
1

A SCALABLE QOS ADAPTATION SERVICE FOR

MOBILE MULTIMEDIA APPLICATIONS

Cristian Hesselman Henk Eertink

Telematica Instituut

P.O. Box 589, 7500AN Enschede, The Netherlands

e-mail: {hesselman, eertink} @telin.nl

ABSTRACT

Mobile multimedia applications typically operate in

an environment that consists of a variety of different

types of mobile hosts and wireless networks with

different capabilities and resource availability. This

heterogeneity makes it difficult to scale mobile

multimedia applications up to large numbers of

participants. In this paper, we propose a system that

uses a limited set of domain-specific quality levels per

service category to ensure scalability. The system is

based on the use of IP multicast groups and proxies.

We present the dynamic aspects of our approach as

well as an initial implementation. We use an

application that distributes a TV channel to mobile

users to explain our work.

1. INTRODUCTION

Multimedia multiparty applications that integrate

fixed and wireless communications typically run on a

wide variety of hosts. As a result, the components that

make up these applications usually have to rely on a

wide variety of computing and communications

capabilities [7, 12, 13]. This is particularly true for

application components that run on mobile hosts.

Some of them for instance reside on high-end laptop

computers with lots of processing power, high quality

presentation capabilities and megabit network

connectivity. Others reside on low-end PDAs with

limited processing power, limited presentation

capabilities and a low-speed network connection. This

heterogeneous operating environment forms a

problem for sessions in which a large number of

distributed application components participate (e.g. a

session that distributes a TV channel). In such cases,

it usually becomes unfeasible to deliver a multimedia

stream to each receiving application component at a

Quality of Service (QoS) level that is fine-tuned to the

capabilities and the current resource availability (e.g.

in terms of network bandwidth) of the mobile host.

An extreme solution to this problem is to deliver the

same QoS to every application component in a

session. This approach is feasible and even desirable

for some classes of applications, but it typically

results in a large number of users receiving a

suboptimal QoS.

In this paper, we propose a middleware1 platform that

strikes a balance between the above two extremes. It

narrows the ‘QoS spectrum’ that a heterogeneous

environment creates down to a limited number of

application-level service classes and admits only a

few of such classes to a session. A service class in this

context defines a (perceptual) QoS level of the raw

multimedia stream that an application component

receives. We believe that this approach allows the

platform to scale sessions up to large numbers of

application components in highly heterogeneous

environments. The price that we pay is that there will

typically exist application components that receive

their multimedia streams at a QoS level that closely

matches the capabilities and the current resource

availability of the hosts that they use but do not

exactly match them. Our platform realizes service

classes mainly in terms of IP multicast groups and

proxies. The IP multicast groups interconnect mobile

hosts that have similar capabilities and similar

resource availability; the proxies bridge the

differences that exist between hosts that connect to

different multicast groups.

We also present the dynamic aspects of our approach,

in particular the dynamic activation and deactivation

of service classes and the adaptation of QoS levels by

1 We view ‘middleware’ as a collection of generic

distributed services that are application-independent.

2

transferring application components between service

classes.

The rest of this paper is organized as follows. In

Section 2 we consider the architecture of our

platform. In Section 3 we present the kind of sessions

that the platform supports and discuss how the

platform realizes them. In Section 4 we consider the

dynamic aspects of our approach. In Section 5 we

take a look at a system that implements a part of our

approach. In Section 6 we describe related work and

we present our conclusions in Section 7.

2. ARCHITECTURE

The architecture of our middleware platform is based

on the QoS framework proposed in [21]. Figure 1

shows the part of the framework that is relevant for

the material discussed in this paper.

Applications

DRP

MiddlewareMiddleware
Control

Media transfer

Stream

Control message

Figure 1. QoS framework.

QoS Framework

The framework of Figure 1 consists of an application

layer, a middleware layer and a Distributed Resources

Platform (DRP). The framework is furthermore made

up of a media transfer plane and a QoS control plane.

The media transfer plane contains components that

forward the data units of an audio-video stream. The

components in the application layer encapsulate

media presentation and capturing devices. These

devices form the end-points of audio video streams.

Examples are cameras, microphones and displays.

The components in the media transfer plane of the

middleware layer encapsulate media processing

resources. They perform transport-independent as

well as transport-dependent stream processing.

Examples of the former are encoders, transcoders and

mixers; an example of the latter is an RTP [16]

packetizer that adapts an MPEG-4 [10] encoded

stream for transmission over UDP. The components

in the media transfer plane of the DRP encapsulate

resources that provide end-to-end connectivity.

Examples are IP (multicast) routers, network interface

cards and bridges.

The components in the control plane of the

framework encapsulate the logic that governs the QoS

of the streams that flow through the media transfer

plane. The control plane components for instance

negotiate acceptable QoS levels, query and configure

media transfer plane resources, and adapt QoS levels

in response to host mobility.

The interfaces between the layers in the media

transfer plane consist of streams with different

characteristics. Streams of raw audio-video

information for instance pass through the application-

middleware interface, whereas encoded and

packetized versions of those same streams pass

through the middleware-DRP interface. The interfaces

between the media transfer plane and the control

plane take the form of control messages. The

components in the media transfer plane define and

publish these messages so that the components in the

control plane can query and configure them. The

middleware control components, for example,

typically configure an MPEG encoder component in

the media transfer plane through control messages

that the encoder provides for this purpose. The

interfaces between the different layers in the control

plane also consist of messages. For example, the

middleware’s control components typically use

messages to request a certain QoS from an RSVP-

enabled DRP.

Architecture

The architecture of the system that we discuss in this

paper is a narrowed-down version of the QoS

framework of Figure 1. Specifically, we assume that

the DRP’s media transfer plane provides UDP over

IP multicast capabilities. We furthermore assume that

the control plane of the DRP allows us to query and

configure the QoS characteristics of IP (typically

through RSVP [20]). At the middleware level, we

focus on a limited set of media processing resources,

in particular on encoders, decoders and transcoders.

We assume that RTP (de)packetizes encoded audio

and video streams.

In this paper, we concentrate on the middleware layer.

We first present the middleware’s media transfer

plane in Section 3. We then consider its control plane

in Section 4.

3. MEDIA TRANSFER PLANE

The middleware’s media transfer services allow two

or more distributed application components to

exchange streams of raw audio-video information by

means of a session. Consider for example an

application that distributes a TV channel to mobile

clients. Figure 2 shows the application components

3

that are involved in the TV session.

city.gold

receivers

city.nl
station.nl

backbone.net

Pr2

TV session

P5

P4
P6

cnn.com

P1

P2

P3

Pr1

station.platinum

receivers

city.platinum

receivers

D1

D1

D1

D1

D1

D2

D2
P7

E1

S

RTP/UDP over IP Multicast group

Encoder, decoder of encoding type iDiEi

Figure 2. Multiparty TV session.

The broadcaster’s server component (S) in Figure 2

produces a raw (i.e., uncoded) audio-video stream.

The session delivers the stream to the player

components P1 through P7 on mobile clients C1

through C7. Each player component Pi encapsulates

the media presentation resources (display and

speakers) on client Ci and consumes the stream.

The mobile clients are distributed over local area

domain station.nl and over metropolitan area domain

city.nl. They are equipped with media presentation

resources (display and speakers), media processing

resources (a decoder and an RTP depacketizer) and

with at least one wireless network interface. The

capabilities of the clients’ presentation resources,

media processing resources and network interfaces

vary widely. The clients that use the networks of local

area domain station.nl, for instance, typically use a

network technology that has a greater capacity than

the network technologies that are available in

metropolitan area domain city.nl. The common

capability of all clients is that they use RTP to

depacketize an incoming encoded audio-video stream

and that they are all IP multicast-enabled.

Service Classes

Our approach restricts the amount of ‘QoS spectrum’

available to the players in the TV session of Figure 2

to a few service classes. A service class defines a

(perceptual) QoS level of the raw audio and video

information that a player receives. The capabilities

and the current resource availability of the client on

which a player runs largely determine the service

class that it will get. The limited number of service

classes ensures that our system only has to deal with a

few QoS levels. We believe that this allows our

system to scale sessions up to large numbers of clients

in highly heterogeneous environments. The downside

of our approach is that there will typically exist

players that receive their audio-video stream at a QoS

level that is not fine-tuned to the capabilities and the

current resource availability of the mobile clients on

which they run. The QoS level that these players

receive is therefore suboptimal. In short, our approach

can be characterized as striking a balance between

high scalability and delivering optimal per-client QoS

levels. Observe that we define application level

service classes. This is unlike DiffServ [20] that

defines IP-level service classes.

In the TV session of Figure 2, the players receive

their stream at one of two service classes: platinum or

gold. Player P3 could for instance be subject to a

suboptimal QoS because it receives its stream at a

platinum QoS level while the traffic situation in C3’s

cell is such that C3 would be able to consume more

bandwidth and thus obtain a higher quality.

We propose to make the QoS level of the raw audio

and video information associated with a service class

domain-specific. The underlying reason is that

domains have to realize service classes with different

types of mobile clients and with different types of

wireless networks. Domain station.nl can for instance

realize its platinum class using high-speed wireless

local area networks, whereas domain city.nl has to

realize its platinum class over relatively low-speed

metropolitan area wireless networks. As a result, the

platinum class’ QoS level will generally be higher in

station.nl than in city.nl. The description of a service

class therefore needs to include the domain that

defines it. We accomplish this by prefixing a class’

name with a domain name. In the example of Figure 2

we thus end up with service classes station.platinum,

city.platinum and city.gold.

The consequence of using domain-specific service

classes is that there generally exists a well-defined

ordering relation between the service classes that a

single domain supports. Such a relation does usually

not exist between the service classes of different

domains. It will for instance be hard to say that class

station.platinum is ‘better than’ class city.platinum.

We furthermore suggest to also make the number of

service classes domain-specific. Domain station.nl

can for instance support three service classes (say

silver, gold and platinum), while city.nl supports only

two (say gold and platinum).

4

Realizing Service Classes

Our middleware realizes a service class in terms of

the media processing and end-to-end connectivity

resources that it has at its disposal. Specifically, the

middleware defines the QoS level of a service class in

terms of an audio and a video codec type (e.g.

MPEG-4), a set of codec QoS characteristics, a

packetizer type (RTP in this case) and a set of IP-

level QoS characteristics. The QoS level of class

station.platinum could for instance look like this:

station.platinum = {
 codecQoS = {
 videoCodec = {
 type = “mpeg4”;
 chars = {
 // platinum characteristics
 }
 }
 audioCodec = {
 type = “mpeg4”;
 chars = {
 // platinum characteristics
 }
 }
 }
 packetizer = “RTP”;
 ipQoS = {
 chars = {
 // platinum characteristics
 }
 }
}

The codec and IP QoS characteristics of class

platinum predominantly determine the QoS level of

the raw audio and video stream that the players

associated with this class receive. To realize the

platinum QoS level, codecs must be configured to

codecQoS and IP must be configured to ipQoS. The

latter can be accomplished through a QoS aware IP-

layer (e.g. an RSVP-enhanced one).

The codec and IP QoS characteristics of a service

class can be described as a set of parameter-value

pairs (see for instance [18, 2]). Examples of codec

related QoS parameters include audio sampling size,

audio sampling rate, video sampling rate, and so on.

Typical IP-level QoS parameters are minimum and

maximum bandwidth, jitter, etc.

The definition of a service class ensures that clients

can communicate with each other without additional

involvement of the middleware if the players that they

host receive the same service class. Such clients can

therefore be interconnected directly. Our middleware

uses site-local [22] multicast groups for this purpose.

In general, we can use one or more multicast groups

to realize a service class. We can for instance use one

multicast group to carry the audio portion of a stream

and one to carry the video. Alternatively, we can use

an RLM-like [3, 4] approach and realize a service

class as a set of multicast groups with each multicast

group carrying a layer of the audio-video stream. For

the sake of simplicity, however, we will realize a

service class as one multicast group in this paper. In

the example of Figure 2 this for instance means that

clients C1 through C3 are interconnected by a single

multicast group because players P1, P2 and P3 receive

the same service class.

Clients that host players that receive different service

classes cannot communicate with each other directly.

This is because these clients use different codecs, or

because they have configured the QoS of their codecs

and IP service to be significantly different. Active

involvement of the middleware is therefore required

to bridge the differences between service classes (or,

equivalently, between site-local multicast groups).

Our middleware uses proxies [5] for this purpose.

Proxies are middleware level components. They

connect to a site-local multicast group for

communications with mobile clients, and to a global

multicast group to communicate with fixed clients.

Proxies perform functions such as rate adaptation,

transcoding [11], audio and video filtering, and so on.

For example, proxy Pr2 in Figure 2 transcodes

between MPEG-2 [9] and MPEG-4 if the encoding of

class station.gold is MPEG-4 (D2 in Figure 2) and the

encoding that the broadcaster server S uses is MPEG-

2 (E1 in Figure 2). Proxies typically run on gateway

hosts in an access domain such as station.nl.

4. CONTROL PLANE

Each player component Pi of Figure 2 resides on

mobile client Ci and is part of the application layer’s

media transfer plane. We associate each Pi with a user

agent [21] component UAi in the control plane of the

application layer (cf. Figure 1). A user agent controls

the local presentation QoS of the associated player. It

uses the query and configuration control messages

that the player provides for this purpose. A user agent

for instance uses these messages to alter the volume

of an audio-video stream that its player is presenting.

The user agent furthermore makes use of the

membership and QoS adaptation services that the

middleware provides. The middleware makes these

services available in the form of control messages.

Membership Control

The membership service allows a user agent to join a

player to or remove it from a session.

As an example, assume that a new user agent UA8

wants to join its player P8 to the TV session of Figure

2 in domain station.nl. To accomplish this, UA8 sends

5

a join request control message to the middleware’s

membership service. One of the parameters that this

message takes is an application-level session

identifier such as “CNN”.

The middleware components that provide the

membership service consume the request and examine

the capabilities of mobile client C8 on which AU8 and

P8 reside. The middleware components then

determine the capabilities and the current resource

availability of the client’s media processing

components (decoder and RTP depacketizer) and its

IP-level service. Based on this information, the

middleware components determine a list of service

classes that player P8 can receive. The list will

typically contain one entry. In some situations the list

may however contain more than one entry. This for

instance occurs when client C8 is in range of both the

station.nl domain and the city.nl domain. These

domains both provide access to the TV session of

Figure 2, but at different service classes. As a result,

player P8 will be able to join the TV session at class

station.platinum or at class city.platinum. The list of

possible service classes may also contain more than

one entry if C8 has alternative capabilities such as

multiple decoders.

The middleware components inform UA8 of the list of

available service classes by sending a join response

control message to it. For the sake of this example, we

assume that C8 can only receive class station.platinum

and that the list therefore only contains one entry.

User agent UA8 next selects the class from the list and

uses a confirm control message to inform the

middleware of its selection. Service class

station.platinum is already active, so it suffices for the

middleware components to initialize C8’s decoder,

RTP depacketizer and IP service to the QoS

characteristics defined by station.platinum. The

middleware can then simply subscribe client C8 to the

multicast group associated with class station.platinum.

In case the middleware components determine that

C8’s capabilities are inadequate to receive class

station.platinum, they must join P8 to the TV session

at another service class, say station.silver. This class

is however not yet active. The middleware

components must therefore activate it first. They do

this by creating a site-local multicast group and by

creating and starting a proxy. Next, the middleware

components initialize C8’s decoder, RTP depacketizer

and IP service to the QoS characteristics defined by

station.silver. The middleware components complete

the join by subscribing C8 to the site-local multicast

group and by subscribing the new proxy to the site-

local multicast group and the global multicast group.

When a UA8 wants player P8 to leave the TV session,

it sends a leave request control message to the

membership service. The middleware components

that implement the leave request consume the

message and unsubscribe C8 from the multicast group

that it uses. The middleware components destroy the

multicast group and the associated proxy if C8 is the

last member of the multicast group. This effectively

deactivates the service class that P8 received. The

middleware confirms the leave by sending an

appropriate control message to UA8.

QoS Adaptation

The QoS adaptation service allows a user agent to be

kept informed about QoS adaptations that occur as a

result of host mobility and to request a different

service class on behalf of the end-user.

In the example of Figure 2, the middleware adapts the

QoS of an audio-video stream that a player receives

by transferring the player from one service class to

another. We call this a service class handoff.

The middleware accomplishes a service class handoff

by having the client on which the player runs leave

the multicast group associated with the player’s

current service class and joining it to the multicast

group that represents the player’s new service class.

The middleware furthermore configures the client’s

decoder and IP services to the QoS level of the target

service class. Observe that the handoffs that we use

occur at the IP-level. This is unlike the network level

handoffs that are required to transfer a mobile client

from one base station to the next.

Service class handoffs usually occur as a result of host

mobility. The middleware will for instance handoff P3

from station.platinum to city.platinum if client C3

roams from station.nl to city.nl. We call this an inter-

domain service class handoff. There also exist intra-

domain service class handoffs. In the example of

Figure 2, this means that a player switches between

different service classes while the client on which it

runs roams within the same domain. Player P3 may for

example at some point need to switch from class

platinum to class silver when C3 roams within

station.nl. The reason may be that C3 roams from a

lightly loaded cell to a more heavily loaded cell where

there is not enough bandwidth to support class

platinum. The middleware notifies a user agent of a

service class handoff (inter- or intra-domain) by

sending a notification control message to it.

Finally, a player may also need to be transferred to

another service class on request of the end-user. This

6

for instance happens when the end-user who carries

client C3 decides to shrink-wrap the window that

presents the TV channel because he wants to check

his email. In this particular case, user agent UA3

would send a handoff request message the

middleware to hand player P3 off to another service

class. The middleware confirms the handoff by

sending a confirmation control message to UA3.

The middleware’s control components must

implement the membership and QoS adaptation

services as one or more protocols. These protocols

run between the mobile clients and the gateways that

host proxies. They furthermore run between gateways.

5. IMPLEMENTATION

The goal of our implementation is to check if it is

possible to handoff a player on a roaming client from

one service class to another without serious hick ups

in the QoS of the audio-video stream that it receives.

In terms of the example of Figure 2, we can say that

we want to validate if it is possible to handoff a client

from one multicast group to another. We specifically

want to check if such a handoff is possible in an inter-

domain mobility scenario. We therefore implemented

the scenario of Section 4 in which client C3 roams

between domains station.nl and city.nl (see Figure 2).

Figure 3 shows the organization of our test bed. It

also illustrates how the proxy and player components

of Figure 2 are distributed over the machines in the

test bed.

“station.nl”

WaveLan
Base Station

Pr1/S

SL

Linux PC

Solaris Server

P3

Win98 LT

RadioLan

Base Station

Ethernet

Ethernet

RadioLan NI

WaveLan NI

SH

Pr2/S
“city.nl”

Ethernet

Multicast stream

NI = Network Interface

Figure 3. Test bed.

The Solaris machine hosts proxies Pr1 and Pr2. For

reasons of simplicity, we have implemented proxies

Pr1 and Pr2 to also act as broadcasting servers. That

is, they generate the stream containing the TV channel

locally rather than from a stream coming from the

broadcasting server S (cf. Figure 2). Pr1 and Pr2 each

consist of a QuickTime Darwin streaming server [23]

for this purpose: Pr1 consists of server SH; proxy Pr2
consists of server SL.

SH and SL run synchronously as indicated by the

arrow between them in Figure 3 and loop

continuously. SH locally reads a high quality movie

from a hinted (i.e., encoded) QuickTime file and

transmits it onto the multicast group that represents

class station.platinum. Similarly, SL locally reads a

low quality version of the same movie from a

different hinted file and transmits it onto the multicast

group that represents class city.platinum.

The Solaris server connects to a Linux PC through an

Ethernet network. The Linux PC acts as a multicast

router. It routes the traffic that it receives on its

Ethernet network interface to one of two base

stations. One base station uses a pre-802.11 version of

Lucent’s WaveLan [27] technology. It provides a

gross over-the-air bandwidth of 1 Mbps. The

WaveLan base station operates at a frequency of 2.4

GHz and has an indoor range of approximately 30

meters. The second base station in the test bed is

based on a proprietary technology of RadioLan [28].

This base station offers a gross bandwidth of 10

Mbps. It operates in the 5.8 GHz band and has an

indoor range of approximately 15 meters. The base

stations are positioned such that the WaveLan cell

overlays the RadioLan cell.

The two networks that we use mimic the local and

metropolitan area networks of the station.nl and

city.nl domains of Figure 2. The RadioLan network

represents station.nl’s local area network (high

capacity, short range) whereas the WaveLan network

mimics city.nl’s metropolitan area network (medium

capacity, medium range).

The multicast group that SH uses represents the

multicast group of class station.platinum. We have

configured the multicast router such that it transmits

the data that this multicast group carries onto the

RadioLan network. This means that the IP-level QoS

of this class has a best-effort QoS with a gross

bandwidth of 10 Mbps. Similarly, the multicast group

that SL uses represents the multicast group of class

city.platinum. The multicast router transmits the

traffic of this multicast group onto the WaveLan

network. This also gives class city.platinum a best-

effort IP-level QoS but with a gross bandwidth of 1

Mbps.

A Windows98 laptop (marked LT in Figure 3)

represents client C3 of Figure 2. The laptop is

equipped with a RadioLan and a WaveLan network

interface and runs the QuickTime client software

package [26]. The QuickTime package covers the

application components (in this case player P3) and

7

the middleware layer components in the media

transfer plane of Figure 1. We are currently building

several middleware control components around the

QuickTime client package. These components

determine the network that provides the best IP-level

QoS and join the laptop to the multicast group

associated with it. As an example, assume that the

location of the laptop is such that the RadioLan

network provides the best IP-level QoS. In this case,

the middleware control components initialize the

necessary QuickTime components and join the

multicast group that SH uses. As a result, the client

receives the steam that SH transmits over its RadioLan

network interface and the end-user sees the high

quality version of the movie. When the laptop gets out

of range of the RadioLan network, it must hand off to

the WaveLan network. The middleware control

components then unsubscribe the laptop from the

multicast group that SH uses, reinitialize the

QuickTime components and join the laptop to the

multicast group that SL uses. As a result, the laptop

now receives the low quality version of the movie that

SL transmits and the user sees a degradation in the

QoS of the movie. The middleware components go

through this behavior in reverse order when the laptop

roams back into range of the RadioLan network.

6. RELATED WORK

Proxies are a common way of dealing with capability

variations of networks and hosts. [1], [5], [11], [13],

[14] and [15] are examples of initiatives that take this

approach. In particular, [5], [13] and [15] use proxies

to overcome capability variations for mobile networks

and hosts.

[3] and [4] discuss an approach that uses multiple

multicast groups to control the bandwidth of video

streams that are destined for a large number of fixed

clients in a heterogeneous best-effort Internet

environment. This approach is known as Receiver-

driven Layered Multicast (RLM). RLM exploits the

fact that advanced coding schemes such as MPEG-2

and MPEG-4 allow information streams to be

encoded at multiple quality levels. Each quality level

produces a flow of a certain bandwidth each of which

RLM transmits onto a separate multicast group. This

allows receivers to ‘tune in’ to as many groups as they

are capable of receiving given their current network

capacity and ‘add up’ the quality levels they receive.

We believe that RLM can be used to implement a

service class and that it therefore fits into our

architecture. Other areas that use multiple multicast

groups to assure scalability are reliable multicast [17],

multicast flow control [24], and distributed virtual

environments [19]. The concept of handoffs between

multicast groups also exists in this last application

area.

We are also aware of work that combines proxies and

multiple multicast groups, for instance [6], [7], [8]

and [11]. [7] uses this combination in a mobile

setting, but focuses on reliable communications rather

than on multimedia streaming. [6], [7] and [8]

furthermore pay little attention to the dynamic

composition and configuration of proxies and

multicast groups that is required in our approach. [8]

does consider this for a fixed environment, but only

allows server applications to express their

characteristics. As far as we know, it is for instance

not possible to join an application component to a

session based on the capabilities of the host on which

the component runs.

Mobile IP [25] supports host mobility in the Internet

at the IP-level. Our platform, on the other hand,

supports mobility at the middleware level.

7. CONCLUSIONS AND FUTURE WORK

We have discussed the architecture of our middleware

platform. Our approach revolves around the notions

of sessions, dynamic application-level service classes,

service class handoffs, site-local multicast groups and

proxies. We have claimed that this approach allows

the platform to scale sessions up to large numbers of

participants at the cost of delivering an audio-video

stream at a close-to-optimal QoS level rather than at a

level that is fine-tuned to the capabilities and current

resource availability of a client. We have also

discussed the control logic that is required to deal

with the dynamic aspects of sessions. We exemplified

our approach by means of an application that

distributes a TV channel.

Our plans for the future are to develop the protocols

that the middleware’s control plane components must

implement. In the short term, we will first focus on

techniques to describe the capabilities and resource

availability of mobile clients. In parallel to these

developments, we plan to extend our test bed, for

instance with transcoding proxies, rate adaptation

proxies and other types of wireless networks.

ACKNOWLEDGEMENTS

The authors would like to thank Arjan Peddemors for

reviewing the draft version of this paper.

REFERENCES

[1] S. Cho and Y. Shin, “Multimedia Service

Interworking over Heterogeneous Networking

Environments”, IEEE Network, March/April

1999

8

[2] M. Handley and V. Jacobson, “SDP: Session

Description Protocol”, RFC 2327, April 1998

[3] S. McCanne, V. Jacobson and M. Vetterli,

“Receiver-driven Layered Multicast”, ACM

SIGCOMM, August 1996, Stanford, USA

[4] X. Li, M. Ammar and S. Paul, “Video Multicast

over the Internet”, IEEE Network, March/April

1999

[5] E. Brewer et al., “A Network Architecture for

Heterogeneous Mobile Computing”, IEEE

Personal Communications Magazine, Oct. 1998

[6] E. Amir, S. McCanne, R. Katz, “An Active

Service Framework and its Application to Real-

time Multimedia Transcoding”, Proc. of ACM

SIGCOMM’98, Vancouver, Canada, Sept. 1998

[7] Y. Chawathe, S. Fink, S. McCanne, E. Brewer,

“A Proxy Architecture for Reliable Multicast in

Heterogeneous Environments”, Proc. of ACM

Multimedia’98, Bristol, UK, Sept. 1998

[8] K. Jonas, M. Kretschmer and J. Moedeker, “Get

a KISS — Communication Infrastructure for

Streaming Services in a Heterogeneous

Environment”, Proc. of ACM Multimedia’98,

Bristol, UK, Sept. 1998

 [9] T. Sikora, “MPEG-1 and MPEG-2 Digital

Video Coding Standards”,

http://wwwam.hhi.de/mpeg-

video/papers/sikora/mpeg1_2/mpeg1_2.htm

[10] R. Koenen, “MPEG-4 — Multimedia for Our

Time”, IEEE Spectrum, Feb. 1999

[11] E. Amir, S. McCanne and H. Zhang, “An

Application Level Video Gateway”, Proc. of

ACM Multimedia, San Fransisco, USA, Nov.

1995

[12] A. Fasbender, F. Reichert, E. Geulen, J. Hjelm

and T. Wierlemann, “Any Network, Any

Terminal, Anywhere”, IEEE Personal

Communications, April 1999

[13] A. Fox, S. Gribble, E. Brewer and E. Amir,

“Adapting to Network and Client Variability via

On-Demand Dynamic Distillation”, ASPLOS-

VII, Oct 1996

[14] N. Yeadon, A. Mauthe, F. Garcia and D.

Hutchison, “QoS Filters: Addressing the

Heterogeneity Gap”, Proc. of the Interactive

Distributed Multimedia Systems and

Telecommunication Services (IDMS’96),

Berlin, Germany, May 1996

[15] A. Balachandran, A. Campbell and M.

Kounavis, “Active Filters: Delivering Scaled

Media to Mobile Devices”, 7th International

Workshop on Network and Operating System

Support for Digital Audio and Video

(NOSSDAV’97), May 1997, St. Louis, USA

[16] H. Schulzrinne, S. Casner, R. Frederick and V.

Jacobson, “RTP: A Transport Protocol for

Real-Time Applications”, RFC 1889, Jan. 1996

[17] S. Kasera, J. Kurose and D. Towsley, “Scalable

Reliable Multicast Using Multiple Multicast

Groups”, CMPSCI Technical Report TR 96-73,

Oct. 1996

[18] “CORBAtelecoms: Telecommunications

Domain Specification”, OMG, June 1998

[19] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman

and P. Barham, “Exlpoiting Reality with

Multicast Groups: A Network Architecture for

Large-scale Virtual Environments”, IEEE

Computer Graphics and Applications, Sept.

1995

[20] X. Xiao and L. Ni, “Internet QoS: A Big

Picture”, IEEE Network, March/April 1999

[21] C. Hesselman, I. Widya, A. van Halteren and L.

Nieuwenhuis, “Middleware Support for Media

Streaming Establishment Driven by User-

oriented QoS Requirements”, accepted for

publication at the 7th International Workshop on

Interactive Distributed Multimedia Systems and

Telecommunication Services (IDMS2000), Oct.

2000, Enschede, the Netherlands

[22] D. Lee, D. Lough, S. Midkiff, N. Davis and P.

Benchoff, “The Next Generation of the Internet:

Aspects of the Internet Protocol Version 6”,

IEEE Network, Jan/Feb 1998

[23] Apple Darwin Streaming Server,

http://www.publicsource.apple.com/projects/stre

aming/

[24] S. Bhattacharyya, J. Kurose, D. Towsley and R.

Nagarajan, “Efficient Multicast Flow Control

Using Multiple Multicast Groups”, IEEE

Infocom98, San Francisco, USA, April 1998

[25] J. Solomon, “Mobile IP — The Internet

Unplugged”, Prentice Hall, 1998

[26] Apple QuickTime Client 4.1,

http://developer.apple.com/quicktime/

[27] WaveLan homepage, http://www.wavelan.com

[28] RadioLan homepage, http://www.radiolan.com

