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ABSTRACT

Quality of Service monitoring is an important
function in near-future network management systems
that operate an Internet Protocol (IP) based real-time
communication infrastructure. Such networks carry
thousands of quality-sensitive data flows and their
performance is difficult to check against the
contracted parameters at the network boundaries.
Active measurements, which inject test traffic into
the network, play an important role in the estimation
of user perceived quality. In this paper we focus on
delay and loss measurements and we present ideas on
how to build a scalable distributed monitoring
system. The issue of estimating the end-to-end delay
and loss along a given path from link-by-link round-
trip measurements is discussed first. Then a heuristic
algorithm is presented which attempts to distribute
the load of driving the round-trip measurements
evenly across the routers in a domain.

1. INTRODUCTION

Offering Quality of Service (QoS) requires three
main activities from network operators: (i) deploy an
infrastructure which is able to provide premium
service, (ii) administer and configure traffic handling
parameters in network equipment according to
service requirements, (iii) and continuously measure
network performance to initiate traffic control
mechanisms if necessary. At first, the Integrated
Services and Differentiated Services models provide
means to realize QoS mechanisms at the network
layer [4]. The second area is covered by Bandwidth
Brokering [8] and policy management, the latter is
the topic of several working groups of the Internet
Engineering Task Force [9]. The third area, which

covers performance management functions
(monitoring and controlling), is lightly studied yet as
we see the literature.
Our paper deals with network performance
monitoring and the primary focus is on delay and
loss monitoring with active measurements. The main
purpose of this activity is to check the current
network performance against the target values.
Before the operator starts providing a service to one
of its customers, they record also quality issues in the
Service Level Agreement(SLA), see [6] for details.
The challenge in passive delay monitoring is that we
need keep track the arrival time and the departure
time of individual packets at network edges, whose
difference yields the packet delay. This model is very
difficult to implement, because the entry and exit
points should continuously communicate with each
other to inform each other on packet arival time.
Fortunately, active measurements, which inject some
test traffic into the network, can help to approximate
the delay between network edges. This approach is
already used for Internet performance monitoring
[1].
The problem with active measurements is that they
generate traffic, which may disturb the properties of
the carried traffic. If each network edge generates a
measurement flow to the other edges at the same
time, these flows will meet each other at buffers and
may cause overflow. This problem can be solved by
clever scheduling of these flows, but the
measurements will not be continuous in time.
To avoid flow overlapping, we try to approach the
problem from a different aspect. The idea is that each
router measures all of its links and the overall delay
is combined from these link-by-link delay
measurements. We try to make use of round-trip
measurements, because they are much easier to run
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(they do not need clock synchronization from the
network). In order to see whether this approach is
usefull, we conducted a few experiments on a testbed.
From these measurements, it seems that round-trip
times in opposite direction have the same statistical
properties. Therefore, one measurement is enough
and the two routers on a link should agree, which of
them will carry out the measurements. For this
purpose, we developed a heuristic graph algorithm
that optimize the measurement task among routers.
The rest of the paper is organized as follows. In
Section 2, we discuss quality of service monitoring
issues in details and we present the monitoring
architecture. In Section 3, we show a simple analysis
of our round-trip measurements. Section 4 deals with
the graph optimization problem and Section 5
concludes the paper.

2. QUALITY OF SERVICE MONITORING

A customer makes use of network service either
directly, when the target resource (e.g. a WEB
server) resides within its home operator network, or
indirectly, when it is located in another network. In
both cases the operator is responsible for quality
assurance within its network. When we investigate
the overall performance between any two hosts, we
refer to it asend-to-endperformance. If we consider
performance in a network between any two entry/exit
points, we speak aboutedge-to-edgeperformance,
see Figure 1.
The standardization of performance metrics and
methods are published in ITU-T recommendation
I.380 [3] and in several IETF documents, see [4] and
RFC 2678-2681. The operator’s challenge is to
measure flow properties at the incoming edge and the
outgoing edge for each contracted flow and to
compare in real-time to the contracted parameters,
see Figure 2. If we want to accomplish this task by
passive methods, we should deploy packet capturing
hardware on exchange links. We have to record
packet arrival times for each flow and to compare the
incoming series to the outgoing series. The difference
between arrival and departure time of the packet
yields the packet transfer delay, while difference of
the sent and the received packet gives packet loss.
This requires continuous feedback communication,
which would generate significant amount of traffic.
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Instead of trying to measure each flow individually,
we seek other ways to know something about edge-
to-edge performance. We generate test traffic at one
network edge, whose characteristics are known, and
estimate the quality of the flows leaving at a remote
edge by investigating the distortion of the test traffic.
This approach fits well into the view of
Differentiated Services model, where individual
flows are not distinguished, only different classes of
traffic. In this case each traffic class should be
measured independently.
We may also exploit the fact, that most of
communication is driven by humans and conver-
sations are bidirectional. Even if a voice connection
is implemented with two unidirectional flows, both
directions must operate properly for a clear
communication between two parties. For this reason
we may use two-way measurements for delay
monitoring rather than expensive one-way
measurements. One-way measurements require
proper clock synchronization from the network in
order to measure packet transfer delay between any
two points. For this purpose, the in-band Network
Time Protocol (NTP) is unsuitable and expensive off-
band hardware is required. The clock
synchronization errors in NTP are in the same order
as the network delays, because NTP synchronizes the
computer clocks by communicating over the network.
Therefore, the accuracy provided by NTP is not
sufficient to measure one-way transit delays.
Nowadays, the most popular external clock
synchronization solutions are based on GPS
receivers1.
Before we plan any measurement we should clarify
where the boundary of the network is. It is obvious
that all the equipment, which have common
management, belong to one network along with those

1 The satellites of the Global Positioning System
broadcast the Universal Coordinated Time (UTC)
and geographically distant clocks can be
synchronized to UTC in microseconds order.
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links that connects any two of these equipment. But
who is responsible forexchange links, i.e. links
between peer networks? It belongs to either our or
the peer’s management authority, but the
contribution of the exchange link cannot be
neglected. Thus we should monitor exchange links
from border routers.
Active measurements require bandwidth, the exact
amount depends on packet size and on sampling
frequency. It is obvious that we cannot measure
performance information at any instant, thus a
proper sampling rate has to be chosen. For example,
if the network carries voice-over-IP flows with20 ms
sending rate, we should set our sampling frequency
to at least 50 Hz. Thus the trade-off between
measurement accuracy and overhead has to be
considered Cottrell conducts large scale two-way
measurements in the Internet based on the ping
utility [2], and this architecture was also adopted by
the Cross Industry Working Team [7]. A sequence of
packets (actually 10 packets spaced at 1 second) is
sent to remote hosts at regular intervals (30 minutes).
This produces a very light measurement traffic,
although they monitor hundreds of Internet paths
from each monitoring site.. In order to monitor
quality sensitive applications, such sampling
frequency is inadequate.
As it was mentioned before, we assume that edge-to-
edge performance of individual flows can be
estimated from one active measurement for each pair
of edges. Therefore, we have to runN(N-1) active
measurements in a network withN border routers
because forward and backward paths are
distinguished from each other. It is obvious that often
more than one measurement flow traverses a link,
and the consumed bandwidth is proportional to the
number of the measurement flows on each link.
To reduce this overhead, we propose the following
idea: measure individual link performance
parameters and try to estimate the total edge-to-edge
performance from these measurements as indicated
in Figure 3. A monitoring system using this
approach works as follows. After network
initialization or repairment, routers start to collect
link performance information by using round-trip
measurements. They derive basic statistics (e.g.
minimum round trip delay, variance) and they
automatically calculate delay thresholds that
indicates high load on that link. When exceeding a
threshold, a notification is sent to the performance
monitoring center, where the affected edge-to-edge
SLA(s) can be identified by incorporating routing
information. Routing tables can be obtained from the
routers in advance via the Simple Network
Management Protocol (SNMP). From these tables,

Monitor
Center

Figure 3. Measure links individually

edge-to-edge routes can be calculated. Routing
changes are indicated by SNMP TRAP messages,
thus routes can be recalculated then. It is then up to
the performance managemenent system whether
immediate actions are taken or direct, more accurate
measurements of the affected SLAs are initiated.
The realization of such a monitoring system raises
some issues that are investigated in more detail here.
The first concern is how to estimate edge-to-edge
performance from individual link measurements? In
particular, we are interested in delay and loss as the
main performance measures. Secondly, round-trip
measurements on a particular link can be initiated
from either ends, but in practice one wants to use
only one measurement provided that the outcome of
the other one can be deduced. These issues are
investigated in Section 3.
Another question pops up if round-trip
measurements are done from only one end of each
link. The router initiating the measurement has
considerable more processing overhead than the one
which only reflects the measurement traffic.
Therefore it is natural to ask how to distribute the
burden of driving the measurements evenly among
the routers. A heuristic algorithm is shown in
Section 4 to solve this problem.

3. MEASUREMENTS

We wanted to check whether we are able to estimate
the overall edge-to-edge performance from round-trip
measurements of individual links. For this purpose, a
simple test network was built. Four Linux based
computers were connected together, the two in the
middle (B and C) enable packet forwarding among
their interfaces, thus machine A and D can reach
each other, see Figure 4. Our measurements require
full-duplex communication channels, because core
networks are build upon these. At first time we
wanted to use point-to-point 10Mbps Ethernet links,
but we were unable to set the interface card to full-
duplex mode. Finally, we implemented full-duplex
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Figure 4. Test network and ping loops

PPP connections over serial lines, which provide
38400 bps. We reduced the Maximum Transfer Unit
(MTU) down to 100 bytes, because four 1500 byte
packets would increae queuing time over 1 second
and it would rather disturb our measurements.
Transmission of 100 bytes over 38400 bps link lasts
nearly 15 ms, which enables outgoing buffer to grow
up to 66 packets within one second.
Background test traffic were originated and
terminated on machine A and D in both directions.
The traffic mix were consisted of one bulk FTP data
transfer, 2 telnet sessions to the chargen port2 and
multifile FTP data retrieval with short files. These
sources generated a medium load and a varying
traffic over the time. The slow transmission lines
were the limiting factor and this simple traffic mix
was empirically selected.
We were interested in, how round-trip times change
between neighbouring computers and between the
two edge. We used theping program, which utilizes
the ICMP_ECHO facility, since processing ICMP
messages requires not too much resource. It takes
30..50µs, which is 3 order less than the transmission
time, thus can be neglected. Successive packets were
sent at the default 1 second interval with payload size
64 bytes plus the 20 byte IP header. The
measurements were running for 3 hours which
produced approximately 11000 samples. Because
two-way measurements do not require synchronized
clocks from the network, we did not force to start the
8 ping sessions all at once. Instead, we synchonized
the sequence numbers only after the measurements.
In the output logfiles we were seeking that sequence
number where the difference of the current and the
previous delay sample exceeds 5% of the current
value (we started sampling before traffic generation).

3.1. Round-trip delay analysis

The first thing we have investigated, how behaves
that process, which was constructed from the sum of
the three round-trip delays. This was motivated by a
simulation result, where it was found that per hop
delays seems to be independent from each other [10].
Let us denote the round-trip time of the nth packet

2 The TCP chargen port sends MTU sized packets at
the rate as acknowledgements are received.

with rn, then we have
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wheren takes those values only where all three data
exist (i.e. no packet loss occured). Then we derived
the error process, which is the sample-by-sample
difference of the edge-to-edge delay (rAD) and the
sum of delays (rABCD):

ABCD
n
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In a similar way, we define the quantities for the
opposite direction. Table 1. summarizes the statistics
of the round-trip times between the machines. At
first look, we can see, that the forward and the
backward direction have a little bit different mean
values. By focusing on the sum of the three average
round-trip times (A-B, B-C and C-D), we find that
the sum underestimates the average edge-to-edge
round-trip time (A-D) by 20...30%. Upto this time
we could not find the source of this difference. It is
also interesting, that the standard deviation of the
error series and the edge-to-edge series are almost
the same. The estimation silently assumed, that we
have normally distributed time series, but this is not
the case. We can see the histograms of the round-trip
times in the forward direction in Figure 5 (we get
very similar distributions in the backward direction
also), and these do not remember us to a bell-shaped
curve, especially A-D, which have two humps.
However, the error (εABCD and εDCBA) seems to show
normal distribution as the QQ-plot suggest us in
Figure 6. The ordered error samples are plotted
against the normal distribution and the closer the
points fall to the line (determined by sample mean
and deviation), the higher is the probability that we
have normally distributed samples. It is also
interesting that the round-trip time on the center link
(B-C) shows discretized values spaced by 10ms apart
from each other (bin width is 2.5ms). This can be
due to that the queues never became empty and self
synchronization occured among the TCP flows.

Link Mean St.dev Link Mean St.dev
A-B 193.2 69.8 B-A 203.7 77.5
B-C 70.5 12.6 C-B 78.5 11.7
C-D 144.7 65.6 D-C 167.7 68.2
A-D 562.6 117.4 D-A 568.3 99.6
ABCD 408.5 98.0 DCBA 449.9 104.6
Error 154.0 110.3 Error 118.3 99.6
Table 1. Round-trip time statistics summary, base

unit is 1 milisecond.
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Figure 5. Histograms of round-trip times
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Figure 6. Quantile-quantile plot of the error samples
against the normal distribution.

3.2. Round-trip time asymmetry

Next we focus on the round-trip time asymmetry, i.e.
whether we can find any relation between the
measurements done in opposite directions. If we
consider the two machine in the middle (B and C),
we can build a simple model drawn in Figure 7. The
pinger module generates the packets at fixed
intervals, which join the outgoing queue if it is not
full. This queue is also fed by other sources that wish
to use the same link and its cumulative arrival curve
is denoted byA(t). A packet delays until all the
packets are serviced in the queue including itself. In
the peer node, the responder module mirrors the
message and puts it into its outgoing queue. The
response has to compete with the traffic flowing in
the backward direction, which can be described with
its arrival curve D(t). The other pinger-responder
loop can be described in similar way. The only
difference is that the packets running in opposite
loops visit the same queue in different time.

link

forward

link

backward

A(t)

D(t)

router #1 router #2

responder pingerresponderpinger

Figure 7. Round-trip loops

Instead of building an analytical model, we started to
examine the statistical properties of the datasets. If
we consider the round-trip time datasets of B-C and
C-B and keep those entries which have a matching
pair by the adjusted sequence number in the other
dataset (since packet loss can occur), we derive two
datasets Xn and Yn respectively. We assumed that the
normalized error
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can be approximated by normal distribution. Figure 8
shows the QQ-plot of the error of the three links and
the edge-to-edge round-trip time. For the three links,
the samples follow normal distribution
approximately within the range(-2σ,2σ), which
covers the 95% of the distribution.

3.3. Loss analysis

Other interesting quantity, which we can easily
extract from the round-trip measurements, is the
packet loss ratio. It is simply calculated as

1
1

+−
−=

startSEQendSEQ

entriesnumber of
l

wherestartSEQ and endSEQ is the first and last
packet sequence number respectively.
We supposed that packet loss occurs indepently on
each link, but loss over a path (sequence of links)
depends on all previous links. Thus the edge-to-edge
loss can be simply derived in a product-form out of
the individual loss ratios.
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Table 2 shows the calculated loss statistics for each
link. It is interesting that no packet loss occured on
the center link (B-C) and side links (A-B and C-D)
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experiences rather asymmetic loss ratios. This can be
due to the TCP congestion control meachnism that
determine the background traffic. The conclusion is
that the overall loss ratio (lAD) is underestimated
from the individual measurements (lABCD). This can
be due to that we sample queue lengths in different
time at regular intervals and TCP flows are
synchronized.

Link Loss Link Loss
A-B 0.28% B-A 5.24%
B-C 0% C-B 0%
C-D 1.2% D-C 2.05%
A-D 6.12% D-A 8.76%
ABCD 1.47% DBCA 7.18%

Table 2. Loss statistics

4. CONFIGURATION OPTIMIZATION

As we have seen, it is statistically irrelevant that
from which endpoint of a link do we initiate the
round-trip measurement. If we model our network
with an undirected graph, we can derive a directed
graph from it, in which we mark the direction from
pinger to responder. The question to answer here is
how to set up the directions efficiently, because we
have several constraints:
• The larger number of pingers running on a

system the less accuracy we will achieve, since
the accuracy of the timestamps are heavily
dependent on system load.

• The load on border routers typically higher than
on any internal nodes, because they perform e.g.
inter-domain routing.

• We cannot initiate measurements from external
border routers, because they do not belong into
our authority.

This graph optimization problem can be easily drawn
up: give a direction in the graph that tries to keep the
difference of the number incoming and outgoing
edges under a certain limit for each vertex. We are
looking for a fast, convergent algorithm which can
be implemented either in the management system or
in routers itself as a protocol.
We developed and implemented a very simple
heuristic algorithm to test our simulation
environment. The idea behind the algorithm is that
we eliminate the full constrained edges first, then we
try to give a direction for the remaining edges in one
step. Finally a greedy optimization is run until we
cannot improve by changing the direction of
unconstrained edges. Figure 9 shows a sample
output.
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Figure 9. Example configuration, arrows show the
direction from pinger to responder

The algorithm operates on an ordinary undirected
graph extending vertices and edges by several
attributes:
• Edge:direction can be either unset, forward and

backward; while lock status means that the
direction cannot be changed anymore.

• Vertex: beside the number ofincoming and
outgoing edges we maintain the number of
connectingunlocked edges andtype, which can
be external, border or internal.

At initialization we unsetdirection and unlock all
edges, while we zero all counters of vertices and
record the number of edges inunlocked.

Step 1. Take those edges which have one external
endpoint (if both are external, then this edge is out of
our scope), set direction towards them and lock.
Step 2. Take those edges which have a border
endpoint and if the peer endpoint is
• external then skip it
• internal then set direction against it and lock
• border then check whether the peer is in worse

situation (i.e. the difference of the incoming and
outgoing edges are bigger than current plus two)
and set direction according to it

Step 3. For each unlocked edge, calculate the
number of connecting edges to its endpoints (i.e. the
sum of degree of the two vertices minus two) and sort
edges in ascending order by this factor. Take each
edge and set direction according to the test which
endpoint is in a worse situation.
Step 4.While there is such an unlocked edge, which
would improve the situation of its vertices, reverse its
direction.
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The algorithm works well with arbitrary network
topologies. The first three steps give an almost
optimal configuration for such network that have no
cycle in it. The difference of the incoming and
outgoing edges never falls below minus 2 if there are
no constraints. The last refinement step is required to
balance loops. An example can be seen in Figure 10:
node A has two outgoing edges, while we can
improve if we change the direction of edge A-D. The
algorithm is stable, since we initiate direction change
only if the difference of the incoming and outgoing
edges between the two vertices is at least two and any
direction modification cause change by only one in
this value.

d

a b

cd

a b

c

Figure 10. Loop balancing problem

5. CONCLUSION

Quality of Service monitoring requires efficient
active measurement and estimation methods to keep
track the user perceived performance. We have
presented a monitoring architecture, which uses
round-trip time measurements on each link to
estimate end-to-end delays in the network. Using
these estimates, the frequency of more accurate end-
to-end delay measurements can be reduced. We have
also presented a heuristic graph optimization
algorithm which distributes overhead of the
measurement task evenly among routers. The ideas
discussed in the paper represent work in progress.
Since the advantages of a scaleable, distributed
monitoring system are promising, further work is
aimed at analysing the presented results more
rigorously and at refining the methods.
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