

1

Server concept for user dr iven management of networked
multimedia applications

Thomas Merz, Andrea Bör
Institute of Communication Networks, Munich University of Technology

80290 Munich, Germany, e-mail: { merz, andrea} @lkn.ei.tum.de

ABSTRACT

The challenge in presenting and managing multimedia
content in Local Area- or Wide Area-Networks is to
reconcile the information probably hosted on different
servers with different operation systems and different
system configurations and conditions. To do this with
the help of a kind of portal solves the problem to get
access to the information and programs, but is still a
very static method without any user driven
management.
In this paper we will discuss a solution to add user
driven management to networks with distributed
applications, which need not to be explicitly designed
for being remotely controlled. The aspects of
scalabilit y and security are a main part of this
approach and will be treated respectively in the
following sections. The aspects of high availabilit y
and load balancing are mentioned briefly due to being
integrated until end of year 2000.

1. INTRODUCTION

A lot of institutes at universities have a lot of
interesting and informative know how in the form of
executable programs, written in programming
languages like C, C++ or nowadays more and more
JAVA, normally written as relatively isolated
applications. The input methods of these programs are
limited on interacting with their GUI (Graphical User
Interface), which is commonly based on the specific
client and having a lack of communication
possibiliti es with global management services.
The problems caused by this kind of organization are
presented in the following section 1.1. Our solution to
these upcoming diff iculties is ill ustrated in 1.2.

1.1. The challenges

The problem is to find a way to present these
programs and ideas to an interested audience coming
from inside (the own faculty or university) or outside
from places all over the world and to let them interact
with these applications. There are two main aspects to
consider, when trying to find a specific application or
information about an application:
• You have to know where to search for
• You have to know what to search for
The where may be an UNIX-user’s home directory, as
it is the standard for the educational branch, or if it is
a special application, designed for Windows (NT,
2000,...) on a specially dedicated server, “hidden”
somewhere in the cloud of the institute’s LAN.
The next question is what to search. If you have no
specific clue or keyword, it’ ll be an admirable act if
you can find what you are looking for, using a LAN-
wide search engine for example. Even if you find
what you were looking for, it is the question, if you
found all the hints you need to understand what a
specific application is supposed to do. Maybe you
now want to execute this or another application, to see
how it’s working, but normally you wouldn’ t be
allowed to, due to technical or security restrictions.
Consider you are an institute’s internal, doing
educational work in giving lectures, and you want to
show your students during the lecture how some of
the learned stuff works in practice, maybe realized by
a student in his/her diploma thesis. You now have to
have access to execute and to configure the
application, you have exactly to know where a
specific configuration file is to be found, what
parameters to change and so on. Something will
always go wrong in the precipitance of a lecture if you
don’ t know the application very, very well .

2

1.2. The solution

The solution might be a kind of portal dedicated to be
a contact point to all (or opened to the public)
programs and information available. But in this case
you only give access to static kind of information. So
there is no way to adapt to the function by a change of
parameters to one’s (remember the staff member
giving a lecture!) actual needs. Consequently you
need a system which assists you in maintaining on the
one hand a portal with search and linking functions
and on the other hand a complete management system
for editing the published information by the portal, for
configuring your application’s behavior, for defining
access privileges to your application and so on.
A hybrid functionality of portal and management
system is realized by KIARA, a server of the
“ Institute of Communication Networks” [1]. In order
to keep things simple for everyone having to adapt
his/her own application to the management service or
to enhance the system, we decided to avoid using
predefined services like CORBA, which premise of
having to modify existing codes of programs.
A disadvantage of our solution in comparison with
existing ones is, that we manipulate the remote
controlled application from “outside”, whereas a
service like CORBA does it from the application’s
side. In this way we might have some diff iculties in
realizing some very special control actions.
Another reason for using our own system instead of
existing services is the need of having a management
application, which can work with (nearly) any
operation system and program independent of the
language it was written in (C, C++, JAVA,...), without
having to deal with the system administrator of each
dedicated server to require for additionally software
components like ORB (Object Request Broker).This
simply causes a higher level of involved people.

The remainder of the paper is structured as follows.
Section 2 gives an overview of the KIARA system
architecture. The technical details of our solution are
ill ustrated in Section 3. Some security aspects are
outlined in Section 4. In section 5 we describe the
principles of communication between the KIARA
system and the multimedia applications. We conclude
with a summary of the system’s features.

2. THE SYSTEM „ KIARA”

2.1. The hardware & basic software of KIARA

KIARA temporary exists in the form of a single Linux
driven server [2] connected to the institute’s LAN. It
can be reached via the Internet from anywhere in the
world and can interact as management server with any

connected server, if the “dedicated server part” of the
management software is installed there. In the long
run, it is considered to expand KIARA to a high
availabilit y and load balancing system. The high
availabilit y will be explained in section 5 of this
paper.

As shown in Figure 1, KIARA supports the user
(students, institute’s members,...) with basic software
requirements like:
• Web server [3]
• Database [4]
• Programming languages like JAVA including

special add-ons [5], [6]
• XML-Server (eXtended Markup Language),

which is in use for some other projects [7]
• WML/„WAP” (Wireless Markup Language,

Wireless Application Protocol) as used for
internet access of mobile systems
Some parts of the KIARA-management system
are accessible via WAP.

• Management system, as described in this paper
• SSL (Secure Socket Layer) for secure

communication [8]

Figure 1. The basic services on KIARA

2.2. The management par t

The main aspect of KIARA is the management
system, giving the public and especial authorized
users or user groups appropriate rights and privileges
on certain programs and information (see Figure 2).

The authorization trends to three different kinds of
users explained in this section:
• „public”
• „admin”
• „ root”

Not mentioned in the following sections is a group of

3

users, which have parts of an administrator’s rights.
The responsible administrator and the supervising
root restrain the privileges of these users to running
programs in a defined way. They are slightly more
powerful than the rights of a „public” user. These
rights are normally given to students who need to run
an application for doing research for their own work.

Figure 2. KIARA-management areas & user types

2.2.1. The public part

The public part is the area of the management system,
which is open to everyone. No privileges are needed
to execute functions in this area.
Everyone is allowed to use a database driven search
engine, (using special search terms) to find opened to
the public programs and information. The database
entries display first basic information about the work
and offer the possibilit y to link to more detailed
information like a work’s homepage and/or the
author’s email -address. Whether the author only
offers information about his/her work or the
possibilit y to execute his programs is managed in the
„Admin” -Section.

2.2.2. The „ Admin” -Part

An administrator (in the following sections mostly
called “admin”) usually is the author of published
work on or via the KIARA-system.
After identifying (login and password) the admin is
privileged to modify the information on his work
published by the public portal function. Furthermore
he/she is able to configure his application, even if it is
running on a different server and operating system, to
view the load and traff ic his/her application is causing
(only if the application is running on KIARA
physically or the server’s administrator has installed
the appropriate software). He/She is able to configure
the usage (generally yes/no, only privileged users etc.)
of his/her applications.

2.2.3. The „ Root” -Part

The management-„root” can but need not to be the
physical root of the KIARA-system. Mentioning the
root in connection with the management system
means the person or group, having total control and
access to the managing system and its interior
functions. The root usually has all the possibiliti es an
admin also has, with the difference, that he/she is able
to alter the information and configuration of all users
whereas an admin only can modify his/her work.
The root is privileged to
• activate, alter or delete administrator accounts of

the management system
• control the administrator via traff ic- or load–

supervising
• control the monitoring functions of the whole

system (each user entering the system can be
traced throughout his/her whole visit, even if
he/she is only using public functions)

• alter the configuration of the management system
itself, which is a very powerful function.

3. TECHNICAL BACKGROUND

The sequencing parts describe the technical concepts
and means of the server KIARA and the management
system.

3.1. The HTML-Sur face

The surface is presenting the KIARA management
system in HTML (Hyper Text Markup Language, the
standard web interface). Due to the idea of giving a
system requiring nothing but a standard HTML-Client
like Netscape’s Navigator or Microsoft’s Explorer,
instead of having to deal with slowly loading JAVA-
Applets on the client side, HTML has the advantage
of being slim and thus following very fast in loading
and acting.

3.2. The relational Database

The Database (MySQL [4]) running under KIARA’s
operation system Linux [2] is one of the interior and
most important parts of the whole system. It stores the
authentification parameters for a user’s current
session and the user’s basic privilege parameters
(login, password). Furthermore it stores the content of
all public or privileged accessible information, like a
project’s info texts, links, application names etc. Only
some very basic parameters (e.g. the connection
parameters for the basic use of the database) are
stored in not public accessible plain ASCII files (see
section 5 for details).

4

3.3. The Perl Programming Language

Perl [9] is one of the programming languages used in
the management system. This language is normally
used when it comes to the need of having to interact
from the surface to the operating system, e.g. when
having to check the server’s load, starting external
functions, etc. The only thing needed by Perl, which
might be critical on some system, is the package DBI
(for database connects), but which can be easily
installed within minutes by a system administrator, if
it isn’ t already running, as it is a standard package of
Perl 5.

3.4. The PHP Programming Language

PHP3 [10] is usually used when it comes to read or
store content in interaction with the database. The
easy and very fast database interface and simple
integration in the HTML environment makes it an
ideal part of the system and helps to make the whole
management system very scalable.

3.5. The usage of cookies

Cookies are used on the client side to store some
information about the user and parts of his/her
temporary session identity (ID). With the help of
cookies it is possible to trace the behavior and
interests of a user, as well as to link him to the
KIARA system and under special circumstances to a
special dedicated server a program is running on
controlled with the help of KIARA’s management
system. More details about this topic will be
discussed in section 4 and 5.

3.6. The usage of shell scripts

Shell Scripts are sometimes used to make some
filtering operation easier, especially when it comes to
manipulation of a Linux’ program’s output (e.g.
output of “netstat” and “ tcpdump” for load and traff ic
monitoring)

3.7. The usage of cronjobs

The cron daemon is a basic tool in every Unix derived
operation system. With its help, it is possible to start
and stop programs in certain intervals (hour, minute,
day, ...) or at special points of time.
The KIARA management system makes use of this
behavior in numerous ways:
• Updating the day’s statistical traff ic results to the

database
• Updating the day’s load results to the database

• Updating the day’s tracing statistics to the
database

• Cleaning temporary log files
• Restarting parts of the system which parameters

cannot be changed while being in service.

3.8. KIARA’s scalabili ty

Due to its “HTML-Perl-PHP” framework, the
management system is easily scalable.
Despite to programming languages like Java or C, in
which normally one routine is used to do all the work,
the functions here are totally separate of each other.
It’s no big deal to remove one function (e.g. because
of a security hazard) and all the other parts of the
system will do their jobs as usual, it’s just needed to
change the executing rights of the function, so that the
management system isn’ t allowed to execute it any
more. This can be done in seconds.
On the other hand if you want to add a function, you
do not need to compile the whole code new and you
don’ t have to work in the existing code.
Just write your function in Perl or PHP3, copy it to
the appropriate directory, make a link to it in the
menu bar and add the existing security-function with
(“ include” /” require”).
The function is now properly integrated to the
management system.
The security model will be discussed in the following
section.

Figure 3. Including the security function

4. SECURITY FEATURES AND FUNCTIONS

A major aspect of each system offering restricted
functions is of course its security. In the following
paragraph is explained how KIARA’s security model
works.

5

4.1. The usage of SSL

The SSL (Secure Socket Layer) protocol [8] is
activated in the standard case and offers encrypted
communication between the client and the server.
Basically SSL assures the user that his/her
confidential data (passwords, ...) are transported
unreadable for the public from the client to the server
and vice versa.

4.2. The usage of the database

The database stores the user’s permanent
identification permission parameters like login and
password. Each time a user logs in, the password is
encrypted and will be compared to the encrypted
correspondent part stored in the database. Analogical
it happens to the login, with the exception, that the
login is stored in plain format in the database. It’s also
checked if the client is using the correct port, which
means if SSL is activated or not. If any one of these
three parameters fails to return a true value, the
system will not let the user log in.
As soon as all compared and retrieved data is
considered as true, the following process is activated:

• Temporary session parameters are stored in the

database
• Physical identification parameters of the client-

server connection are stored in the database
• Part of the session’s and physical parameters are

stored as cookies on the client side.
• Some session, physical and content parameters

are copied to a second database, which is used, if
a program should be started on a different server
than the KIARA management system is running
on.

• For additional security of stored data, only local
programs (running on KIARA itself) can
communicate with the original database.
The content of the second database is world wide
readable, because no critical data is stored here.
The reason for the second database will be
discussed in the next section.

Every time a protected program is called an
automated identification process is activated. The
delivered identification parameters from the client are
compared to the ones stored in the database. If any
part of the process fails, the function will not be
executed and the session will be terminated.
The identification schedule is shown in Figure 3.

The database is also used to give applications the
possibilit y of using load balancing [11]. Every server,
used by the KIARA-system for executing programs,

can be used to send updates of its own workload to
the database. This happens with littl e programs
running in the background of such a system. These
programs detect the server’s load every minute and
send the result to the KIARA management system,
which stores the data in the database.
A program like the institute’s „Simulation Manager” ,
a basic server program for remote simulations, can
read these up to date information, and, if a new thread
is demanded by its applet, it can tell KIARA to start
this thread on the server with the least average
workload (and a suitable operation system for this
program, of course).

4.3. The usage of t ime slots

Time slots are a part in the security model used to
restrict the duration of a certain session to a
configurable value (manageable by the management
root). If an attacker gets access to valid session
parameters and manages to convince KIARA that
he/she is a legal system user this status will only last
for the predefined duration.

Figure 4. Identification process when requesting a
protected function in the Admin- or Root-Area

4.4. The PHP3- & Perl Secur ity Functionali ty

The security features described in the paragraph
above need to be implemented, so that the functions,
which depend on a security model, can be served
well .
To achieve this goal three slightly different functions
exist in the KIARA management system, two of them
written and adapted for the use with any Perl-program
(one of them for the use on external servers, see next
section for details), and one for the use with any
PHP3-program. To implement a new program you
have to do the following steps:
• You need to know in which area (user group,

admin, root) it is considered to work
• The next step is to integrate („require”/

„ include”) the security function in the code of the
new program.

The program is now protected with the appropriate
rights.

6

4.5. Basic Configuration Files

Some basic information on the configuration of the
management system need to be stored in an other way
than as content of the database, because it contains
among primary information on how to connect to the
database(s), where to find certain programs etc. In a
normal Apache web server environment it is no big
deal to be able to read files created or modified by the
“Httpd” program. If this happens an attacker to the
system is able to see communication internals like
passwords, addresses, ports etc. To avoid this hazard
the “Httpd” -daemon runs as a special user within a
special user group. Only this user has read- and write-
access to the configuration files.
To be sure no one uses the Apache user to execute
some malicious programs, it is advisable to give no
one the right to publish his/her work in the standard
htdocs-Directory, which would premise to give this
person a login password for the “Httpd” -daemon user.
Users of the system have to store and to execute their
programs within the structure of their specific home
directories. If they do so the executable programs like
C- or JAVA- programs run under the rights of this
user and have in this way no access to the basic
configuration files, which are, as previously
mentioned, only readable from the “Httpd” -daemon
user.

5. COMM UNICATION BETWEEN KIARA
AND THE APPLICATION

In order to start, stop or configure a user’s
application, it is necessary to manage a
communication between the client and KIARA for
identification purposes, between the client and the
server the application is running on for controlli ng the
program and between KIARA and this server once
again for authorization reasons.

5.1. K IARA and remote applications

The communication between the client and the server
is described in detail i n section 4. The difference to a
normal managing act, which happens to be completely
local on KIARA itself, e.g. if the public accessible
portal information of one’s work is altered, it might
now be necessary to keep in mind that the application
is running on a complete different server. For this
purpose KIARA has a kind of intelli gent re-routing
program running. When the user logs to his KIARA
account it looks up its database and in this way knows

which home directory on which server and which
local user is dedicated to this KIARA user.
This re-routing mechanism is needed if the user wants
to
• edit a configuration file
• start an application
• stop an application

All other management steps (e.g. adding a new
configuration file to the desktop menu) are done
completely local in KIARA in interaction with the
original database.
If a new application or configuration is added it is put
to the existing ones in the appropriate database field.
The database accepts only those entries, which are
part of the user’s physical home directory tree.
To make the changes accessible from the remote host,
the user now has to log out and login once again.
The reason therefor lies in the security model.
It allows only KIARA based (“ local”) applications to
read from the original database. All other hosts can
get their information only from the mentioned second
database, which is updated if the user logs in.

5.2. Options for remote management

Assuming the identification was successful, the
management system offers the user a desktop in which
he/she is able to maintain the account itself and the
applications the user has configured. These
possibiliti es are shown to the connected user so he
can choose what to do. Users with administrator’s
rights for this application are able to:
• Alter and create configuration files of the

program
• Define what files may be altered by a standard

user
• Define special configurations in which a certain

user can start and modify the behavior of the
program by editing the program’s configuration
files, which are linked to his account.

• Control an application’s load and traff ic

Users with „user” rights for this application are able
to:
• Edit configuration files and use them to run a

certain program.
• Start programs in certain configurations (if

defined so in their profile by the administrator)

All steps in managing the application are done with
the help of a universal interface, which is able to
identify the structure of a certain file. It can e.g.
identify the type of value assignment to a variable

7

(„=” , space character, tabulator character,...), how a
commentary looks like and so on. Using this
knowledge an input area with different fields and
commentary parts (in which the purpose of each
variable

�
 value pair should be explained) is created

in which the user can make appropriate changes. If it
happens that a file type can not be displayed correct, a
so called “Profimode” exists, which opens the
configuration file like a normal text editor to make
changes directly to the file without the indirection of
the input interface. The starting and stopping of a
program is also done with the interface-based system,
in which the programs to execute and its parameters
can be defined. The only action required on the user’s
side is to add the configuration file or application to
his/her personal managing menu. The underlying
technical details are managed by KIARA without
participation of the user.

5.3. Performing actions on the remote server

Actions performed directly on the remote server are,
as mentioned in 5.1, the altering of a configuration
file and the starting/stopping of an application.
An “application” can also be a tool to set a display
variable to the right value, to execute shell scripts
remotely and so on. These features assume the remote
controlled server has installed the “KIARA dedicated
server part” under the appropriate user’s home
directory. As most of the management of a remote
application is done locally on KIARA in cooperation
with the database there must be an interface between
the “ local” and the “remote” management.
This interface is actually activated when a user
follows the link of a configuration file to edit or an
application to start or stop (The links are generated
from the database entries). The KIARA management
system reroutes the user to the database known server
and home directory in which the “dedicated server
part” of the KIARA management software is installed.
In the same moment it transmits some authentification
parameters of the current session to the client, which
the client has to send back to the “dedicated server”
every time he wants to perform an action directly on
the remote host.
The remote host checks these parameters with those
of the copied second database on KIARA (it also does
some internal tests like time slot recalculations) for
permission checking. After a database check, if the
file or application, which the user wants to execute or
alter, is assigned to him there, the appropriate
execution or file altering function is performed.

Figure 5. Client communicates via the dedicated
Server with the KIARA management system

6. CONCLUSION

In the previous chapters we presented our solution of
a multi functional server structure. One main
emphasis is to make the system easily scalable,
universally applicable, secure and redundant against
failures. Although being predominantly used for
remote simulation programs written in the
programming language JAVA, we set up a system that
is not linked to one specific kind of application, in
order to be expandable and suitable for future needs.
Further upcoming developments will even expand and
improve KIARA. As some parts of the system for
example offer the possibilit y to be controlled with the
help of a HTML browser and WAP capable devices,
it would be a valuable feature to generate these
contents with the help of XML. Furthermore the
aspect of load balancing and first of all high
availabilit y need to be reconsidered and enhanced to
build a stable and reliable system which might not
only be used at and by the Institute of Communication
Networks, but at other institutes as well .

8

REFERENCES

[1] KIARA online
 http://kiara.lkn.e-technik.tu-muenchen.de

[2] The Linux Operating System
 http://www.linux.org

[3] Apache Web Server

http://www.apache.org

[4] The MySQL Database Server
http://www.mysql.org

[5] The JAVA Programming Language
 http://www.javasoft.com

[6] JAVA with Apache

http://java.apache.org

[7] XML with Apache
http://xml.apache.org

[8] SSL with Apache
http://www.apache-ssl.org

[9] The Perl Programming Language

http://www.perl.com

[10] The Hypertext Preprocessor (PHP)
http://www.php3.de

[11] Load Balancing
http://www.linuxvirtualserver.org

