LDAPv3.

In order to explain with more detail the proposed
application environment, the next section enumerates
the different basic processes that work with the
management application. Figure 1 shows graphically
the routing management application environment that
is proposed in this paper.

3.2 Task Process of the routing management
application
The basic sequence of processes taken into account
between the Corba management server and the client
of the user terminal is as follows:

1. The terminal is connected with the edge router.
The terminal does an identification process.

2. The edge router consults information from the
directory (DEN) of the management application using
LDAP protocol.

3. The application uses SNMPv2 routers and these
routers can not support CORBA, for this reason, it is
necessary to use a proxy SNMP/CORBA. There are
some proxies between SNMP and CORBA, for
example AdventNet of SNMPv2, which allow
interactions between CORBA manager and SNMP
agents.

4. The edge router consults to the management
application server, the best point-to-point routing path
that the packets must to follow in the network
domain. The edge router sends to the application the
router source address, the router target address and
the customer reference.

5. The server makes an identification process of the
edge router and the identification and authentication
of the terminal.

6. The management Corba system consults the SLA
that the customer agreed with the service provider in
the Oracle directory. For this operation the
application uses the customer reference.

7. The Corba management application needs the next
information: QoS, Differentiated Service priority
policies, SLA and routing dynamics tables to obtain
the best path. This information is encapsulated in the
General Inter ORB Protocol (GIOP) request like a
component of the object reference from CORBA.

8. The customer exports the object reference as a
GIOP parameter request in the server object. This is
possible by the Portable Object Adapter (POA). The
ORB is saved on the Oracle directory database.

9. The management application obtains a routing
reference sequence of the core routers. The
application gives this sequence to the edge router.

10. During the transmission, the routing is based on
MPLS protocol, the management system sends to the
routers updated routing tables based on QoS criteria.

11. Also, during the transmission, mobile agents
transport parameters (packet-loss ratio, bandwidth,
delay average, etc.) and some delivery features (times
of birth, dead of request, reliability, and queue
management) to the routers in order to provide
differentiated services policies and traffic
management.

Basically, mobile agents during the connection
perform three functions. First, as depicted in figure 2,
they circulate between all the routers involved in each
connection gathering the monitored information from
static agents, and taking this data to the management
application in order to allow it to make the
appropriate decisions and measures, considering the
received data from agents and the connection QoS
parameters specified in SLA, like change priority in
queues, moving edges for each service in queues,
modifying routing strategies, etc. The second mobile
agents’ function is now clear: they must to take the
control by means of the Grasshopper application and
deliver the resulting information to the CORBA
application. Lastly, this application sends commands
to the appropriate devices, i. e. routers, in the
connection. Thus, there is a complete, immediate
control and monitoring over the QoS of the service
the Net is giving. The third function of mobile agents
is to maintain updated the routing data in the Oracle
Database in order to allow the management
application to generate route tables for new
connections. In order to perform this task, mobile
agents explore the entire Internet2 domain where they
are hosted, taking information about state of links and
routers and deliver it to the management application.

4. GRASSHOPPER
Grasshopper v2.0 is an OMG’s CORBA based
Distributed Agent Environment, completely
developed in Java by GMD FOKUS and IKV++. In
this case, it is used for the development of a

congestion and traffic management application based
on intelligent mobile agents. Also, Grasshopper is
MASIF[9] and FIPA[10] compliant. These features
guarantee the integration with other middleware
technologies, like Java and CORBA, and with third
party agent platforms MASIF compliant as well.
Therefore, this platform provides an integrated
environment for both client/server and mobile agent
technologies [11, 12].

4.1. Grasshopper Components
Grasshopper components are, essentially, Agents,
Agencies, Places and Regions. These components
will be defined in the following sections, as well as
the importance they have in the proposed application,
the role they play in Network routing and the reasons
why an intelligent agent based technology has been
chosen as an essential part of this application.

4.1.1. Agents

An agent is a piece of software that runs in a certain
environment, and it has some degree of autonomy.
Also, a mobile agent has the ability of migrate, i. e. it
can change his physical location in the network, in
order to perform his tasks locally, even in the middle
of a task execution.

Figure 2. Management Application and Agents.

There are two types of a Grasshopper agent: Mobile
and Static Agents. The later does not have the ability
of migrate between different network locations.
Instead, it is associated with a specific location and
performs specialized tasks.

In this context, either static and mobile agents
perform meaningful monitoring tasks in both routers
and their service connections.

Static agents contain permanently updated
information about all the variables associated with
routers: queues occupation, current throughput of

each link in the router, etc. Also, they maintain
statistical data from every connection as well, like
delays, packet loss rate, delay jitter, current service
rate, etc. in order to keep track on QoS parameters of
each connection. Optionally, they could perform
more sophisticated management functions, including
control features, like security aspects, multicast and
broadcast services management, alarms management,
etc. distributing either network and service
management tasks, just including a few code lines.

4.1.2. Agencies

Agencies, or Agent Systems, are the very runtime
environments for both mobile and stationary agents.

A Grasshopper Agency comprises two parts: Core
Agency and one or more Places. In the Core Agency
reside the minimal functionalities in order to support
agents’ execution, providing the following services:

Communication services, responsible of all kind of
interaction between all Grasshopper distributed
components. All interaction can be performed
through sockets connections, Java RMI or CORBA
IIOP.

Registry services, which allow to find any entity in
the environment, contributing with its management
tasks.

Management services, that allows to human user
perform monitoring and control tasks over places and
agents.

Security services, that comprises both internal and
external security mechanisms. The former, based on
JDK security mechanism, offers protection to
agencies resources against not authorized access. The
later assure secure remote interactions between
distributed components. Due to it, the confidentiality,
data integrity and mutual authentication between both
communication components can be achieved.

Persistence services, that enables the storage of data
and code inside agents, places and agencies on a
persistent medium for information recovery purposes.

As was noted before, this scheme requires one agency
on each Network device involved in either
transmission and control functions. Agencies in
routers will provide all functionalities needed by
agents in order to perform their monitoring tasks.
Agencies and their services provide mechanisms to
allow mobile agents to move between network nodes,
offer a communication path between mobile and
static agents in order to change monitoring data as
well as commands from the management application,
authenticating each agent arriving the node, assuring
that any not authorized agent could damage the data
integrity in static agents, without involving security
mechanisms from the protocol stack of the Network.
The Network does not need to be worry about this
security aspects: agencies do among each other.

Thereafter, this agencies system will allow a smooth
evolution toward a more complete, better supervised
and, therefore, more efficient management systems
and networks. Agencies, through their places (defined
in the following section), could provide more
sophisticated services to agents, allowing them to
perform specialized management tasks and
contributing in an efficient use of networks resources,
improving QoS offered to final users. For example,
since agents and agencies are monitoring traffic in
situ, i. e. on each network node, they could
collaborate in the calculation of service costs,
allowing the network to offer its services in a fair
way.

4.1.3. Places

Places reside in agencies and comprise several
resources sets that enhance the core agency
functionalities. Specific and specialized functions and
services are defined and implemented in places.

Places are Grasshopper entities very useful in the
application proposed in this article, because the core
agency can not be modified by the application
developer/manager: it offers basic functionalities and
services to agents. Instead, special functions or
services, those that could be useful to implement and
all future enhancements that should be included in the
application, must to be implemented as places inside
agencies. This special functions could be related with
cost calculating, alarms management, etc.

4.1.4. Regions

Regions are constituted by registries, in which both
agencies and their places are associated with by
means of their registration. Regions allow perform
management of distributed components in this
environment. Also, when an agent migrate to an
agency, it is automatically registered in the
appropriate region registry. Since an agent is able to
move between agencies of different regions, every
time an agent changes its location, the region
registries are updated. Thus, entities are able to locate
agents, agencies or places inside a region, and
connections between agents and/or agencies are
performed in a effective way.

In this context, each Internet2 Domain could be
associated with a Grasshopper Region, enabling the
network administrator to distribute network and
services management among all the network
components. For example, it would be possible to
monitor and control locally internal routers and their
queues, as well as the traffic circulating among them,
by specialized agents enabled to make decisions on
routing algorithms considering the actual traffic
behavior.

Furthermore, it would be possible to split very large
Internet2 Domains in several Grasshopper Regions in

order to facilitate and enhance its distributed
management.

This way, it is possible to establish work spaces for
those agents that explore de domain, i. e. the region,
in order to take network resources occupation
information and update the management application
routing database.

4.2. Why Agents?
At a first sight, it seems that introducing agents in a
network will introduce some drawbacks as well [13]:
as agents migrate between network nodes, they
inevitably will consume network resources, like
bandwidth, processor time, etc. Also, introducing
intelligent, autonomous code segments (agents) some
doubts about security aspects will be outlined.
Furthermore, it will be difficult to simulate network
performance due to undeterministic behavior of
agents.

However, these drawbacks are not as important as
they look like if compared with advantages that are
introduced with agents’ technology: In spite of
resource consumption by agents, the number of those
running among the network nodes limits this
consumption. It has been found that a small
population of routing agents improves QoS in certain
network environment [14] without significantly
overloading network resources. On the other hand,
besides security mechanisms inherent to Internet2
protocol layer architecture, Grasshopper introduces
its own security mechanisms, based on X.509
certificates and Secure Socket Layer Protocol, and
thus, security aspects depends on Grasshopper based
application implementation and should not be a weak
point in the Net.

Besides, in general, agent based network and service
management applications will offer more flexible and
adaptive software solutions, allowing creating and
supplying services in a more automatic fashion,
distributing and decentralizing management tasks by
migration of control agents to those network nodes
where they are needed.

On the other hand, Grasshopper features makes it an
ideal platform for network management applications
implementation, since it is MASIF and FIPA
compliant, and therefore is able to completely
integrate with CORBA and/or Java based
applications, or with other agents platforms;
Grasshopper interfaces and protocols, like CORBA
IIOP, MAF IIOP, RMI, SSL etc.

It could be argued that there is no need to employ
agent based technology to perform network nodes
supervision, QoS monitoring and routing information
gathering, because there are protocols that could do
this work as well, like SNMP. However, it can be
shown that using mobile agents in these tasks will

improve the management application performance
[15].

5. TRAFFIC AND CONGESTION CONTROL
In this section, the described agent scenario is
modeled and mathematically evaluated. The purpose
of this evaluation is to obtain design parameters for
the maximum delay allowed and/or the size of the
mobile agents.

The Grasshopper application is based on the use of
predictive agents distributed in the network nodes.
These nodes support agent algorithms with diverse
threshold conditions according to the traffic levels of
the network. The agents are integrated in an
intelligent network that tries to predict traffic and to
take measures in order to anticipate a congestion
situation in the network. There are static agents
allocated in the nodes and other elements of the
network, they are autonomous and communicate
among each other to adapt the traffic of the network.
Other agents are mobile agents and they are sent by
the management system through the connection paths
and nodes collecting information and co-operating
with the static agents in order to obtain the global
control in the network.

The static agents work in the switches to establish an
appropriate quality of service testing differently each
type of traffic. Four classes of traffic have been
defined, classified according to the priority level. The
agents will adopt different management policies
according to quality of service requirements defined
for each traffic class and priority level. Furthermore,
the results of the operations that perform the mobile
agent of the managed node are periodically
transferred to the agent of the manager node
(Grasshopper application) by means of intelligent
agents.

Figure 3. Network scenario with routing alternatives

Our framework incorporates the following features of
the real system to capture the basis of the mobile
agent architecture.

• Network management center as on-off source,
according to the existence or not of a mobile agents.

• Routers considered as buffers with a processor
on-off for the agents.

• Delays considered for the transmission and
propagation of the mobile agents through the links.

The management center waits the return of all the
mobile agents in each periodic cycle for the
processing of the global status of the network and to
obtain the policies for routing according to the quality
of service.

In the algorithm, an agent feedback scheme is
adopted. That is, each router sends a "stop" agent to
the source when its queue length crosses a high
threshold, and it sends a "start" agent when the queue
length drops below a low threshold. The source stops
sending traffic whenever at least one receiver has sent
a "stop" signal. It sends at peak rate otherwise.

In the figure 4 can be seen a buffer with variable
thresholds in function of the charge of messages in
the input of the node.

a*EDAGT b*EDBC

Service AGT

EDAGT

EDBC

LMB NA

Space reserved for
Other agents

 Fig. 4. Scheme of the node buffer of the core network with
the threshold levels according to a congestion situation.

- Delay of medium service according the mean length
of the buffer AGT (LMB) and the RATE.

- Tsum: Increase in b*(nº slots of available packets
/RATE).

- Tres: decrease in a*[(NA-LMB)/RATE].

- Trend: trend = d(EDAGT)/dt.

being:

- Mean length of the buffer AGT (LMB).

- Available space in the common buffer (EDBC) with
(a, b < 1).

- RATE of the port AGT of output (RATE).

- High threshold of the buffer AGT (NA).

The algorithm [17] in the zero-delay case, shuts off
whenever one of the routers queues tends to overflow.
That is:

• It is a lossless system, and achieves maximum
throughput of agents (or cells) for a given buffer size.

• Buffer occupancy evolves periodically with
alternation of one queue staying full and the other
queue staying below a full buffer until they exchange
position.

A formal description of the algorithm is as follows:

{),()(ttTrend ii µλ −= if ,)(0 ii NAtq << i = 1,2. (1)

=
=

1

0

)(

µ
λ t if 11)((NAtq = and)0)(1 =tµ or

22)((NAtq = and)0)(2 =tµ . Equal to 1 otherwise. (2)

In this case,)(tqi is the queue length at time t for
queue i; Trendi is the queue growth rate at time t.

)(tiµ is the instantaneous throughput of the on-off

router.)(tλ is the cell rate with which the source
sends traffic at time t, Nai is the buffer size for
receiver queue i.

Note that, although the)(tiµ 's appear in the
condition (2), the information comes from the
feedback on the queue size, and no additional
information is assumed.

The algorithm in the zero-delay case forces
)()(tt iµλ = when)(tqi stays full. Notice that is says

exactly "management center listen the slowest router"
because, while queue 1 stays full and queue 2 is
below a full buffer, which means that during this
period router 1 has a lower capability that router 2,
the source listens to router 1.

Furthermore, during the period in which 11)(NAtq = ,

the growth rate of queue 2 is)()(21 tt µµ − where

)(1 tµ and)(2 tµ are independent on-off Markov
processes. Thus the two queues can be decoupled
except at the boundary points, and the stationary
distribution of each queue can be studied as a fluid-
flow analysis.

Figure 5. Notation for a router on-off model.

Probability of being on:
ba

a

+
=Φ

Instantaneous throughput capability:)(tµ

Channel capability, constant: µ

Average throughput capability: [] µµ *)(Φ=tE

In case of algorithm with zero delay propagation
delay, routers with the same µ and Φ . Condition

121 == µµ and Φ=Φ=Φ :21 .

For { }2,1, ∈ji , we have:

2121

)Pr(
ccNANA

cx
xq i

i +++
+

=≤ , for iNAx ≤≤0 (3)

2121

)0Pr(
ccNANA

c
q i

i +++
== (4)

2121

)Pr(
ccNANA

cNA
NAq jj

ii +++

+
== (5)

where

()

 Φ−
+

Φ
Φ−=

ji
i bb

c
)1(

1 with ji ≠ (6)

The throughput of the routers is the same and is given
by

2121

21))(1(
ccNANA

cc
i +++

+Φ−Φ
−Φ=δ (7)

the average buffer occupancy is given by

{ } ()

+++

++
=

2121

2

2

1

ccNANA

cNANA
NAqE jji

ii (8)

Figure 6. Mathematical model of the proposed scenario.

The effect of the propagation delay has not been
considered in this case, however would be taken into
account in the control capability of the source policy.
Furthermore, the delay makes the system non-
Markovian, and the fluid-flow analysis cannot be
applied directly.

The obtained expressions have been defined in two
routing paths with an only node for each route.
However the results are useful for a general system
with k-arcs (Routers) and different routing options. In
[16] we can obtain more details about the
construction of this kind of transitive graphs without
loops.

6. CONCLUSIONS
The described architecture provides an improvement
in the performance as a consequence of the use of
mobile intelligent agents in a distributed network
management environment. The CORBA and
Grasshopper applications are multiplatform and
provide a fast management for large networks. Both
are secure environments, flexible to changes and
allow a good resource management. The MASIF and
FIPA standards provide also an open and
interoperable system with other domains.

Furthermore, the LDAP/DEN architecture allows to
handle user data, network elements, management
policies, service disciplines, etc. Finally, the use of a

QoS criteria allow to the network management
CORBA application provide the best routing decision
according to the SLA of each subscriber.

7. REFERENCES

[1] Real Time CORBA Joint Revised Submission.
March 1999

[2] CORBA Messaging Joint Revised Submission.
May 18,1998

[3] CORBA Version 3,
http://www.omg.org/news/pr98/component.html

[4] Internet2, http://www.ietf.org

[5] I2 QoS, http://www.internet2.edu/qos/

[6] M. Carlson, W.Weiss, S.Blake, Z.Wang, D.Black,
E.Davies. “An Architecture for Differentiaded
Services.”, RFC 2475. Dec. 1998

[7] Internet Engineering Task Force, “A conceptual
Modelfor Diffserv Routers.”, March 2000.

[8] Kahevi Kilkki. “Differentiated Services for the
Internet.”, Macmillan Technology Series. 1999

[9] The OMG MASIF Standard, http://www.fokus.
gmd.de/research/cc/ecco/masif/index.html

[10] FIPA, Foundation for Intelligent Physical
Agents,
http://drogo.cselt.stet.itlfiDa/sDec/fiya98/fiya98.htm

[11] IKV++ Grasshopper, a Platform for Mobile
Software Agents,
http://www.ikv.de/yroducts/grasshopper/

[12]IKV++ Grasshopper User’s Guide,
http://www.grasshoPDer.de/download/uguide.pdf

[13]N. Minar, K. Hultman Kramer and P. Maes,
“Cooperating Mobile Agents for Dynamic Network
Routing”, Proceedings of the 1st Hungarian National
Conference on Agent Based Computation, 1999.

[14] T. White and B. Pagurek, “Artificial Life,
Adaptive Behavior, Agents Application Oriented
Routing with Biologically-Jnspired Agents”, In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCQ-99), July 1999.

[15] A. Barba, “Gestión de Red”, Edicions UPC,
1999.

[16] S. P. Mansilla and O. Serra, “Construction of k-
arc transitive digraphs.”, Discrete Mathematics. Ed.
Elsevier.

[17] A. Barba, “Performance of Routing Management
based on agents.”, UPC Internal Report. 2000.

