
A COMPARISON OF SERVICE DISCOVERY PROTOCOLS AND
IMPLEMENTATION OF THE SERVICE LOCATION PROTOCOL

Christian Bettstetter and Christoph Renner

Technische Universität München (TUM)

Institute of Communication Networks

D–80290 Munich, Germany

Christian.Bettstetter@ei.tum.de

Abstract

With the raising number of Internet services, auto-
matic service discovery will be a very important fea-
ture in future network scenarios, e.g., in self organiz-
ing ad hoc networks. With service discovery, devices
may automatically discover network services including
their properties, and services may advertise their ex-
istence in a dynamic way. This paper compares some
well–known service discovery protocols currently un-
der development, namely the Service Location Proto-
col (SLP), Jini, Salutation, Universal Plug and Play
(UPnP), and the Bluetooth Service Discovery Proto-
col (SDP). Application scenarios for service discov-
ery are presented, which emphasize the importance of
these protocols. We also present our SLP beta imple-
mentation, which includes the fundamental protocol
transactions and demonstrates IP service discovery in
action.

Keywords: Service discovery, service location
protocol, SLP, IP autoconfiguration, ad hoc commu-
nication.

1 INTRODUCTION AND SCENARIOS

The number of services that will become available
in networks (in particular in the Internet) is ex-
pected to grow enormously. Besides classical ser-
vices, such as those offered by printers, scanners,
fax machines, and so on, more and more totally
new services will be available. Examples are ser-
vices for information access via Internet, music
on demand, and services that use computational
infrastructure that is being deployed within the
network.

Following this trend, it becomes increasingly im-
portant to give users the possibility of finding

and making use of services that are available in
a network. What is needed is a functionality
that enables users to effectively search for avail-
able services that are appropriate to solve a given
task. Ideally, users would like to obtain access
to services automatically, without requiring that
they must re–configure their system. For exam-
ple, they do not want to search for the IP address
of the desired service or manually upload device
drivers. Especially with the widespread deploy-
ment of network–enabled mobile devices (such as
notebooks, PDAs, and enhanced cellular phones),
dynamic discovery of services in a visited foreign
network and automatic system configuration will
be very useful features.

This task is addressed by newly emerging ser-
vice discovery protocols, like SLP (Service Loca-
tion Protocol), Jini, UPnP (Universal Plug and
Play), and Salutation. In a service discovery envi-
ronment, services advertise themselves, supplying
details about their capabilities and information
one must know to access the service (e.g., the
IP address). Clients (e.g., word processing soft-
ware) may locate a service by its service type
(e.g., printer) and may make an intelligent service
selection in case multiple services of the desired
type are available.

To summarize, service discovery protocols provide
mechanisms for dynamically discovering available
services in a network and for providing the neces-
sary information to:

• search and browse for services,

• choose the right service (with desired charac-
teristics), and



• utilize the service.

From the user’s point of view, service discovery
greatly simplifies the task of finding and using
services. From the network administrator’s point
of view, service discovery simplifies the task of
building and maintaining a network, especially to
introduce new services and new devices.

Let us illustrate the usefulness of service discovery
with the following scenario: A journalist reports
from a sports event. She carries her notebook in
order to write and print out articles, send emails,
and get information from the Web. She attaches
her notebook to the local area network in the press
room in order to access the Internet and use local
resources such as network printers and scanners.
We have a typical service discovery problem now:
Unless someone tells her the name and type of
the printer and uploads the corresponding driver
on her notebook, she will not be able to print
out anything. She also does not know whether
the printer supports color or not. Moreover, for
Internet access she will have to re–configure her
notebook with a valid IP address, subnet mask,
default router, and DNS (domain name service)
server. Furthermore, the email settings may be
re–configured to use the local mail server. The
utilization of service discovery would enable her
to automatically detect, select, and utilize these
services. Service discovery would also inform her
about the attributes of the printer, e.g., color sup-
port and paper format.

Figure 1: Wireless devices automatically discover
services offered by the car.

The problem of service discovery is also relevant
for the car environment (see Figure 1) [1]. Passen-
gers could bring network–enabled devices into the
car, connect them to the car area network, and use
equipment that is installed inside the car. There
could be various kinds of equipment installed in
the car. For example, in a “mobile office car”
there would be a fax machine, a printer, a hard
disc, and a color display.

Service discovery also plays an essential role in ad
hoc communications, where no fixed infrastruc-
ture is present but the nodes themselves form the

network. Bluetooth is an example for wireless ad
hoc technology. In Figure 1, the mobile phone, the
notebook, and the graphic tablet could form an ad
hoc network via Bluetooth links. Since there is no
administrative control in such a network, devices
must be self organizing, in particular self config-
uring. Mobile devices that take part in an ad hoc
network may also offer services (or serve as ac-
cess points to services), and other devices must
discover these services. For example, the note-
book in Figure 1 may offer a “translation” ser-
vice to the mobile phone, and the phone may of-
fer a “Web search” service via its GPRS (General
Packet Radio Service) air interface. Due to the
very dynamic nature of such a network (Devices
just link together spontaneously and them move
away again.), static service configuration makes
no sense at all, but dynamic and automatic ser-
vice discovery functionality is required.

This paper compares the most important service
discovery protocols currently under development.
Section 2 gives a brief overview of these proto-
cols. Next, in Section 3, we compare them in
more detail, according to their functionality, avail-
able implementations, and dependency on oper-
ating system, platform, and network transport.
In Section 4, we present our beta implementation
of SLP, and Section 5 shows which mappings be-
tween the protocols are defined for interoperation.
Finally, Section 6 concludes this paper.

2 SERVICE DISCOVERY PROTOCOLS

As the computer networking community realized
the need for service discovery a few years ago, sev-
eral companies, consortiums, and an IETF (In-
ternet Engineering Task Force) working group
started to do research in this field. A variety of
service discovery protocols is currently under de-
velopment. The most well known so far are:

• Service Location Protocol (SLP), developed
by the IETF;

• Jini, which is Sun’s Java–based approach to
service discovery;

• Salutation;

• Microsoft’s Universal Plug and Play (UPnP);
and the

• Bluetooth Service Discovery Protocol (SDP).



Figure 2 shows the companies that actively con-
tribute to the development of these protocols. In
the following, we briefly discuss the fundamental
architecture of these protocols and interactions
between the instances for service discovery, ser-
vice registration, and service advertisement. In
the next section we then compare the protocols
in more detail.

Sega

AMD

Lucent

Compaq

Microsoft

UPnP

National Semiconductor

Thomson

Texas Instruments

Sanyo

Dell

NEC

Micron

ELSA

Fujitsu

Mitsubishi

Hitachi

HP

Sharp

Oki

Canon

Axis

Toshiba

Cisco

Motorola

3Com

Quantum

Sony

Salutation

Symbian

Ericsson

Novell

Seagate

Siemens

Inprise

Funai

AOL

Dallas Semiconductors

Kinkos

Creative Design

Adaptive Networks

SUN

Jini

Xerox

Epson

Seiko

Intel

Qualcomm

Lexmark

Gateway

Casio

Minolta

AT&T

Echelon

Kodak

Samsung

Tatung

Philips

Nokia

Bull

Metroworks

BEA Systems

Phoenix

Fuji

Murata

Mita

IBM

Konica

Ricoh

Matsushita

Granite Systems

HP

SUN

Novell

Axis

IBM

SLP
IETF

LexmarkApple

Madison River Tech

Figure 2: Companies involved in the development
of Jini, Salutation, UPnP, and SLP

2.1 Service Location Protocol (SLP)

The Service Location Protocol (SLP) [2] is being
developed by the IETF SvrLoc working group and
is currently available in Version 2 [3]. SLP aims to
be a vendor–independent standard. It is designed
for TCP/IP networks and is scalable up to large
enterprise networks.

The SLP architecture consists of three main com-
ponents:

• User Agents (UA) perform service discovery,
on behalf of the client (user or application);

• Service Agents (SA) advertise the location
and characteristics of services, on behalf of
services; and

• Directory Agents (DA) collect service ad-
dresses and information received from SAs
in their database and respond to service re-
quests from UAs.

User Agent

Service Agent

Directory Agent

Service

Registration

Service

Request

Service

Reply Service

Ack

Service

discovery

Service registration
and update

Figure 3: SLP agents and their transactions for
service discovery and registration

Figure 3 shows the interactions between the three
agents. When a new service connects to a net-
work, the SA contacts the DA to advertise its ex-
istence (Service Registration). When a user needs
a certain service, the UA queries the available ser-
vices in the network from the DA (Service Re-
quest). After receiving the address and character-
istics of the desired service, the user may finally
utilize the service.

Before a client (UA or SA) is able to contact the
DA, it must discover the existence of the DA.
There are three different methods for DA dis-
covery: static, active, and passive. With static
discovery, SLP agents obtain the address of the
DA through DHCP (Dynamic Host Configura-
tion Protocol [4]). The necessary DHCP options
for SLP are defined in [5]. DHCP servers dis-
tribute the addresses of DAs to hosts that request
them. In active discovery, UAs and SAs send ser-
vice requests to the SLP multicast group address
(239.255.255.253). A DA listening on this ad-
dress will eventually receive a service request and
respond directly (via unicast) to the requesting
agent. In case of passive discovery, DAs periodi-
cally send out multicast advertisements for their
services. UAs and SAs learn the DA address from
the received advertisements and are now able to
contact the DA themselves via unicast.

It is important to note that the DA is not manda-
tory. In fact, it is used especially in large net-



User Agent Service Agent
Service Reply

Service Request
multi-

cast

Service Agent

...

Service

Request

Figure 4: Service discovery without DA

works with many services, since it allows to cat-
egorize services into different groups (scopes). In
smaller networks (e.g., home or car networks) it is
more effective to deploy SLP without a DA. SLP
has therefore two operational modes, depending
on whether a DA is present or not. If a DA ex-
ists on the network (as shown in Figure 3), it will
collect all service information advertised by SAs.
UAs will send their Service Requests to the DA
and receive the desired service information. If
there is no DA (see Figure 4), UAs repeatedly
send out their Service Request to the SLP mul-
ticast address. All SAs listen for these multicast
requests and, if they advertise the requested ser-
vice, they will send unicast responses to the UA.
Furthermore, SAs multicast an announcement of
their existence periodically, so that UAs can learn
about the existence of new services.

Services are advertised using a Service URL and
a Service Template [6]. The Service URL con-
tains the IP address of the service, the port num-
ber, and path. Service Templates specify the at-
tributes that characterize the service and their de-
fault values. A Service Template associated with
a network printer could look like the following:

service:printer://lj4050.tum.de:1020/queue1

scopes = tum, bmw, administrator

printer-name = lj4050

printer-model = HP LJ4050 N

printer-location = Room 0409

color-supported = false

pages-per-minute = 9

sides-supported = one-sided, two-sided

SLP Version 1 (defined in [7]) has been imple-
mented in several commercial products, for ex-
ample in Hewlett Packard’s JetSend Technology
(which supports printers, digital cameras, scan-
ners, projectors, and the PDA platforms Windows
CE and Palm; see http://www.jetsend.hp.com).
SLPv2 is expected to be widely deployed as well.
It is already included in Solaris 8 and HP’s Web
JetAdmin. Two SLP reference implementations
may be downloaded from http://www.srvloc.org/.

For detailed information on SLP we recommend
the book by J. Kempf and P. Pierre [8].

2.2 Jini

Jini technology is an extension of the program-
ming language Java and has been developed by
Sun Microsystems. It addresses the issue of how
devices connect with each other in order to form
a simple ad hoc network (a Jini “community”),
and how these devices provide services to other
devices in this network. Jini consists of an archi-
tecture and a programming model.

Each Jini device is assumed to have a Java Virtual
Machine (JVM) running on it. The Jini architec-
ture principle [9] is similar to that of SLP. Devices
and applications register with a Jini network using
a process called Discovery and Join. To join a Jini
network, a device or application places itself into
the Lookup Table on a lookup server, which is a
database for all services on the network (similar to
the DA in SLP). Besides pointers to services, the
Lookup Table in Jini can also store Java–based
program code for these services. This means that
services may upload device drivers, an interface,
and other programs that help the user to access
the service. When a client wants to utilize the
service, the object code is downloaded from the
Lookup Table to the JVM of the client. Whereas a
service request in SLP returns a Service URL, the
Jini object code offers direct access to the service
using an interface known to the client. This code
mobility replaces the necessity of pre–installing
drivers on the client.

The Jini specifications are open source and
may be used freely. However, Sun charges
a licensing fee for commercial use. A ref-
erence implementation may be downloaded at
http://www.sun.com/jini. The Jini code can be
implemented in 46K of Java binaries.

2.3 Salutation

Salutation is another approach to service dis-
covery. The Salutation architecture [10] is
being developed by an open industry consor-
tium, called the Salutation Consortium (see
http://www.salutation.org). The Salutation
architecture consists of Salutation Managers
(SLMs) that have the functionality of service bro-
kers. Services register their capabilities with an
SLM, and clients query the SLM when they need a
service. After discovering a desired service, clients



are able to request the utilization of the service
through the SLM.

Salutation is a rather settled approach, with some
commercial implementations, including fax de-
vices and Windows enablers (95/98 and NT),
e.g., from IBM and Axis. An example is IBM’s
NuOffice, a Salutation enhancement for Lotus
Notes. Further implementations for Palm OS and
Windows CE are planned for the near future.

2.4 Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) is being
developed by an industry consortium (see
http://www.upnp.org), which has been founded
and is lead by Microsoft. One can say that
it extends Microsoft’s Plug and Play technology
to the case where devices are reachable through
a TCP/IP network. Its usage is proposed for
small office or home computer networks, where
it enables peer–to–peer mechanisms for auto–
configuration of devices, service discovery, and
control of services. In UPnP’s current version (re-
lease 0.91) there is no central service register, such
as the DA in SLP or the lookup table in Jini. The
Simple Service Discovery Protocol (SSDP) [11] is
used within UPnP to discover services. SSDP uses
HTTP over UDP and is thus designed for usage
in IP networks. For a description of the UPnP
system architecture refer to [12].

2.5 Bluetooth Service Discovery Protocol
(SDP)

Bluetooth is a new short range wireless transmis-
sion technology. The Bluetooth protocol stack
contains the Service Discovery Protocol (SDP),
which is used to locate services provided by or
available via a Bluetooth device. SDP is described
in the Bluetooth specification part E [13]. It is
based on the Piano platform by Motorola and has
been modified to suit the dynamic nature of ad
hoc communications. It addresses service discov-
ery specifically for this environment and thus fo-
cuses on discovering services, where it supports
the following inquiries: search for services by ser-
vice type; search for services by service attributes;
and service browsing without a priori knowledge
of the service characteristics. SDP does not in-
clude functionality for accessing services. Once
services are discovered with SDP, they can be se-
lected, accessed, and used by mechanisms out of
the scope of SDP, for example by other service dis-
covery protocols such as SLP and Salutation (see,

e.g., [14], which shows a mapping from Salutation
to SDP). SDP can co–exist with other service dis-
covery protocols, but it does not require them.

Note that in [15] we present our SDL (Specifi-
cation and Description Language) description of
SDP.

3 A COMPARISON OF SLP, JINI,
SALUTATION, AND UPNP

Let us now compare the different approaches for
service discovery. Although all protocols are using
similar architectures, there are several differences.
Table 1 summarizes the main features of the four
service discovery protocols SLP, Jini, Salutation,
and UPnP.

UPnP Universal Plug and Play is the youngest
of these protocols, and it is still in an early state
of development. Up to now there do not exist
any commercial implementations of UPnP, but
Microsoft plans to implement it for all Windows
platforms. The specifications and a sample source
code are available freely. UPnP is designed for
TCP/IP networks only. In its current version,
it does not allow clients to search for service at-
tributes (as, e.g., SLP is able to).

As shown in Figure 2, UPnP is supported by a
large number of companies. Among them are
many global players in Internet and telecommu-
nications. This will probably make UPnP a suc-
cessful approach in a couple of years.

Salutation Service discovery in Salutation is de-
fined on a higher layer, and the transport layer is
not specified. Thus, Salutation is independent on
the network technology and may run over multiple
infrastructures, such as over TCP/IP and IrDA.
It is not limited to HTTP–over–UDP–over–IP, as
UPnP is. Moreover, Salutation is independent on
the programming language, i.e., it is not limited to
nor does it have a prerequisite for Java (as Jini).
Its major advantage compared to UPnP and Jini
is that there already exist commercial implemen-
tations.

Jini Jini is also a rather new approach and no
products are in the market yet. Jini distinguishes
from the other approaches mainly by the fact that
it is based on Java.

On the one hand, this concept makes Jini inde-
pendent of the platform and operating system to
run on. Most important, Jini uses Java Remote
Method Invocation (Java RMI) protocols to move



Feature SLP Jini Salutation UPnP

Developer IETF Sun Microsys-
tems

Salutation
Consortium

Microsoft

License open source open license, but
fee for commer-
cial use

open source open (only for
members)

Version 2 1.0 2.1 0.91
Network transport TCP/IP independent independent TCP/IP
Programming language independent Java independent independent
OS and platform dependent independent dependent dependent
Code mobility no yes (Java RMI) no no
Srv attributes searchable yes yes yes no
Central cache repository yes (optional) optional using

SLP
yes (optional) no

Operation w/o directory yes Lookup Table
required

yes –

Leasing concept yes yes no yes
Security IP dependent Java based authentication IP dependent

Table 1: Comparison of Service Discovery Protocols

program code around the network. This intro-
duces the possibility to move device drivers to
client applications, which is its main advantage
over the non–Java based service discovery con-
cepts.

On the other hand, the fact that Jini is tightly
tied to the programming language Java makes it
dependent on the programming environment. It
also requires its devices to run a JVM, which con-
sumes memory and processing power. This can
be a hard requirement for large device drivers and
might not be fulfilled in embedded systems.

Due to the dynamic nature of ad hoc networks,
Jini employs the concept of leasing. Each time a
device joins the network and its services become
available on the network, it registers itself only
for a certain period of time, called a lease. This is
especially useful for very dynamic ad hoc network
scenarios.

SLP The Service Location Protocol is standard-
ized and well documented through the IETF, and
there exist several reference implementations as
well as commercial products.

SLP offers a flexible and scalable architecture and
the utilization of service templates make service
browsing and human interaction possible. Since
SLP is able to operate with or without a DA, it
is suitable for networks of different sizes, rang-
ing from very small ad hoc connectivity to large
enterprise networks. SLP also includes a leasing

concept with a lifetime that defines how long a
DA will store a service registration. Whereas Jini
is dependent on Java, SLP is independent on the
programming language.

The SvrLoc working group is working actively on
improving the protocol. DHCP options to config-
ure SLP are already defined. Under development
is a concept to use LDAP (Lightweight Directory
Access Protocols) servers as a back–end for SLP,
i.e., DAs may use LDAP servers as their reposi-
tory [16]. Furthermore, SLP will be adapted to
use with IPv6 [17] and DHCPv6 [18].

Last but not least, SLP is developed by an open
and vendor–independent forum and its implemen-
tation is freely available. We expect SLP to play
a major role in service discovery.

4 OUR SLP IMPLEMENTATION

Since SLP seems to be a very promising approach
to service discovery, we have implemented the ba-
sic functionality of SLPv2 in ANSI C using UDP
sockets. The aim of our implementation has been
to demonstrate service discovery in action. We
have implemented two different architectures, one
with a DA and one without DA, and two moni-
toring tools.

Architecture with DA This architecture con-
sists of one or more UAs, one DA, and one or
more SAs.



The service agent sa is configured with a service
template stored in a text file. The template con-
tains the service URL, the scope, and attributes
of the service. Once an sa is started, it performs
active DA discovery (as explained in Section 2.1)
to locate a DA. On response of the DA, it extracts
the DA’s IP address and then sends a Service Reg-
istration message to the DA. After receiving a
Service Ack message from the DA, sa terminates.

The directory agent da announces its presence via
IP multicast upon startup. It is then ready to pro-
cess Service Registrations from SAs and Service
Requests from UAs, as well as answer messages
for active DA discovery. Whenever da receives a
Service Registration message it adds the service
to be registered to its database and replies with
a Service Ack. The database is implemented as a
text file.

The user agent ua must be initialized with the at-
tributes of the service it should discover, namely
the service type, scope, and optionally desired
attributes. This is done via command line op-
tions. For example ua service:printer: tum
color=true requests all color printer services in
the scope tum. Moreover, ua has two modes of
operation: Mode 1 sends out a Service Request,
and mode 2 sends out an Attribute Request, which
will return all attributes of the desired service.
Mode 1 is used to search for a service with spe-
cific attributes, whereas mode 2 is the basis for
service browsing. The ua terminates after receiv-
ing either a Service Reply or an Attribute Reply,
respectively.

Architecture without DA The user and ser-
vice agents in this architecture are titled mini ua
and mini sa, respectively. The mini sa does
not register its services with a directory, but ad-
vertises its existence via IP multicast. On re-
ceiving a Service Request or Attribute Request,
mini sa searches in its service template and re-
sponds to the requesting mini ua. The function-
ality of mini ua is the same as in the architecture
with DA with the difference that mini ua listens
to advertisements of SAs.

SLP Monitoring Tools We have also developed
two monitoring tools, which help us to better
understand the SLP protocol transactions and
serve as testing tools for further implementation
work. The slp listener listens to the SLP mul-
ticast group and outputs all SLP messages. The
slp talker is a tool to generate any of the SLPv2
messages and to send them to an IP address of a
specify host or to the SLP IP multicast group.

It can be used to test the functionality of SLP
agents.

Further Information Besides the basic SLPv2
message transactions, we have also imple-
mented additional SLPv2 features mentioned
in the standard [3], such as transaction
identifiers XID, stateless boot time stamp,
previous responser’s list, scopes, language
tag, and attribute query. Detailed informa-
tion about our implementation is available at
http://www.lkn.ei.tum.de/˜chris/slp/.

Test environment Our test environment cur-
rently consists of two Linux PCs and two Linux
notebooks connected via a wireless LAN (IEEE
802.11 Lucent WaveLAN) as well as two Linux
PCs connected to the WaveLAN base station via
fixed Ethernet. All computers can act as DA, SA,
or UA.

5 BRIDGES BETWEEN SERVICE
DISCOVERY PROTOCOLS

The variety of different service discovery protocols
makes it important to have bridges between the
methods to enable service discovery also between
devices that do not run the same service discovery
protocol. For example, we would like to discover
SLP printers with Salutation devices.

We have already mentioned the mapping from
SLP and Salutation to Bluetooth SDP, but there
exist several other mappings. Proxied Jini de-
vices, for example, may also be discovered via SLP
[19]; the Java version of Salutation–Lite can em-
ulate the functions of Jini [20]; and release 2.1 of
the Salutation specification demonstrates a map-
ping between Salutation and SLP.

6 CONCLUSIONS AND OUTLOOK

Service discovery will be an important feature
in future network scenarios, e.g., in self orga-
nizing ad hoc networks. With service discov-
ery, devices may automatically discover network
services including their properties, and services
may advertise their existence in a dynamic way.
From the user’s point of view, service discovery is
about “coming to an unknown network environ-
ment with a mobile device and then detecting the
available services according to one’s need.”



At present there exist a variety of service discov-
ery protocols, most important SLP, Jini, Saluta-
tion, and UPnP. Also Bluetooth has a rather sim-
ple service discovery protocol. We have compared
these approaches and listed their advantages and
drawbacks. Each of these protocols approaches
the vision of service discovery from a different per-
spective. We expect that also in the future there
will be various kinds of service discovery proto-
cols. This makes it important to have bridges
between the different protocols to enable service
discovery with various devices.

To test service discovery in action, we have de-
veloped a beta implementation of SLP, with the
mandatory protocol transactions. Currently, we
are improving our SLP testbed with enhanced
protocol functions, such as optional messages and
leasing functionality. In our testbed, we will
also use the WaveLAN “ad hoc mode” for direct
peer–to–peer connection between the computers.
Moreover, we plan to implement a service browser
with a graphical user interface.

Acknowledgments

The authors would like to thank Wolfgang
Kellerer (TUM) for several useful discussions and
comments.

References

[1] Christian Bettstetter. Toward Internet–based
Car Communications: On Some System Archi-
tecture and Protocol Aspects. In Proceedings
EUNICE 2000, Sixth EUNICE Open European
Summer School, Twente, Netherlands, Septem-
ber 2000.

[2] Erik Guttman. Service Location Protocol: Au-
tomatic Discovery of IP Network Services. IEEE
Internet Computing, 3(4):71–80, July 1999.

[3] Erik Guttman, Charles E. Perkins, and Michael
Day. Service Location Protocol, Version 2. In-
ternet RFC 2608, June 1999.

[4] Ralph Droms. Automated Configuration of
TCP/IP with DHCP. IEEE Internet Comput-
ing, 3(4):45–53, July 1999.

[5] Charles E. Perkins and Erik Guttman. DHCP
Options for Service Location Protocol. Internet
RFC 2610, June 1999.

[6] Erik Guttman, Charles E. Perkins, and James
Kempf. Service Templates and Service: Schemes.
Internet RFC 2609, June 1999.

[7] John Veizades, Erik Guttman, Charles E.
Perkins, and Scott Kaplan. Service Location Pro-
tocol. Internet RFC 2165, June 1997.

[8] James Kempf and Pete St. Pierre. Service Lo-
cation Protocol for Enterprise Networks. Wiley,
1999.

[9] Sun. Technical White Paper: Jini Architectural
Overview. http://www.sun.com/jini/, 1999.

[10] Salutation Consortium. White Pa-
per: Salutation Architecture: Overview.
http://www.salutation.org/whitepaper/ origi-
nalwp.pdf, 1998.

[11] Yaron Y. Goland, Ting Cai, Paul Leach, Ye Gu,
and Shivaun Albright. Simple Service Discov-
ery Protocol. Internet Draft, draft-cai-ssdp-v1-
03.txt, October 1999.

[12] Universal Plug and Play Forum. Universal Plug
and Play Device Architecture. Version 0.91,
March 2000.

[13] Bluetooth Specification Part E. Service Discov-
ery Protocol (SDP). http://www.bluetooth.com,
November 1999.

[14] Brent Miller and Robert Pascoe. Mapping Salu-
tation Architecture APIs to Bluetooth Service
Discovery Layer. http://www.bluetooth.com,
July 1999.

[15] Christian Schwingenschlögl and Anton Heigl. De-
velopment of a Service Discovery Architecture
for the Bluetooth Radio System. In Proceedings
EUNICE 2000, Sixth EUNICE Open European
Summer School, Twente, Netherlands, Septem-
ber 2000.

[16] James Kempf, Ryan Moats, and Pete St. Pierre.
Conversion of LDAP Schemas to and from SLP
Templates. Internet Draft, draft-ietf-svrloc-
template-conversion-05.txt, October 1999.

[17] Erik Guttman. Service Location Protocol Modifi-
cations for IPv6. Internet Draft, draft-ietf-svrloc-
ipv6-08.txt, January 2000.

[18] Jim Bound, Mike Carney, and Charles E.
Perkins. Dynamic Host Configuration Protocol
for IPv6 (DHCPv6). Internet Draft, draft-ietf-
dhc-dhcpv6-14.txt, May 2000.

[19] Manfred Bathelt and Jochen Nickles. Das Plug
and Play der Automatisierung. Elektronik (Vol-
ume 6), pages 54 – 62, March 1999.

[20] Robert A. Pascoe. The Salutation Consortium
Newsletter. April 1999.


