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Several studies have shown that traffic carried by
wide area networks presents self-similar (fractal)
behaviour, which can severely impact system
performance. This paper analyses the statistical
properties of traffic generated by a commercial video-
on-demand (VoD) system. Some parameters are
measured and analysed, being the most important the
packet arrival distribution and its correlation, and the
degree of self-similarity found in the traces. Two tests
with different client profiles (representing typical load
scenarios for VoD services) have been performed.
From the analysis of the traces we conclude that a
high degree of self-similarity can appear in the server
local area network, and that its intensity is directly
related to the client profile, being the most typical
scenario also the one with higher self-similarity. Our
conclusion is that the impact of self-similarity on
video distribution systems over the Internet is
important and must be considered.

���,1752'8&7,21

The Internet is a highly complex system capable of
carrying a great amount of traffic, generated by
"classical" services (such as FTP, Telnet, web, e-mail,
etc) and "new" applications. Some examples of these
innovative applications are electronic commerce,
collaborative tools for tele-education and tele-
medicine, video on demand, and videoconference.
This kind of applications usually includes
transmission of audio and video streams (both live
and/or previously stored). Among the possible
generators of real time multimedia traffic on the net
we can find on-line shops (promotion), webcams,
Internet telephony applications (NetMeeting,
                                                          
1 This work has been supported by Spanish government under
contract TIC1998-0495-C02-01

CUSeeMe), or network radios (with the help of free
servers from Real Networks and Microsoft). And this
is only the beginning: audio and video streams are
expected to be the most important traffic sources on
the Internet in short time.

Multimedia streaming transmissions are known to be
great resource consumers (in a network, resources are
mainly link bandwidth, nodes’ computation time and
buffer size). Therefore, introduction of new services
must be planned carefully, from both the hardware
and network points of view. Aggregation of several
video streams may overload links, break servers
down, or cause congestion at routers.

In order to plan the deployment of high-scale audio-
visual streaming services, traffic models are essential.
Good, accurate descriptions of the behaviour of the
connections, in terms of bandwidth and burstiness, are
needed by traffic engineers to properly dimension the
service. Recent studies show that Poissonian or
Markovian models, which are the classical ways of
characterising data sources, do not correctly describe
network traffic. Better, more accurate models are
based on ORQJ�UDQJH� GHSHQGHQFH (LRD) and VHOI�
VLPLODULW\ properties, which are related to fractals.
Self-similarity and LRD properties have been found
in almost every Internet service, and are especially
intense in video streaming. It has been shown that
variable bit-rate coding can contribute in a high
degree to the self-similar characteristics of a video
stream, and that aggregation of many streams results
in an increment of LRD.

This paper focuses on the traffic generated by a
commercial video-on-demand system, very similar to
those mentioned before. To our knowledge, no study
about the aggregation of low-bandwidth video sources
has been performed until today (work has been done
on high-quality MPEG and MJPEG streams). We
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want to determine if self-similar characteristics are
present in such systems.

The rest of the paper is organised as follows. First, a
brief introduction to traffic modelling is presented,
followed by the essential points to understand long-
range dependence and self-similarity. Then some
details about self-similar analysis and parameter
estimation will be given, finishing the mathematical
background. A description of the test scenario will
follow, with analysis of the data obtained in the
measurements, comparing them to what we intuitively
expected to happen. The paper ends with some
conclusions and open research lines for the future.
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Internet, as any other packet-switching network, relies
on the concept of statistical multiplexing. This
technique is based on the aggregation of several data
streams from different users, which can be served
with much less resources than those needed if all
users were considered one-by-one. In order to
optimise resource allocation and take advantage of
statistical multiplexing, network engineers need
mathematical expressions that describe accurately the
statistic behaviour of users. These expressions are
called WUDIILF�PRGHOV [7] and have been used for a
long time, since the early studies of Erlang for
telephone traffic. Queue analysis applied to buffer
dimensioning on IP routers is another example of the
importance of having accurate traffic models. With
the coming of multimedia applications, the need for
good models has increased. For example, an accurate
traffic model that describes precisely the temporal
evolution of bandwidth required for an IP telephony
application would be very helpful for network
designers.

Multimedia streams have an important impact on
network performance, due to their higher quality of
service (QoS) requirements in terms of bandwidth,
absolute delay and delay variation (also known as
MLWWHU). Video streaming not only demands a high
bandwidth2, but also is very restrictive on the MLWWHU.
These requirements are even more critic in the
surroundings of the video source, since the server
local network becomes a bottleneck that can be
overloaded if a great number of users try to download
the streams simultaneously (as will happen if we want
to offer a massive video distribution service). An
incorrect dimensioning of the server machine and
network facilities may result in a poor service: large

                                                          
2 from 30-50 Kbit/s for low-quality home transmissions, to several
Mbit/s for high-quality videoconference.

delays, high packet loss, and an unacceptable overall
quality. What is more: if we underestimate the
resource consumption for the streaming service, the
rest of our traffic can suffer severe congestion.
Therefore, traffic modelling is an essential issue in
network design and performance.

Traffic modelling of data networks has usually
assumed some characteristics that make the analysis
easier: client statistical independence, infinite number
of sources, exponential inter-arrival time, etc [1]. That
is why Poisson and Markov models are so widely
used. These models provide closed, elegant
mathematical expressions for aggregated bandwidth,
queue delay and other important parameters.
However, recent studies [2,3,7,12] have shown that
reality is not so easy: Markov- and Poisson-derived
models work properly if applied to telephone calls,
but not so well for data traffic.

���/21*�5$1*(� '(3(1'(1&(� $1'� 6(/)�
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Leland et al. [3] showed that the use of models based
on Poisson lead to an underestimation of traffic
burstiness on Ethernet local area networks, and
proposed a new family of models, with fractal
properties. This was one of the firsts of a large series
of papers dedicated to self-similar processes and its
suitability for network traffic modelling. Further
studies proved that although Poisson is still valid for
modelling the arrival of user sessions (i.e. TELNET
connections, FTP control connections [2]), for both
local-area and wide area network traffic the
distribution of interarrival time and packet rate clearly
differs from the classic models [3]. Analyses of real
traffic traces showed that auto-correlation of both
temporal series (interarrival time and packet rate) do
not decay to zero as fast as Poisson and Markov-
based models. This means that there is a high
relationship between the samples of the process even
at high time lags. This property is known as “long-
range dependence”, and can be mathematically
defined in terms of the summability of the auto-
correlation function.

'HILQLWLRQ� �. $� SURFHVV� LV� FRQVLGHUHG� ORQJ�UDQJH
GHSHQGHQW�LI�LWV�DXWR�FRUUHODWLRQ�U�N��LV�QRW�VXPDEOH�
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On the other hand, classic models are considered as
short-range dependent (SRD) stochastic processes,
with a sumable auto-correlation function.
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Long-range dependence is tightly related with
burstiness. LRD traffic sources tend to generate large
bursts of information followed by periods of silence,
with a highly variable duration (some models assume
infinite variance).

The generation of LRD network traffic models has
been an intense research field during last years. The
most used are called self-similar models [2-4]. These
models are able to detect LRD, and can be
characterised with a single parameter: the Hurst
parameter3, H. Self-similarity and LRD have often
been mentioned in the literature as equivalent terms,
but they are not. Self-similar processes are not the
only models capable of capturing LRD behaviour
[2,7], and as we will see not all self-similar processes
(in the strictest definition) present LRD.

�����6HOI�VLPLODU�SURFHVVHV��GHILQLWLRQ

There are a number of different, not equivalent,
definitions of self-similarity. The standard and more
generic one states that a continuous-time process
< ^<�W��W∈7`� is VHOI�VLPLODU (with self-similarity
parameter +) if it satisfies the condition

10,0,),()( <≤>∀∈∀= − +D7WDW<DW< +
G

   (3)

where the “d-equality” means "both terms have the
same finite-dimensional distributions" [4]. The idea
behind the definition is that a self-similar process
"appears" to be the same (in statistical terms) at any
temporal scale. It is the same if we study it at
microseconds or hours; it will always look similar.
The value of H for a self-similar process varies
between 0.5 (no self-similarity at all) and 1.0 (highest
self-similarity).

The concept of self-similarity in  (3) and LRD are not
equivalent. A process <� satisfying (3) can never be
stationary, thus cannot present LRD (auto-correlation
function can only be calculated for stationary
processes). If stationarity of increments of the process
is assumed, then the process can present LRD. Self-
similarity defined as (3) refers to the behaviour of the
finite dimension distributions in different time scales,
while LRD is related to the behaviour of auto-
correlation functions in stationary processes.

�����([DFW�DQG�DV\PSWRWLF�VHOI�VLPLODULW\

The next vision of self-similarity, more appropriate in
the context of standard time series theory, involves a
stationary sequence ; ^;�L����i ≥�`� Let X(m)(k),

                                                          
3 Named after H.E. Hurst, who first applied self-similar models to
hydrology.
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be the aggregated sequence corresponding to the level
of aggregation P, obtained by dividing the original
series ;�L� into non-overlapping blocks of size P and
averaging over each block. The index, N��identifies the
block.

If ;�L� is the increment process of a self-similar
process <�L� defined as (3), (i.e. ;�L� <�L����<�L��,
then if for all integers P,

     )()( )(1 L;PL; P+
G

−=                    (5)

'HILQLWLRQ� �. $� VWDWLRQDU\� VHTXHQFH� ;� �L��� L≥�� LV
H[DFWO\�VHOI�VLPLODU�LI�VDWLVILHV�����

'HILQLWLRQ� �. $� VWDWLRQDU\� VHTXHQFH� ;� �L��� L≥�� LV
FDOOHG� DV\PSWRWLFDOO\� VHOI�VLPLODU� LI� ���� KROGV� DV
P→∞�

Similarly, we call a covariance-stationary sequence
;�L��� with i≥1, H[DFWO\� VHFRQG�RUGHU� VHOI�VLPLODU or
DV\PSWRWLFDOO\� VHFRQG�RUGHU� VHOI�VLPLODU if P��+�;� �P�

presents the same variance and auto-correlation as ;,
for all P, or as P→∞ [3-6]. Although these
definitions are not in general equivalents is interesting
to note that when the distribution of the series is
gaussian, the definitions of self-similarity and second-
order self-similarity are equivalents.

�����3URSHUWLHV�RI�VHOI�VLPLODU�SURFHVVHV

For a process ;�L�� H[DFWO\� RU� DV\PSWRWLFDOO\� VHFRQG�
RUGHU�VHOI�VLPLODU:

- 9DU��;�P��� �σ� �P�β, P ≥1, implying LRD in their
aggregated process, with H = 1-β/2.

- U�P��N�� �U�N�� for N�≥0 (exactly) or, U�P��N��→� U�N��
as N→∞ (asymptotically), preserving the
correlation structure for different time scales.

Summarising, a process ;�L� is H[DFWO\� RU
DV\PSWRWLFDOO\� VHFRQG�RUGHU� VHOI�VLPLODU� if the
aggregated processes ;�P� are equal to ;�L� or
asymptotically indistinguishable, at least considering
the auto-correlation function.

We have said that self-similarity on (3) and LRD are
not equivalent, but these new definitions (especially
second order self-similarity, restricted to the
behaviour of auto-correlation function) we can use
either LRD or self-similarity indistinctly when
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analysing our real traffic data traces. We only have to
be sure that series under study follow gaussian
distributions (a usual property).

���(67,0$7,21�2)�6(/)�6,0,/$5,7<

As we have seen before, the fact that self-similar
processes are described with a single parameter,
(Hurst parameter H), is one of their most interesting
characteristics. There are many H estimators [4,8],
most of which assume second-order self-similarity on
the process. We can distinguish two classes of
estimators, the ones based in the periodogram and
maximum likelihood-type estimators; and the
graphical estimators, that exploit LRD properties. The
first ones has been shown to have desirable statistical
properties, and can also provide confidence intervals
for the self-similar parameter +, but require a known
probability density function (PDF) [8]. Graphical
estimators calculate + by fitting a simple least-
squares line through different kind of plots. This
makes them inadequate for a more refined data
analysis (e.g. confidence intervals), but allow us to
work with unknown processes with a difficult to
express or unknown PDF.

For the study presented in this paper two different
estimators were used (after a literature scan), in order
to ensure correctness of the analysis.

�����6FDOLQJ�RI�PRPHQWV

Suggested in [4], this method is based on the
behaviour of the absolute moments µ�P��T� of the
aggregated time series.
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If ; is self-similar, µ�P��T� is proportional to Pβ�T�; that
is, ORJ�µ��P��T� is linear in ORJ�P� For a fixed q:

  ).(log)()(log )( T&PTTP += βµ      (7)

The exponent β�T� is linear with T and H. Therefore,
regression on the logarithm of the sample absolute
moments will derive a estimation of + through β.

�����5HVLGXDOV�RI�UHJUHVVLRQ

This method involves several steps. It is based in the
sample variance of the residuals obtained by fitting a
least-squares line to the partial sums within every
block the series is broken. It has been demonstrated
that for large aggregation level, the resulting number
is proportional to P�+ for Fractional Gaussian Noise
[8]. Thus if the result is plotted on a log-log plot
versus P, we should get a straight line with a slope of
�+, and + will be easily estimated.

�����9DOLGDWLRQ

We have validated our own implementations of the
algorithms against synthetic traces (generated with a
known +) and real data (comparing results of other
works).

���7(67%('�'(6&5,37,21

The analysis presented in this paper has been
performed with the help of Microsoft Windows
Media Load Simulator. Windows Media (WM) is a
suite of tools designed to provide audio and video on
demand over best-effort IP networks [11]. Among the
members of the family, we can find WM Encoder,
WM Server, and WM Load Simulator. The audio and
video streams are stored in files previously coded, or
generated in real time, by the Encoder. In both cases
the Server is the responsible of managing clients’
requests, generating RTP-style streams, and
monitoring the transmission.

WM Load Simulator (LS) emulates the behaviour of
several clients accessing a WM Server for playing or
browsing video streams. The tool was developed for
giving to server’s administrators an estimation of the
capabilities of their machines: CPU, I/O and storage
system characteristics. LS stresses the machines to the
point of breakdown, in order to determine the
maximum sustainable load. This information allows
the administrators to dimension appropriately their
hardware for the video-on-demand service. From the
traffic engineering point of view, the Load Simulator
is interesting because each simulated client opens a
connection to a Windows Media Server, which serves
the requests with real traffic. This allows us to capture
and analyse an aggregated stream of real traffic and
study its statistical properties (self-similar behaviour).

The profile of clients’ activity against the server is
configurable by Load Simulator’s user. For example,
some clients play the movies from the beginning to
the end, while others seek forward and backward for
specific scenes within the film. The client may simply
open the file, decide that is not interesting, and close
it. WM Load Simulator allows the definition of
profiles that contain different quantities of each client
class. For our traffic study, we have considered the
following different categories of clients:

• 3OD\: users who play entire streams from the
beginning of the film to the end. The traffic
generated in this case will consist in constant bit
rate bursts of approximately the same size, which
can be periodic (since they open another file as
soon as the previous is finished). Intuitively, we
can foresee that this kind of behaviour will not
show self-similar properties (H ≈ 0.5).
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• %URZVH: these simulate "browsing users". They
play for random lengths of time, seek, stop,
pause, and sometimes close the files. Therefore,
they will generate a very bursty traffic that will
appear as an aggregation of runs of random
duration, adding self-similarity to the traces (with
a high H, close to 1.0).

• 6HHN. These ones attempt to seek forward and
backward in a stream. The traffic generated in
this case will also be bursty, but not as much as
"browse clients", showing less self-similar
properties (a lower Hurst parameter, between 0.5
and 1.0).

Figure 1 shows the test scenario. Two Windows NT
computers were used as WM Server and Load
Simulator, while a third one (Linux powered)
captured the packet stream with tcpdump. The traces
were later studied with our self-similar analysers.

Server

Packet
filter

Windows Media Load
Simulator Clients

Ethernet
10 Mbps

Figure 1. Testbed description.

Our main aim was to measure the influence of client
profile in the self-similar properties of the aggregated
traffic. In our analysis, we tried to simulate traces that
could represent extremes of self-similar behaviour:
H≈0.5 and H≈1.0. Table 1 shows trace profiles.

&OLHQWV
�FODVV 7UDFH�� 7UDFH��
Play 30 60

Browse 10 3
Seek 10 3

Table 1. Client activity profiles for the traces.

We expect to have very different statistical and self-
similar properties for both traces. In trace 1, although
the difference between %URZVH/6HHN clients and
Players is not so high (20%-20%-60%), the traffic
generated by this profile is very bursty and it was
chosen for study because of its probable self-similar
properties. On the other hand, trace 2 offers a
scenario where almost all the clients belong to the

3OD\ class. That is why the aggregated traffic shows a
higher regularity, which goes against self-similarity.
Table 2 shows general data from the traces.

7UDFH�� 7UDFH��
Start time 12:44h 15:25h
Stop time 14:29h 16:25h
Total time 1h 45min 1h 0min
Total data
exchanged

1.5 Gbytes 934 Mbytes

Table 2. Summary of data from the traces.

Any interested reader may have noticed that an
essential piece of information is missing: the
distribution of the command generation process for
browse and seek clients. Actually, this is the source of
burstiness and its (probable) associated self-similarity.
The authors have searched for it in Microsoft,
unsuccessfully.

���5(68/76

As usual, our first study of the traces is just a visual
inspection. Figures 2 and 3 depict the temporal
evolution of the number of packets per second
generated for both traces.
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Figure 2. Trace 1.
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Figure 3. Trace 2.

time

Packets per second vs. time, trace 2

Packets per second vs. time, trace 1
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First, notice the similar average packet generation rate
(approximately 360 packets/second), which validates
our election of profiles. This is not a trivial detail.
Traces with different means should not be compared.
That is why the total number of clients in both
profiles is different, since QRQ�SOD\ clients generate
more traffic than SOD\ ones. The main difference
between both plots is the higher burstiness4 in trace 1.
The second one has a more compact and stable shape,
with much less variance, as expected.

�����9LVXDO�SURRI�RI�VHOI�VLPLODULW\

The best way of determining if a trace is a good
candidate for self-similarity is the "visual proof", that
consists on the comparison of the data at different
time scales [3].
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Figure 4. Visual proof of self-similarity.

As can be seen from figure 4, trace 1 appears similar
at any scale, while trace 2 tends to smooth as the
aggregation factor grows. Therefore, we can conclude
that trace 1 will probably have a high H parameter,
while H for trace 2 will be approximately 0.5 (no self-
similar at all).

                                                          
4 Note the different scales in figures 2 and 3. Trace 2 is "narrower"
than trace 1.

�����$QDO\VLV�RI�SDFNHW�DUULYDO�UDWH�GLVWULEXWLRQ

Now we will examine the empirical probability
distribution of packet arrival rate. It is important in
order to validate our Hurst parameter measurements.
In a previous section, we saw that some self-similarity
analysers only perform well if the traces follow the
normal (gaussian) distribution.

Figures 5 and 6 show histograms for trace 1 and 2. As
we can see, both traces tend to a gaussian distribution.
Actually, the fit appears to be good except for some
pronounced deviation, especially intense in the first
histogram. Although these deviations, the traces were
assumed as compliant with the requirements of the
analysers.

Histogram of packet arrival rate
(packets per second), trace 1.

Figure 5. Histogram, trace 1.

Histogram of packet arrival rate
(packets per second), trace 2.

Figure 6. Histogram, trace 2.

The main difference between both plots is that the
second histogram has a narrower curve (less variance)
due to its client activity profile. As we have seen in
figure 3, samples from Trace 2 tend to the mean value
without too much variability. This behaviour is
translated into the histogram as a much narrower
curve around the mean, which confirms our first
assumption about the higher burstiness of the first
trace.
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Next, we studied the correlation structure of packet
arrival rate for both traces. Assuming that the number
of packets per second ;� is a random process, with

sample mean ;  and sample variance 26 , then the
auto-correlation function can be estimated for all lag N
as in (8) [12].

Figure 8 shows the auto-correlation U�N� of the packet
arrival plotted as a function of the lag N, for both
traces.
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The figure shows how auto-correlation structure for
trace 2 decays faster than the other, which even for
high N values it remains over zero. Trace 2 tends to
zero very quickly, while trace 1 decays very slowly
and, in fact, does not converge to zero This behaviour
suggests that trace 1 is long-range dependent and
trace 2 is short-range dependent. However, we also
have to consider that these traces are real ones so they
probably might have mixed traffic with SRD and
LRD properties simultaneously, although LRD is
dominant in the case of trace 1.

-0,4

-0,2

0

0,2

0,4
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0,8

1

0 200 400 600 800 1000

Trace 1

Trace 2

k

Auto-correlation

Figure 7. Auto-correlation function for packet arrival
time series.

Another interesting effect is the periodicity of r(k) for
both traces. Actually, we expected to have some
periodic behaviour because of the simulation
characteristics, due to the cyclical behaviour of SOD\
clients (open, play, close, wait, and begin again). The
periodicity effect is more accentuated (and with a
higher frequency) in the second trace because its
profile contains twice the quantity of SOD\ clients.

�����$QDO\VLV�RI�VHOI�VLPLODULW\

Now that we know the distribution and the auto-
correlation structure of the traces, and having detected
long-range dependence in the first one, it is time to
quantify self-similarity. Table 3 includes the statistical
results obtained from our analysers.

7UDFH�� 7UDFH��
H (Moments) 0,898 0,462
H (Residuals) 0,908 0.481

Table 3: Estimation of Hurst parameter.

The data obtained are coherent with our intuitive
previsions, and with the previous analysis of long
range dependence. Both analysis methods agree on
the degree of self-similarity included in the traces. For
trace 1, H≈0.9 (which means a high grade of self-
similarity), while trace 2 is close to 0.5 (meaning no
self-similarity at all).

���&21&/86,216�$1'�)8785(�:25.

The purpose of this paper has been to establish a
relationship between the behaviour of the clients of a
video-on-demand commercial system, and the self-
similarity of the aggregated traffic created by their
requests. Several studies have been carried in the field
of single variable-bit-rate video sources
characterisation, but to our knowledge nobody studied
the aggregation of constant-bit-rate video streams,
taking into account the behaviour of the customers.
Our test included a commercial video server widely
used, fact that gives generality to our study.

After analysing statistical distribution, auto-
correlation, and self-similarity, we have been able to
establish a relation between the client activity profile
and the statistical properties of the flow. Our main
conclusion is that the seeking and browsing
possibilities of a real video-on-demand system can be
very powerful sources of self-similarity. This effect
appears in the server’s connection, affecting the
design of the video service provider’s network, and
should be considered when deploying a VoD service.
Our study has been limited (by hardware availability)
to about 60 clients, but in real systems (such as pay
per view video, tele-education, or electronic
commerce) several hundred clients or even thousands5

are expected to aggregate at the server connection. It
is known that aggregation reinforces self-similarity.
Therefore, real situations will probably be burstier
than results presented here (with a higher H
parameter).

Being a preliminary study, some further work could
be done. Our first priority is to find out the
distribution of command generation from seek and
browse clients. This information has not been
published by Microsoft, and it is very important in

                                                          
5 Microsoft release notes for Load Simulator mentions 800-1000
users per server. Servers can join in clusters for load balancing.
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order to establish the source of the LRD and self-
similarity properties we have detected in our study.

The traffic profile of an authenticated system (pay per
view, for example) is an unexplored issue. Our
intuition tells us that the amount of traffic generated
during the authentication process could be negligible
if compared with the complete transmission of a
movie, but what will happen if the seeking clients
must also be authenticated? In this case the
authentication traffic could be as important as the
browse information, strengthening self-similarity
(burstiness would increase).

Other open paths for study is the influence of network
protocols (ARQ mechanisms, TCP error and flow
control, congestion avoidance) in the aggregated
traffic, as well as link layer medium access
mechanisms (MAC) interaction with traffic at higher
layers. It has been shown [13] that protocols may be a
very important traffic shaping factor, and self-
similarity could be a side effect of protocols
interaction with the data sources.

Finally, it would be interesting to extend this study to
audio sources and analyse aggregation of Internet
telephony and radio clients (for example, NetMeeting,
RealPlayer and WinAmp), and its impact on network
performance. Each application has a different
buffering and streaming strategy, which can add or
extract self-similarity to the background traffic.
Another interesting application is Napster6, a MP3
file sharing system that is creating a huge amount of
traffic on the Internet. This application is also
important because, different to asymmetrical audio
and video distribution systems, it allows a
bidirectional and symmetrical data flow. We expect
similar results like the ones we have presented in this
paper, maybe with even more intense LRD and self-
similarity.
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