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ABSTRACT like Hopfield network, to overcome these difficulties [2],
[3], [4] in order to provide an alternative method for opti-
This paper is concerned with multi-user detection (MUDMization. Unfortunately, the Hopfield model can get easily
in mobile communication systems. Its purpose is to give gtuck into a local minimum, therefore it may not yield the
insight to the problems of Code Division Multiple Accesgptimal detection, although its performance is good enough.
(CDMA) and to propose novel algorithms for multi-user deFhe authors have developed a brand new detection scheme,
tection. MUD has gained much attention due to the posamed as Stochastic Hopfield Network (SHN [9]), where a
performance of traditional (Rake) receiver techniques mhise term is added to the Hopfield recursion, which helps
code division multiple access systems. CDMA is standatg-escape from local optimum thus improving the perfor-
ized as the modulation scheme for third generation UMTgance.
(Universal Mobile Telecommunication Standard), as a conhe paper is organized as follows: Section 2the multi-
sequence it is essential to deal with the problem of deteger detection problem is formulated and the basic nota-
tion. In this article neural network based multi-user detegon is introduced. IrSection 3.2he applicability of Hop-
tion algorithms are proposed, which seem to have supefiefd neural network is highlighted. I8ection 3.3he new
performance. These algorithms are compared through sichastic neural network is introduced. $ection 4the
ulations in various environments. performance of the proposed detection algorithms is ana-
lyzed by extensive simulations.

1 INTRODUCTION

2 CHANNEL MODEL
Traditionally, existing code division multiple access sys-
tems like 1S-95 does not apply multi-user detection. TheS@e of the major attributes of CDMA systems is the multi-
systems can be described as low bit-rate communicatjsig usage of the same frequency band and time slot. Despite
capabilities employing lumpish and resource wasting sythe interference caused by this multiple access property, the
chronization procedures to provide proper background {@gers can be distinguished by their codes. Let us investi-
single-user detection based on Rake receiver. The systegig a DS-CDMA system, where ttiga symbol of thekth
of the future like UMTS is planed to provide a high speegser is denoted by, (7). Applying BPSK modulation, the
(up to 2 Mbps) communication, where perfect synchronizaatput signal of the:th user, denoted by, (t), is given as
tion cannot be assured. On the other hand the better uti-

lization of radio resources has become more and more im- M

portant which opts against using such wasting mechanisms. a(t) = VEx Y bi(i)si (t —iT), ()

It seems that traditional single-user detection should not be i=—M

applied any more in future systems. where s;(t) is the continous signature signal associated

Multi-user detection has received considerable interestténthe kth user,T is the time period of one symbol and
recent years, due to the sharp increase of code division ma®/ + 1) is the size of a block.E), refers to the energy
liple access mobile communication and its successful copithe kth user. For the sake of generality we assume multi-
mercialization. Nevertheless, transmitting information relpath propagation channel, so the channel distortip(t)
ably over a radio channel proved to be a major challengdey, the kth user is modeled by a sum of simple attenuators
owing to multipath fading and other factors which can dend phase shifters:

teriorate the performance. Thus, the task of performing op-

timal detection is of great importance, which is still one of L

the central issues of the corresponding research. Traditional hie(t) = bt — i), (2)
methods which carry out the simple matched filter detection =1

[1] yield poor performance in the case of numerous or difthereay; is a complex value representing attenuation and
fering power users. On the other hand, to implement thbase shifting on thih path,r; is a delaying factor on the
optimal Bayesian decision meets severe combinatorial lifth path,L;, is the number of paths of usér

its. Some authors proposed the use of neural architectulidg received signal can be written as follows:



the third term related to the first one in (5) becomes so sig-

K nificant that it can absolutely deteriorate the performance of
r(t) = Z hie(t) * i () + n(?)- (3) the SUD, namely it cannot be assured better bit error ratios
k=1 as ten percent. The same degradation happens when the so
Substituting (1) and (2) in (3) we get called near-far effect arises. In this case one or more users

with higher power may jam the others’ signal. As a conse-

K M Ly . . .
. = . . quence, for making proper detection we have to deal with
r(t) = ; 4_§:M ; Eyouabr(@)sk (¢ = iT = ) +n(t), e interference terms in the output of the matched filter.

whereK is the number of users using the same barfd) 3 MULTI-USER DETECTION

is a white Gaussian noise with a constafit spectral den-

sity. Assuming that the users’ codes, the signal energies & have seen that traditional detection fails to achieve reli-
channel attenuation factors and delays are perfectly knoaie performance since itignores the presence of other users
(coherent detection), the conventional Rake receiver (chanthe same cell. Hence we need a more sophisticated ap-
nel matched filter) generates the following output for thgroach to handle the task of detection in multi-user environ-

kth user andth symbol ment.
L. o0 3.1 Optimal Multi-user Detection
bi(i) = v Ekzo"” / r(t+4T +)si(t)dt. (4) Optimal Multi-user detection is based on Bayesian deci-
=1 sion. In this section we elaborate on the optimal solution

. . . in a more detailed manner since it helps to understand how
The traditional smgle-user detector (SUD) works n thfworks, and why the sub-optimal solutions shows worse
same manner as in sole-user channel and therefore it sim-

oly calculates the sign of expression (4) yieldi@@m " " “performance. Using the output of the channel matched fil-

o= his. h i v deteri hid ter all operations will be processed on the vector of dis-
sign{by.}. This, however, will severely deteriorate the desere received valued(= [bx (i)]). To obtain optimal so-

tector's performance, which can be seen from the 1EOllm’\"rﬂﬁ’tion based on the Bayesian decision for the data sequence

formula: b = [b(i)] one wants to chose the maximal probability
Inter symbol interference binary sequence conditioned by received data series. This
Useful signal probability is described in the following expression ([1]):
() = e ® + > belioweli—g
(i) = bi(D)owi (0) +. Z _ e()ewi(i = 3) + ﬁopt =arg max Priylby| =
j=—M, j#i ye{-1,+1}V -
Interference caused by others —arg  max Pr {X N b}
Colored noise ye{-1+13¥ | pr {E} ’

K M
DD bl =0+ (i), (5)

assuming uniformly distributed binary source we get
m=1, m#k j=—M

el

wherepy.,, is defined as follows: ~opt
b =arg max N =
Li Lnm ye{-1+1} Pr{y}
pkm(l) =V Ek V Em Z Z ARl Omn
=1 n=1 P B ) 7
we e B @
. / k() S (t + iT — T + Tt )dt (6) Inour model theé is Gaussian (4, 5), which entails that
—o0 _ 1 (b—Ry)”(b-Ry)
and Flbly )= 4(\/%0)1\7 Py 202
Ly o0
N . hereR = [Ry;] is @ symmetric quadratic dominated ma-
= Ex t+iT + t)dt whereL kl _ )
(i) F ; Ukl / n(t+i i)k () trix generated by, (¢) in a proper manner. Since the op-

timization variabley can be found only in the exponent and

being still a zero mean white Gaussian noise due to linédrother values are constant we only deal with the numer-
transformation. ator in the exponent. Leaving out the constant terms the
In (5), the effect of the second term can be cancelled by wfpression reduces to
known techniques e.g. channel equalization. Unfortunately

if the system load - defined as the number of users in the BoPY _ arg  mi

o HT H
system per processing gain - tends to be hundred percent, Xe{_1£1}f< [ 2y’b+y Ry|. (8)



To put it in words the task of optimal multi-user detectdderer(k)-s are independently distributed random variables
is to find - e.g. with exhaustive search - the optimal binawith zero mean and'(z, k) distributions. Furthermore, we
sequencey() which maximizes the quadratic form of (8). assume tha#'(z,k) = 1 — F(—=x, k) is symmetric and
The advantage of this solution is simply its perfection, howim,, , . o(k) =0, whereo (k) :==E{v(k) — E {1/(]{;)}}2,
ever, unfortunately, the search for the global optimum @afich means that the variance of this random variable is
(8) usually proves to be rather tiresome, which prevenisoled down withk. One should note, that SHN has a
real time detection (its complexity by exhaustive searchdschastic state transition rule because of the noise term.
~ 0(2%)). Therefore, our objective is to develop powerful

novel optimization techniques which paves the way towaféieorem 1. With the above mentioned conditionsutgr)
real time multi-user detection. the operation of the stochastic neural network asymptoti-

cally coincides with the state transition of the Hopfield net.

3.2 MUD by Hopfield Net Proof. The probability that the SHN will follow the opera-

The Hopfield net is a system applying strong feedbaEEn of the normal HN can be calculated as follows:

mechanisms, which yields a desired dynamic behaviour
governed by the connection matrix. Its state transition rule

is given by the following formula: = Pr{v(k) < —X)|X; < 0} Pr{X; < 0}+

Pr{normal operatiofk} =

K +PI‘{Z/(]<J) > —Xl|Xl > 0} PI‘{Xl > O},
Yi(k+1) =sign ZleYj(/f)*Vl K _ -

= whereX; = > 7", W;Y;(k) — V; is the term determining
the operation of the normal Hopfield net. Taking into ac-

whereY (k) is the output of theith neuron at théith time  count the symmetry of the underlying density function one
instant. V; denotes the decision threshold related toithe can obtain:

neuron andV;; is the connection strength between the out-

put of thejth neuron and the input of théh neuron. The Pr{normal operatiofk} = Pr{v(k) < |X;|} =
state vector is updated in a sequential manner, based on the

rule! = kmod K. Then the Hopfield net will maximize =F(|X], k),

the following quadratic form (often referred to as LyapunoI

Vis clear thatimy_, . F(| X[, k) = 1, so the SHN will ap-
proximate the operation of the normal Hopfield net (k)
tends to be zero. O

function):

_vT _ovT
JX(k) =Y (F) WY (k) -2V Y (k). (10) Our objective is, however, that the stationary state of this

This optimization process can get stuck in one of the |od’g|ndom state trr]ansitri]on rule wil )gielgl _the global thtimfum'
optima, though. One must note the visible similarity pa? [10] the authors have succeeded in proving that if one

tween (8) and (10). To use the Hopfield net for multi-us8Pes

detection we have to observe the similarity between those 1
equations and chose the parameters in (9) in the following F(z) = 11 ooz (13)
manner:

distribution to generate values ofk), then the global opti-
mum has the maximal stationary probability [10]. Although
Wi, = —pi it is still a question how to decrease the variance of the noise
W, = 0 elements in neurons which depends on the value dhere
~ has not yet been any analytical proof, but it is clear that the
) Vi = by (11) greaterx is, the smaller the variance afbecomes.
bINN - = lim Y (i)
To avoid local minima, we develop a Stochastic Hopfie% SIMULATION

Net (SHN) which will be introduced in the next section. We have compared the performance of three different detec-

) ) tion schemes, such as the single-user Rake receiver, Hop-
3.3 The Stochastic Hopfield Net field neural network implementation, and the stochastic
The idea of SHN is to add some noise to each state transitri]oerllJral network by extensive simulations. Unfortunately we

. s were unable to simulate the performance of the optimal de-
in order to escape from the local minima [9]. Therefore, the P P

original state transition rule of Hopfield net (9) is modifietgeCtor (the global rn_lnlrnla of thle a_ssoc:}ate_d qhuadratlc forrkr:)
as follows: ue to its computational complexity. That is the reason why

the theoretical BPSK performance is depicted on the figures
that is expected to be very close to the one of the optimal
K detector [4]. In our complex baseband equivalent model
Yi(k + 1) = sign Z Wi, Yi(k) = Vi+v(k) p. (12) the bit error ratio of BPSK Additive White Gaussian Noise
J=1 (AWGN) can be calculated as



According to previously stated limitations we cannot deter-
mine yet which annealing schedule fits best to the stochastic
neural network based multi-user detector (i.e. how we have
to increase the value ef in (13)). We used the simplest
functiona(k) = Ak, wherek refers to the iteration instance
and A is the initial value. Based on several simulations we
found that4 = 1.5 results the best performance, so we used
We used a five path propagation Rayleigh fading influencggs value and function in all of the simulations.

radio environment for simulations which means that in (&n Figure 1 the performance of different detection schemes
forall k Ly = 5 and the amplitude i, follows Rayleigh are compared. On the horizontal axis the bit energy per
distribution, and its phase is uniformly distributed. The depjse variance ratio is depicted from 6 to 11 dB, on the ver-
lays of different paths(,) were uniformly randomly cho- tical one the bit error ratio is shown. It is very spectacu-
sen within the range of [0...30]. On the channel, we appligg that the Rake receiver cannot be used for detection in
power control that means the power of different users Wefs heavily loaded environment, since it cannot reach the
set to be exactly equivalent (or nearly equivalent, see Figyiglely applied10—2 bound. The Hopfield neural network

3 and the corresponding explanation). All users transmit glgned as HN-MUD) works much better; it needs about 10
bit long packets {/ = 25). dB to provide sufficient{0~?) bit error ratio. The stochas-
We applied the Gold code set with length of 31, while 3¢ neural network implementation (signed as SHN-MUD)
users were transmitting on the same channel (see Tablegliiperforms the original Hopfield realization by 1.5-2 dB,
It means that the radio channel was fully loaded. Since the\fﬁat is more its curve seems to be very close to the BPSK
are 33 possible codes with this length for the sake of intergigéoretical bound (signed as BPSK AWGN) which refers to

we simulated the case of 33 users as well [10]. It involvggmost similar performance as the optimal detector has.
overloaded channel where neural network based solutions

still show outstanding performance.
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Figure 1: Comparison of detector schemes

Although we have seen that stochastic realization outper-

0010101100111000100011100110101
0010011000100001011010000100011
0110101111001101111101100111101
1101001011000010111111111010000
1011011110101000100111000001100
1010011011101100101010111111010
0010010100010110011001101000101
0000000111110000000101001100101
0000111101100010010010001101111
0101101010101101001001111110010
1100011010000001100000010110001
0010111101000110101011101010110
0010001000000001000100101111101

Table 1: The Gold code set of length 31

forms the original Hopfield neural network, but it is still

a question how much additional iteration is needed in ex-

change for better performance. We have to state once again
that we have not yet found the best annealing scheme, so
our comparison refers to the one that we have randomly

chosen. The average number of iterations needed by the
Hopfield net is detailed in Table 2.

On Figure 2 the performance of the stochastic neural net-

work based multi-user detector is depicted as the function

of processed iteration according to differént/ Ny scenar-

ios. Due to small number of simulations these curves be-

come more rugged as the bit error ratio trends to zero. Com-
paring Figures 1 and 2 we can conclude that the stochastic
neural network implementation reaches the performance of
the original in 9-10 iterations. Taking a look at Table 2 it



Ey, /Ny [dB] | Average lterations cumstances, but it turned out that stochastic implementa-
6 4.759 tion cannot follow its rival. What is the reason for this kind
7 4.359 of behaviour? The explanation is twofold: in this heav-
8 3.970 ily distorted "power uncontrolled” environment the strong
9 3.694 feedback mechanism produces cumulated errors. This ef-
10 3.466 fect deteriorates both neural network based detectors perfor-
11 3.364 mance. On the other hand due to (6) the weight matrix de-

) ) . teriorated not to be diagonal dominated, which yields rough
Table 2: Number of iterations needed by Hopfield net state space including many local minima. The stochastic
neural network gets out from local extreme values, and gets

. i ) into other ones, but it can still wander away from the global
means that the stochastic implementation requires only ?ﬁﬁﬂmum, due to the cooling schedule and it can stuck in

times more computation in comparison to_the prf'eld NSlworse state. Although it seems that stochastic neural net-

In practice it amounts to saying that '”Sta”'f‘g 2 times faSt\‘lz\’fork implementation is not applicable in this situation, ac-

hardware Oneé can assure the same detection propertl_es,c%?ging to our inappropriate annealing scheme these results

under some circumstances (Igss users, less computatlon))mﬁ prove the inapplicability of the cooling schedule, but

can gain 2 dB enhancement in performance. not the algorithm itself. The proper sceduling scheme is still
the case of investigation.
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Figure 2: Performance vs. iterations It seemed to be very interesting to examine the situation

of 31 users on the same channel, while the receiver detects
For further analysis we investigated the power control fawlhly 29 of them. Something similar occurs when two mo-
tolerance of the neural network based multi-user detectdsie phones which are not recognized yet try to establish
the so called near-far effect resistance analysis. Traditionahnection with the base station, while 29 users are already
methods examine the performance as the function of retannected and communicating. In this way the data flood of
tive energy &;/E}) with respect to one single user. Wehe connection building users can be regarded as jamming
applied normally distributed power for each user, where thrgerference to the others. On Figure 4 the simulation results
mean was equal to the nominal value, nan®elyE,} = 1, of the proposed situation is depicted. The power of all users
the deviation was set to tE{Ek}Q —E {E,%} = 0.1, we are set to be equivalent. On the horizontal axis the bit en-
changed the noise varianc{), and we measured the bitergy per noise variance is shown from 6 to 11, on the verti-
error ratio of all users. In this way, we generated more &l one the bit error ratio is plotted as in Figure 1. The Rake
phisticated simulation of faulty power control. The resulteceiver yields the same performance as on Figure 1, which
can be seen on Figure 3. On the horizontal axis the bit éhnot astonishing. The two neural network based multi-user
ergy per noise variance ratio is depicted from 6 to 16, tdetectors suffer remarkable performance degradation due to
vertical one refers to the bit error ratio. As it has alreadgterference of unrecognized users. Here stochastic neural
been proven [1] Rake receiver suffers significant perfdaretwork outperforms its emulant as well with about 1 dB.
mance degradation, which is not very striking in the figure Finally we investigated the effect of the noise term ini-
due to small values close to ten percent. The Hopfield itial value A in an overloaded system, where the number of
plementation shows outstanding efficiency under these cisers was 33 using 31 long Gold codes, the results can be



multi-user detection solution, a corresponding quadratic
10-1 S form should.be minimizeq. After def'ining.neural netwoirk
Rake receiver (SUB) based solution and proving its ap_pllcablhty, we have in-
troduced a new multi-user detection scheme based on a
stochastic neural network. By extensive simulations we
1072 S have highlighted that our stochastic neural network based
o . solution can outperform the original one, although we were
. o * unable to determine perfect cooling schedule for the noise
* . HN"\./'UD variance in the neurons. In perfect coherent channel the per-
. o, formance of stochastic neural network based detector stay
. SHN-MUDo close to theoretical BPSK AWGN bound which entails that
10-4 .. ° it is close to the optimal multi-user detector. For further
. work we would like to describe the annealing schedule an-
. alytically, and apply our stochastic realization for complex
BPSIK AWGNI °. valued multi-state modulation schemes.
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