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ABSTRACT

This paper is concerned with multi-user detection (MUD)
in mobile communication systems. Its purpose is to give an
insight to the problems of Code Division Multiple Access
(CDMA) and to propose novel algorithms for multi-user de-
tection. MUD has gained much attention due to the poor
performance of traditional (Rake) receiver techniques of
code division multiple access systems. CDMA is standard-
ized as the modulation scheme for third generation UMTS
(Universal Mobile Telecommunication Standard), as a con-
sequence it is essential to deal with the problem of detec-
tion. In this article neural network based multi-user detec-
tion algorithms are proposed, which seem to have superior
performance. These algorithms are compared through sim-
ulations in various environments.

1 INTRODUCTION

Traditionally, existing code division multiple access sys-
tems like IS-95 does not apply multi-user detection. These
systems can be described as low bit-rate communication
capabilities employing lumpish and resource wasting syn-
chronization procedures to provide proper background for
single-user detection based on Rake receiver. The systems
of the future like UMTS is planed to provide a high speed
(up to 2 Mbps) communication, where perfect synchroniza-
tion cannot be assured. On the other hand the better uti-
lization of radio resources has become more and more im-
portant which opts against using such wasting mechanisms.
It seems that traditional single-user detection should not be
applied any more in future systems.
Multi-user detection has received considerable interest in
recent years, due to the sharp increase of code division mut-
liple access mobile communication and its successful com-
mercialization. Nevertheless, transmitting information reli-
ably over a radio channel proved to be a major challenge,
owing to multipath fading and other factors which can de-
teriorate the performance. Thus, the task of performing op-
timal detection is of great importance, which is still one of
the central issues of the corresponding research. Traditional
methods which carry out the simple matched filter detection
[1] yield poor performance in the case of numerous or dif-
fering power users. On the other hand, to implement the
optimal Bayesian decision meets severe combinatorial lim-
its. Some authors proposed the use of neural architectures,

like Hopfield network, to overcome these difficulties [2],
[3], [4] in order to provide an alternative method for opti-
mization. Unfortunately, the Hopfield model can get easily
stuck into a local minimum, therefore it may not yield the
optimal detection, although its performance is good enough.
The authors have developed a brand new detection scheme,
named as Stochastic Hopfield Network (SHN [9]), where a
noise term is added to the Hopfield recursion, which helps
to escape from local optimum thus improving the perfor-
mance.
The paper is organized as follows: InSection 2the multi-
user detection problem is formulated and the basic nota-
tion is introduced. InSection 3.2the applicability of Hop-
field neural network is highlighted. InSection 3.3the new
stochastic neural network is introduced. InSection 4the
performance of the proposed detection algorithms is ana-
lyzed by extensive simulations.

2 CHANNEL MODEL

One of the major attributes of CDMA systems is the multi-
ple usage of the same frequency band and time slot. Despite
the interference caused by this multiple access property, the
users can be distinguished by their codes. Let us investi-
gate a DS-CDMA system, where theith symbol of thekth
user is denoted bybk(i). Applying BPSK modulation, the
output signal of thekth user, denoted byqk(t), is given as

qk(t) =
√
Ek

M∑
i=−M

bk(i)sk (t− iT ) , (1)

where sk(t) is the continous signature signal associated
to the kth user,T is the time period of one symbol and
(2M + 1) is the size of a block.Ek refers to the energy
of thekth user. For the sake of generality we assume multi-
path propagation channel, so the channel distortionhk(t)
for thekth user is modeled by a sum of simple attenuators
and phase shifters:

hk(t) =
Lk∑
l=1

αklδ(t− τkl), (2)

whereαkl is a complex value representing attenuation and
phase shifting on thelth path,τkl is a delaying factor on the
lth path,Lk is the number of paths of userk.
The received signal can be written as follows:
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r(t) =
K∑
k=1

hk(t) ∗ qk(t) + n(t). (3)

Substituting (1) and (2) in (3) we get

r(t) =
K∑
k=1

M∑
i=−M

Lk∑
l=1

√
Ekαklbk(i)sk (t− iT − τkl)+n(t),

whereK is the number of users using the same band,n(t)
is a white Gaussian noise with a constantN0 spectral den-
sity. Assuming that the users’ codes, the signal energies and
channel attenuation factors and delays are perfectly known
(coherent detection), the conventional Rake receiver (chan-
nel matched filter) generates the following output for the
kth user andith symbol

b̃k(i) =
√
Ek

Lk∑
l=1

αkl

∞∫
−∞

r(t+ iT + τkl)sk(t)dt. (4)

The traditional single-user detector (SUD) works in the
same manner as in sole-user channel and therefore it sim-
ply calculates the sign of expression (4) yieldingb̂SUD

k =
sign{b̃k}. This, however, will severely deteriorate the de-
tector’s performance, which can be seen from the following
formula:

b̃k(i) =

Useful signal︷ ︸︸ ︷
bk(i)ρkk(0) +

Inter symbol interference︷ ︸︸ ︷
M∑

j=−M, j 6=i

bk(j)ρkk(i− j) +

+

Interference caused by others︷ ︸︸ ︷
K∑

m=1,m 6=k

M∑
j=−M

bm(j)ρkm(i− j) +

Colored noise︷ ︸︸ ︷
nk(i), (5)

whereρkm is defined as follows:

ρkm(i) =
√
Ek
√
Em

Lk∑
l=1

Lm∑
n=1

αklαmn·

·
∞∫
−∞

sk(t)sm(t+ iT − τmn + τkl)dt (6)

and

nk(i) =
√
Ek

Lk∑
l=1

αkl

∞∫
−∞

n(t+ iT + τkl)sk(t)dt

being still a zero mean white Gaussian noise due to linear
transformation.
In (5), the effect of the second term can be cancelled by well
known techniques e.g. channel equalization. Unfortunately
if the system load - defined as the number of users in the
system per processing gain - tends to be hundred percent,

the third term related to the first one in (5) becomes so sig-
nificant that it can absolutely deteriorate the performance of
the SUD, namely it cannot be assured better bit error ratios
as ten percent. The same degradation happens when the so
called near-far effect arises. In this case one or more users
with higher power may jam the others’ signal. As a conse-
quence, for making proper detection we have to deal with
the interference terms in the output of the matched filter.

3 MULTI-USER DETECTION

We have seen that traditional detection fails to achieve reli-
able performance since it ignores the presence of other users
in the same cell. Hence we need a more sophisticated ap-
proach to handle the task of detection in multi-user environ-
ment.

3.1 Optimal Multi-user Detection

Optimal Multi-user detection is based on Bayesian deci-
sion. In this section we elaborate on the optimal solution
in a more detailed manner since it helps to understand how
it works, and why the sub-optimal solutions shows worse
performance. Using the output of the channel matched fil-
ter all operations will be processed on the vector of dis-
crete received values (b̃ = [b̃k(i)]). To obtain optimal so-
lution based on the Bayesian decision for the data sequence
b̂ = [b̂l(i)] one wants to chose the maximal probability
binary sequence conditioned by received data series. This
probability is described in the following expression ([1]):

b̂
opt

= arg max
y∈{−1,+1}N

[
Pr
{

y
∣∣∣∣b̃}] =

= arg max
y∈{−1,+1}N

Pr
{

y ∩ b̃
}

Pr
{

b̃
}

 ,
assuming uniformly distributed binary source we get

b̂
opt

= arg max
y∈{−1,+1}N

Pr
{

y ∩ b̃
}

Pr
{
y
}

 =

arg max
y∈{−1,+1}N

[
Pr
{

b̃
∣∣∣∣y}] . (7)

In our model thẽb is Gaussian (4, 5), which entails that

f

(
b̃
∣∣∣∣y) =

1(√
2πσ

)N exp

{
−

(b̃−R y)H(b̃−R y)
2σ2

}

whereR = [Rkl] is a symmetric quadratic dominated ma-
trix generated byρkm(i) in a proper manner. Since the op-
timization variabley can be found only in the exponent and
all other values are constant we only deal with the numer-
ator in the exponent. Leaving out the constant terms the
expression reduces to

b̂
opt

= arg min
y∈{−1,+1}K

[
−2yH b̃ + yHR y

]
. (8)
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To put it in words the task of optimal multi-user detector
is to find - e.g. with exhaustive search - the optimal binary
sequence (y) which maximizes the quadratic form of (8).
The advantage of this solution is simply its perfection, how-
ever, unfortunately, the search for the global optimum of
(8) usually proves to be rather tiresome, which prevents
real time detection (its complexity by exhaustive search is
∼ O(2K)). Therefore, our objective is to develop powerful
novel optimization techniques which paves the way toward
real time multi-user detection.

3.2 MUD by Hopfield Net

The Hopfield net is a system applying strong feedback
mechanisms, which yields a desired dynamic behaviour
governed by the connection matrix. Its state transition rule
is given by the following formula:

Yl(k + 1) = sign


K∑
j=1

WljYj(k)− Vl

 (9)

whereYj(k) is the output of thejth neuron at thekth time
instant.Vl denotes the decision threshold related to thelth
neuron andWlj is the connection strength between the out-
put of thejth neuron and the input of thelth neuron. The
state vector is updated in a sequential manner, based on the
rule l = kmodK. Then the Hopfield net will maximize
the following quadratic form (often referred to as Lyapunov
function):

J(Y(k)) = YT (k) W Y(k)− 2 VT Y(k). (10)

This optimization process can get stuck in one of the local
optima, though. One must note the visible similarity be-
tween (8) and (10). To use the Hopfield net for multi-user
detection we have to observe the similarity between those
equations and chose the parameters in (9) in the following
manner:

Wlj = −ρlj
Wii = 0
Vk = −b̃k (11)

b̂HNN
k = lim

i→∞
Yk(i)

To avoid local minima, we develop a Stochastic Hopfield
Net (SHN) which will be introduced in the next section.

3.3 The Stochastic Hopfield Net

The idea of SHN is to add some noise to each state transition
in order to escape from the local minima [9]. Therefore, the
original state transition rule of Hopfield net (9) is modified
as follows:

Yl(k + 1) = sign


K∑
j=1

WljYj(k)− Vl + ν(k)

 . (12)

Hereν(k)-s are independently distributed random variables
with zero mean andF (x, k) distributions. Furthermore, we
assume thatF (x, k) = 1 − F (−x, k) is symmetric and
limk→∞ σ(k) = 0, whereσ(k) := E {ν(k)−E {ν(k)}}2,
which means that the variance of this random variable is
cooled down withk. One should note, that SHN has a
stochastic state transition rule because of the noise term.

Theorem 1. With the above mentioned conditions toν(k)
the operation of the stochastic neural network asymptoti-
cally coincides with the state transition of the Hopfield net.

Proof. The probability that the SHN will follow the opera-
tion of the normal HN can be calculated as follows:

Pr{normal operation|k} =

= Pr{ν(k) < −Xl|Xl < 0}Pr{Xl < 0}+

+ Pr{ν(k) > −Xl|Xl ≥ 0}Pr{Xl ≥ 0},

whereXl =
∑K
j=1WljYj(k) − Vl is the term determining

the operation of the normal Hopfield net. Taking into ac-
count the symmetry of the underlying density function one
can obtain:

Pr{normal operation|k} = Pr{ν(k) < |Xl|} =

= F (|Xl|, k) ,

it is clear thatlimk→∞ F (|Xl|, k) = 1, so the SHN will ap-
proximate the operation of the normal Hopfield net ifσ(k)
tends to be zero.

Our objective is, however, that the stationary state of this
random state transition rule will yield the global optimum.
In [10] the authors have succeeded in proving that if one
uses

F (x) =
1

1 + e−αx
(13)

distribution to generate values ofν(k), then the global opti-
mum has the maximal stationary probability [10]. Although
it is still a question how to decrease the variance of the noise
elements in neurons which depends on the value ofα. There
has not yet been any analytical proof, but it is clear that the
greaterα is, the smaller the variance ofx becomes.

4 SIMULATION

We have compared the performance of three different detec-
tion schemes, such as the single-user Rake receiver, Hop-
field neural network implementation, and the stochastic
neural network by extensive simulations. Unfortunately we
were unable to simulate the performance of the optimal de-
tector (the global minima of the associated quadratic form)
due to its computational complexity. That is the reason why
the theoretical BPSK performance is depicted on the figures
that is expected to be very close to the one of the optimal
detector [4]. In our complex baseband equivalent model
the bit error ratio of BPSK Additive White Gaussian Noise
(AWGN) can be calculated as
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BER = Q

(
−

√
Eb
N0/2

)
=

−
√

2Eb
N0∫

−∞

1√
2π
e−

x2
2 dx.

We used a five path propagation Rayleigh fading influenced
radio environment for simulations which means that in (2)
for all k Lk = 5 and the amplitude ofαkl follows Rayleigh
distribution, and its phase is uniformly distributed. The de-
lays of different paths (τkl) were uniformly randomly cho-
sen within the range of [0...30]. On the channel, we applied
power control that means the power of different users were
set to be exactly equivalent (or nearly equivalent, see Figure
3 and the corresponding explanation). All users transmit 51
bit long packets (M = 25).
We applied the Gold code set with length of 31, while 31
users were transmitting on the same channel (see Table 1).
It means that the radio channel was fully loaded. Since there
are 33 possible codes with this length for the sake of interest
we simulated the case of 33 users as well [10]. It involves
overloaded channel where neural network based solutions
still show outstanding performance.

1110100110101100101111000110001
1011100000011101111100111001111
0000101110100000110111001110110
1011000011100001101100100001001
1110011001000111100010011001111
1001011001001001101001110111011
0111001001110101100000000001101
1010000010000010101101100110110
0001001000011000101010101000110
1110111101111110000101010000111
0011011011111110110110001100110
1011011010001111101011111000101
0111011110010000001001111011101
0101001000001111001111000001001
0000111001000101011110110100110
0001111111100011101000100010111
1110001010000101000111011010110
1100110000110011101001111100101
0010111011011101001010011100101
1011100001000011101010011110010
0010101100111000100011100110101
0010011000100001011010000100011
0110101111001101111101100111101
1101001011000010111111111010000
1011011110101000100111000001100
1010011011101100101010111111010
0010010100010110011001101000101
0000000111110000000101001100101
0000111101100010010010001101111
0101101010101101001001111110010
1100011010000001100000010110001
0010111101000110101011101010110
0010001000000001000100101111101

Table 1: The Gold code set of length 31

According to previously stated limitations we cannot deter-
mine yet which annealing schedule fits best to the stochastic
neural network based multi-user detector (i.e. how we have
to increase the value ofα in (13)). We used the simplest
functionα(k) = Ak, wherek refers to the iteration instance
andA is the initial value. Based on several simulations we
found thatA = 1.5 results the best performance, so we used
this value and function in all of the simulations.
On Figure 1 the performance of different detection schemes
are compared. On the horizontal axis the bit energy per
noise variance ratio is depicted from 6 to 11 dB, on the ver-
tical one the bit error ratio is shown. It is very spectacu-
lar that the Rake receiver cannot be used for detection in
this heavily loaded environment, since it cannot reach the
widely applied10−3 bound. The Hopfield neural network
(signed as HN-MUD) works much better; it needs about 10
dB to provide sufficient (10−3) bit error ratio. The stochas-
tic neural network implementation (signed as SHN-MUD)
outperforms the original Hopfield realization by 1.5-2 dB,
what is more its curve seems to be very close to the BPSK
theoretical bound (signed as BPSK AWGN) which refers to
almost similar performance as the optimal detector has.

10−1

10−2

BER

10−3

10−4

10−5 -

6

6 7 8 9 10 11
Eb/N0 [dB]

a a a a a a a a a a a
Rake receiver (SUD)

q q q q q q q q q q q
HN-MUD

b b b b b b b bSHN-MUD

r r r r r r r r r r r r r r rBPSK AWGN

Figure 1: Comparison of detector schemes

Although we have seen that stochastic realization outper-
forms the original Hopfield neural network, but it is still
a question how much additional iteration is needed in ex-
change for better performance. We have to state once again
that we have not yet found the best annealing scheme, so
our comparison refers to the one that we have randomly
chosen. The average number of iterations needed by the
Hopfield net is detailed in Table 2.
On Figure 2 the performance of the stochastic neural net-
work based multi-user detector is depicted as the function
of processed iteration according to differentEb/N0 scenar-
ios. Due to small number of simulations these curves be-
come more rugged as the bit error ratio trends to zero. Com-
paring Figures 1 and 2 we can conclude that the stochastic
neural network implementation reaches the performance of
the original in 9-10 iterations. Taking a look at Table 2 it
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Eb/N0 [dB] Average Iterations
6 4.759
7 4.359
8 3.970
9 3.694
10 3.466
11 3.364

Table 2: Number of iterations needed by Hopfield net

means that the stochastic implementation requires only 1-2
times more computation in comparison to the Hopfield net.
In practice it amounts to saying that installing 2 times faster
hardware one can assure the same detection properties, and
under some circumstances (less users, less computation) we
can gain 2 dB enhancement in performance.

10−1

10−2

BER

10−3

10−4

10−5

10−6 -

6

1 10 20 30 40 50
Iteration

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
6 dB

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
7 dB

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
8 dB

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
9 dB

r r
r
r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

10 dB

q
q
q
q
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q11 dB

Figure 2: Performance vs. iterations

For further analysis we investigated the power control fault
tolerance of the neural network based multi-user detectors,
the so called near-far effect resistance analysis. Traditional
methods examine the performance as the function of rela-
tive energy (E1/Ek) with respect to one single user. We
applied normally distributed power for each user, where the
mean was equal to the nominal value, namelyE {Ek} = 1,
the deviation was set to beE {Ek}2 − E

{
E2
k

}
= 0.1, we

changed the noise variance (N0), and we measured the bit
error ratio of all users. In this way, we generated more so-
phisticated simulation of faulty power control. The results
can be seen on Figure 3. On the horizontal axis the bit en-
ergy per noise variance ratio is depicted from 6 to 16, the
vertical one refers to the bit error ratio. As it has already
been proven [1] Rake receiver suffers significant perfor-
mance degradation, which is not very striking in the figure
due to small values close to ten percent. The Hopfield im-
plementation shows outstanding efficiency under these cir-

cumstances, but it turned out that stochastic implementa-
tion cannot follow its rival. What is the reason for this kind
of behaviour? The explanation is twofold: in this heav-
ily distorted "power uncontrolled" environment the strong
feedback mechanism produces cumulated errors. This ef-
fect deteriorates both neural network based detectors perfor-
mance. On the other hand due to (6) the weight matrix de-
teriorated not to be diagonal dominated, which yields rough
state space including many local minima. The stochastic
neural network gets out from local extreme values, and gets
into other ones, but it can still wander away from the global
minimum, due to the cooling schedule and it can stuck in
a worse state. Although it seems that stochastic neural net-
work implementation is not applicable in this situation, ac-
cording to our inappropriate annealing scheme these results
only prove the inapplicability of the cooling schedule, but
not the algorithm itself. The proper sceduling scheme is still
the case of investigation.

10−1

10−2

BER

10−3

10−4

10−5 -

6

6 7 8 9 10 11 12 13 14 15 16
Eb/N0 [dB]

a a a a a a a a a a a
Rake receiver (SUD)q q q q q q q q q q q

HN-MUD

b b b b b b b b b b bSHN-MUDr r r r r r r rBPSK AWGN

Figure 3: Performance under faulty power control

It seemed to be very interesting to examine the situation
of 31 users on the same channel, while the receiver detects
only 29 of them. Something similar occurs when two mo-
bile phones which are not recognized yet try to establish
connection with the base station, while 29 users are already
connected and communicating. In this way the data flood of
the connection building users can be regarded as jamming
interference to the others. On Figure 4 the simulation results
of the proposed situation is depicted. The power of all users
are set to be equivalent. On the horizontal axis the bit en-
ergy per noise variance is shown from 6 to 11, on the verti-
cal one the bit error ratio is plotted as in Figure 1. The Rake
receiver yields the same performance as on Figure 1, which
is not astonishing. The two neural network based multi-user
detectors suffer remarkable performance degradation due to
interference of unrecognized users. Here stochastic neural
network outperforms its emulant as well with about 1 dB.

Finally we investigated the effect of the noise term ini-
tial valueA in an overloaded system, where the number of
users was 33 using 31 long Gold codes, the results can be
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10−1

10−2

BER

10−3

10−4

10−5 -

6

6 7 8 9 10 11
Eb/N0 [dB]

a a a a a a a a a a a
Rake receiver (SUD)

q q q q q q q q q q qHN-MUD

b b b b b b b b b b bSHN-MUD

r r r r r r r r r r r r r r rBPSK AWGN

Figure 4: Performance in case of 2 unrecognized users

seen on Figure 5. All users communicate at power level of
Eb/N0 = 8 dB. On the horizontal axis the number of itera-
tions, on the vertical the bit error ratio is depicted. As one
can see, the best performance can be achieved atA = 1.5.
Here the best bit error ratio is achieved providing fast con-
vergence at the same time. According to full load we can
compare the results to the 31 user case. The final value
of the stochastic network’s performance is approximately
0.000262 which is very close to the one obtained by simu-
lating 31 users (0.000252).

100

10−1

10−2

BER

10−3

10−4 -

6

1 10 20 30 40 50
Iteration

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

A = 0.4

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
A = 1

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a aA = 1.5

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
A = 2

Figure 5: Performance vs. iterations and initial value

5 CONCLUSIONS

In this paper we have proposed a complex baseband equiv-
alent model for UMTS CDMA mobile communication en-
vironment. We have demonstrated the problems of single-
user detection. We analytically proved that for the optimal

multi-user detection solution, a corresponding quadratic
form should be minimized. After defining neural network
based solution and proving its applicability, we have in-
troduced a new multi-user detection scheme based on a
stochastic neural network. By extensive simulations we
have highlighted that our stochastic neural network based
solution can outperform the original one, although we were
unable to determine perfect cooling schedule for the noise
variance in the neurons. In perfect coherent channel the per-
formance of stochastic neural network based detector stay
close to theoretical BPSK AWGN bound which entails that
it is close to the optimal multi-user detector. For further
work we would like to describe the annealing schedule an-
alytically, and apply our stochastic realization for complex
valued multi-state modulation schemes.
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