
1

Issues on QoS based Routing in the Integrated Services
Internet

Gábor Rétvári
Department of Telecommunications and Telematics,

Budapest University of Technology and Economics (BUTE)
High Speed Networks Laboratory, QoS IT Labs

Pazmany Peter Setany 1/D, H1117, Budapest, Hungary
e-mail: retvari@ttt-atm.ttt.bme.hu

ABSTRACT
Given today's need for transmitting multimedia data
over the Internet, large efforts have been made to
specify and implement various service classes
(Integrated Services: IntServ) over the well-known
Internet Protocol (IP) infrastructure. Distinguishing
service classes introduces the necessity of providing
privileged treatment (QoS: Quality of Service) to a
subset of data packets.
Network resources dedicated to particular IP flows
must be allocated at the initial phase of a QoS
communication at each network node along the
forwarding path. Calculation of this forwarding path
is the responsibility of a separate routing module.
While current routing protocols are not capable of
considering QoS requirements when selecting paths,
QoS enabled routing protocols increase the likelihood
of accommodating a particular IP flow in the network
according to its resource demands.
Although the components of an IntServ platform are
given, attempting to establish a functional testbed
fails due to numerous design and implementation
reasons. A brief investigation of the issues affecting
the co-existence of resource reservation and QoS
routing is provided in this paper. As currently IntServ
can not take advantage of QoS routing, it is restricted
to utilize traditional best-effort routing functionality.
Several solutions are covered in this paper to avoid
this limitation.
A series of fundamental measurements are presented
as well to demonstrate the efficiency of the QoS-
routing enabled IntServ platform.

1. INTRODUCTION
Recently, the Internet Community realized, that given
today’s emerging need for multimedia
communication the traditional, well-known Internet
Protocol (IP) infrastructure is no longer capable of
providing sufficient services. IP has proven to be very
effective and robust as long as no privileged service
classes are assumed, but it is completely inadequate
for the introduction of QoS. Since IP is, by nature,
connectionless, it is really hard to bind network
resources permanently to a particular session willing
to gain prioritized services. Additionally, there is a
large number of various underlying lower layer
mechanisms, that makes it quite difficult to adapt
higher layer resource management systems. When
defining new service classes in the Internet, care
always has to be taken not to interfere with existing
best-effort services. Furthermore, QoS
communications are typically high-speed
connections, thus it is worth to keep the complexity
of the QoS forwarding engine rather low to facilitate
rapid switching of QoS traffic. We can state, that a
real connection oriented infrastructure has to be
established over the connectionless, best-effort IP
architecture. Currently, huge research efforts are
taken to fulfill the above requirements.
The term “QoS IP network” refers herein to a
network, that supports both best-effort packets and
packets with QoS guarantees. The way in which
network resources are split between the two classes is
irrelevant, except of the assumption that each QoS
capable router in the network is able to (1) dedicate
some of its resources to satisfy the requirements of
QoS packets, and (2) identify and advertise resources

2

that remain available to new QoS flows (e.g.: for
Admission Control purposes).
Introducing QoS over the IP infrastructure can be
viewed according to two principal approaches. One is
the "Differentiated Services" model, which implies
the classification of QoS flows (sequences of IP
packets belonging to the same QoS session) into
traffic classes to facilitate common treatment of flows
with similar QoS requirements. The other approach is
the "Integrated Services Internet" (IntServ) model:
individual flows are handled separately. This may
result in gaining finer control over QoS guarantees to
be delivered for individual IP flows. However it is
clear, that the cost of sophisticated resource
allocations is the increased amount of state
information associated with individual sessions, that
have to be stored at each network node [1]. Our main
goal was to establish an IntServ testbed to investigate,
is increased cost worth to pay. In this document we
focus on the Integrated Services Internet model.
Due to the connectionless nature of IP, a higher level
signaling mechanism has to be invoked to establish
signaling connection before data communication
takes place. The basic component of such a signaling
architecture is a resource reservation mechanism that
establishes the data path for a flow at the connection
initialization phase and allocates the required
resources at routers along the path. Henceforward,
each router along the forwarding path is capable of
associating an incoming packet with a QoS session by
means of packet filtering. Based on this association a
QoS packet obtains prioritized treatment over best-
effort data. Naturally, after the QoS communication
times out, the connection has to be torn down.
The IntServ model also implies, that data forwarding
paths for individual IP flows can be selected one at a
time. This facilitates both the unique treatment of
QoS flows from the routing perspective, and − from
the traffic engineering standpoint − the introduction
of some sophisticated policies to control network load
with a fine granularity [2]. Each QoS capable router
in the network holds proper knowledge on the actual
load of the network by advertising its locally
available free resources. Based on this accurate load
information QoS routing module selects a suitable
path for a particular QoS session according to the
actual network load and the flow's traffic
characteristics. Over rather meshed topologies, where
multiple paths exist between a particular source and a
destination, QoS routing may increase the likelihood
of finding a feasible path for a QoS session, which is
capable of admitting the session's traffic. Although
the extra-complexity of QoS sensitive routing can be
relatively high, a number of previous works presented
evidence, that the increased computational cost of
QoS routing is tolerable [3]. A QoS routing module is

believed to be another essential component of the
abstract signaling plain.
Unfortunately, despite of the fact, that QoS routing
and resource reservation are deemed to be well-
established mechanisms, the attempt to set up a fully
functional IntServ network architecture fails due to
various reasons. Principally, the inadequate design of
the interface between resource reservation and QoS
routing prevents the signaling connection to be
established according to QoS routes. Next, our
operating system environment, Linux currently lacks
many crucial features that prevent us from forcing
QoS traffic to QoS paths.
Although in some special scenarios a series of
measurements can be accomplished to demonstrate
the gains QoS routing involves owing to sophisticated
routing decisions. These measurements have proven,
that given today's processor capabilities QoS routing
does not introduce as much complexity as it was
formerly believed, however, it may drastically
increase the performance provided by IntServ in a
congested IP network.
In Section 2. of this document, we briefly outline,
how an IntServ based QoS IP architecture is supposed
to operate. In Section 3., we shall identify the crucial
reasons, which prevent us from establishing an
IntServ testbed with real operational system
components. Also we attempt to give some solutions
and outline, how a future Linux based RSVP
compliant QoS forwarding engine is expected to
work. Although our IntServ testbed is not fully
operational, by means of manual pre-configuration
some basic measurements can be carried out to
demonstrate the efficiency of QoS routing. These
measurements are covered in Section 4. In the last
section, Section 5., we summarize the conclusions of
our related work and identify the essential steps,
which have to be taken in the future in order to make
IntServ a really operational platform.

2. SYSTEM COMPONENTS
The introduction of QoS classes in the Internet
architecture is a somewhat complicated challenge.
QoS support in IP implies overall QoS support in
each network layer. In this paper we focus on the
mechanisms taking place in signaling plain and the
network infrastructure at routers, as these are believed
to be the most important building blocks of the QoS
infrastructure.

2.1. Resource Reservation
As it was mentioned earlier, IP was originally
invented to be connectionless. This means, that there
is no easy way to associate a particular
communication session with the packets constituting
that session. This concept is brilliant for a network
providing unreliable best-effort service. Nevertheless

3

the connectionless nature of IP is completely
inconvenient for supporting QoS, because privileged
services requires the permanent binding of some
network resources to particular IP flows. Resource
reservation involves the definition of the so-called
session and facilitates the offering of network
resources to packets associated with particular
sessions. In a QoS environment the communication
phase is always preceded by a signaling phase.
During communication setup the applications running
at Internet hosts notify the network on the
characteristics of their traffic instances, and the
network attempts to bind the required amount of
resources to the sessions.
Managing this connection setup process is the
responsibility of a separate resource reservation and
setup policy. The most commonly used reservation
setup protocol is RSVP (Resource reSerVation
Protocol, [4]). The RSVP protocol is used by a host to
request specific qualities of service from the network
for particular application flows. RSVP is also used by
routers to deliver QoS requests to all nodes along the
path(s) of the flows and to establish and maintain
state to provide the requested service. RSVP requests
will generally result in resources being reserved in
each node along the data path.
RSVP requests resources for simplex flows,
therefore, RSVP treats a sender as being logically
distinct from a receiver. RSVP operates on top of
IPv4 or IPv6, occupying the place of a transport
protocol in the protocol stack. However, RSVP does
not transport application data but is rather an Internet
control protocol, like ICMP, IGMP, or routing
protocols.
In order to efficiently accommodate large groups, and
to adapt to heterogeneous receiver requirements,
RSVP makes receivers responsible for requesting a
specific QoS. A sender describes its traffic
characteristics to the receiver(s) in a Path message.
Receivers respond with a Resv message, and the
RSVP protocol then carries the request to all the
nodes (routers and hosts) along the reverse data path
to the data source(s). As a result, RSVP's reservation
overhead is in general logarithmic rather than linear
in the number of receivers.
Selecting an optimal path for the Path message
originated at the session’s sender(s) is of crucial
importance, as the session’s traffic will be forced to
the pre-selected path. RSVP is not itself a routing
protocol; RSVP is designed to operate with current
and future unicast and multicast routing protocols. An
RSVP process consults the local routing database(s)
to obtain routes. Routing protocols determine where
packets get forwarded; RSVP is only concerned with
the QoS of those packets that are forwarded in
accordance with routing. Dividing resource
reservation and routing functions into independent

modules emerges the need for a universal interface
between RSVP and routing, which is able to serve the
demands of any arbitrary routing protocol. As we
shall see in Section 3., due to some design and
implementation purposes this inter-process interface
lacks some indispensable features, thus RSVP is
unable to interact with QoS routing currently.

2.2. QoS based Routing
In the previous section we concluded, that selecting a
proper path for an RSVP Path message at the
reservation initialization phase is quite important, as
this is the way a data forwarding path is assigned for
the session. Each individual packet of the session
must be forced to this route by the QoS forwarding
engine. By selecting an optimal path for a flow, the
performance of the QoS services can be increased
significantly.
Suppose the situation, where there are multiple paths
between a particular sender and a receiver. Best-effort
routing will, regardless of the flow’s resource
requirements, always select the same path, which it
deems to be the “cheapest” (in terms of hop count,
OSPF metric, etc.). After establishing a certain
number of QoS communications along the cheapest
path, an immediate router may realize, that no more
traffic can be admitted to this path without degrading
the services delivered to the existing reservations.
The cheapest path gets loaded near to its capacity,
although there may exist a yet under-utilized “longer”
path. Admitting further QoS traffic to this longer path
obviously increases both the performance of QoS
services and the overall network utilization.
Therefore it seems to be remunerative to add QoS
sensitivity to traditional routing mechanisms.
A good example of how to extend a conventional
best-effort routing protocol with QoS capabilities is
the QoSPF routing protocol (QoS extensions to
OSPF, [5], [6]). Standard OSPF (Open Shortest Path
First, [7]) is a unicast link-state routing protocol. This
means, that each OSPF router holds knowledge on
the entire topology in a routing database. Each router
discovers its neighboring routers and subnetworks,
and advertises its local environment to other routers
in an administrative scope of the network through a
reliable flooding mechanism. These advertisements
are stored and updated accordingly to synchronize
routing knowledge in the network. This routing
architecture can be relatively easily augmented to
include QoS related link metrics, namely the amount
of available bandwidth at each link. Based on the
collected information on the topology and the actual
load state of the network, a routing table pre-
computation is performed to calculate widest-shortest
paths to any optional destination. The pre-computed
QoS routing table comprises the widest candidate
paths in increasing order of hop count (i.e., length).

4

There is an outgoing interface index associated with
each entry in the routing table, to specify the next-hop
along the path.
At QoS capable routers, upon receiving a Path
message, RSVP queries QoS routing to select a
feasible path from its pre-computed QoS routing table
according to the flow’s resource requirements (i.e.:
according to the characteristics of the sender’s
traffic). First, QoSPF searches for an entry in the QoS
routing table corresponding to the route request. Then
it compares the available bandwidth of the shortest
route to the destination and the requirements of the
flow being processed. If the flow’s bandwidth
demand exceeds the available bandwidth associated
with the shortest path, than a longer path is taken. If
even the longest pre-computed path can not admit the
flow, then an “Admission Control Error” message is
returned to RSVP. Otherwise the shortest path is
selected, that is capable of admitting the flow. The
outgoing interface index is then returned to RSVP,
which forwards the Path message in the specified
direction. When the Resv message returns from the
receiver on the reverse path of the Path message
RSVP performs resource reservation at the proper
outgoing interface. QoS routing is informed on the
change of local resource availability, which triggers
the re-flooding of the link state advertisements
describing the link and routing information gets
synchronized again. Routers, being notified on the
new situation perform route pre-computation again to
find optimal paths according to the actual load of the
network.
The operation of the signaling protocols is depicted in
Figure 1.

Currently QoSPF involves a plenty of restrictions to
limit QoS routing’s impacts on the standard OSPF
infrastructure to the lowest level. Path selection is
performed in a hop-by-hop fashion, support for
explicit routing is not included. The scope of QoS
route computation is currently limited to a single
area. Inter-operability with non-QoS aware routers is
not addressed. QoSPF currently provides solely
unicast routing.

Several recent research results [3] have pointed out,
the potential of QoS routing for improving network
utilization and the service levels provided to requests
with QoS guarantees. The improvement of the service
received by users is the increased likelihood of
finding a path that meets their QoS requirements.
Conversely, the improvement to network efficiency is
usually in terms of the number of flows or the amount
of bandwidth carried by the network. Despite these
benefits, there remains much uncertainty regarding
the additional costs of QoS routing. These added
costs have two major components: computational
overhead, due to the more sophisticated and more
frequent routing computations, and a protocol
overhead caused by the need to distribute updates on
the state of the network resources that are of
relevance to path selection. Previous works establish
strong empirical evidence that the cost of QoS routing
remains well within the capabilities of modern
processors. and the protocol overhead is tolerable
even for large networks. In Section 4. we present
some measurements to demonstrate efficiency, QoS
routing may involve.

2.3. Local traffic Control
Originally, IP was invented to co-operate with any
optional lower layer mechanism, in case the link layer
provides a well-defined set of functions. This means,
that IP can operate over various types of link layer
protocols, which may (or may not) implement QoS
support in different ways. On the other hand, resource
reservation functionality needs a common access
interface to these lower layer QoS mechanisms.
RSVP defines the LLDAL (Link-layer-dependent
Adaptation Layer) routines for interfacing to a
"kernel" traffic control mechanism. This supports
QoS over passive media such as leased lines or
(today's) shared LAN media. The module
implementing LLDAL functionality is herein referred
to as the so-called Traffic Manager module.
The Traffic Manager serves various purposes. Apart
from being responsible for adjusting higher layer QoS
functions to lower layer QoS mechanisms, it is a
unidirectional interface towards QoS routing to pass
local resource availability in order to facilitate the
flooding of loading information. Traffic Manager also
maintains a repository of existing local reservations.
QoS mechanisms at lower level involve a QoS
capable forwarding engine. The forwarding engine
consists of a Classifier module and Packet Schedulers
associated with each QoS capable interface. The
Classifier is responsible for filtering incoming
packets in order to select packets belonging to a
known flow. These packets have to be forced to the
path determined by QoS routing: the Classifier is in
charge of placing the packet into the proper outgoing
interface’s scheduler. Packet Schedulers maintain the

Figure 1.: Co-operation of RSVP and QoS Routing

5

queues associated with each flow and schedule
packets according to priority determined by the
flow’s QoS.
The Traffic Manager provides uniform access to
these lower layer mechanisms for the modules
implemented in the signaling plain. A special Traffic
Manager module for the Linux kernel was
implemented by us from scratch.

3. WHY QoS ROUTING IS USELESS
CURRENTLY?

After having described the basic system components
of the IntServ architecture in great detail, we present
the point of this paper. Namely, we are going to
identify the principal reasons, which prevent us from
establishing an IntServ testbed based on the existing
QoS routing and resource reservation
implementations. Herein we outline a crucial design
objective regarding the interface between QoS
routing and RSVP, and an implementation issue
concerning an unimplemented feature of our
operating system environment, Linux.

3.1. Insufficient QoS routing – RSVP inter-process
interface

RSVP was designed to operate independently from
the routing functionality implemented in the signaling
plain. This facilitates the co-operation with an
arbitrary routing protocol, which installs routes into
the common kernel routing table (e.g.: OSPF, RIP,
BGP etc.), or implement the basic functionality of the
RSVP − Routing interface (typically best-effort,
multicast routing protocols, such as PIM, mrouted,
etc).
In this section we shall see, that nor installing QoS
routes in the kernel routing table, neither utilizing
current RSVP − Routing interface facilitates the
proper routing of QoS flows.
The kernel routing table is a common repository of
static routes computed by best-effort routing
protocols or configured manually. This repository
identifies a router or a network by an address/netmask
pair, and associates an outgoing interface and
optionally a gateway (IP address of the next hop
along the path) with it. The kernel routing table must
be unambiguous, which means, that only one gateway
can be ordered to a particular address/netmask pair.
Attempting to install QoS routes into the kernel
routing table causes ambiguity, as QoS routing may
identify multiple paths to a given destination. The
standard kernel routing table simply does not provide
means to distinguish packets based on their belonging
to a particular IP flow.
The other chance is utilizing the RSVP − Routing
interface defined in several recent standards. Recall,
that upon receiving a Path message referring to a yet
unknown QoS flow, RSVP queries QoS routing via

the RSVP – Routing interface to determine the
outgoing interface the Path message has to be passed
via. The following specifications define the accurate
operation of this interface:
1.) “RFC 2205”, the RFC describing RSVP: [4, p39]:

 "The RSVP process forwards Path messages
and replicates them as required by multicast
sessions, using routing information it obtains
from the appropriate uni-/multicast routing
process. The route depends upon the session
DestAddress, and for some routing protocols
also upon the source (sender's IP) address. The
routing information generally includes THE
LIST OF ZERO OR MORE OUTGOING
INTERAFCES to which the Path message is
to be forwarded."

2.) “Extended RSVP - Routing Interface” [8, p5-6].
This was created specifically for the needs of QoS
based routing:

“Routing responds to a Route_Query with a
Route_Reply that identifies the OUTGOING
INTERFACE(S) on which the PATH message
is to be forwarded and provides a list of
opaque objects that should be transmitted in
the outgoing PATH message.”

3.) “RSRR: A Routing Interface For RSVP”. Current
RSVP implementation is based on RSRRv2 (Routing
Support for Resource Reservations, version 2, [9,
p7]). RSRR’s basic aim is to interface with multicast
routing protocols:

“Multicast routes consist of an “incoming vif”
(virtual interface identifier) and an “outgoing
vif bitmask”. Unicast routes consist of A
SINGLE BIT SET IN THE "OUTGOING VIF
BITMASK" to indicate the next hop; the
"incoming vif" is always zero and should be
ignored by the client.”

After having discussed current RSVP − Routing
interface specifications, we shall see, why they are
inadequate to support QoS based routing. Each of
these specifications (regardless of being specified for
QoS routing or multicast routing purposes) states, that
the information, that routing module returns to RSVP
is the list of outgoing interfaces the Path message has
to be forwarded via.
RSVP Path messages holds the same IP addresses as
the data packets will. After QoS routing defines the
outgoing interface in a ROUTE_REPLY, RSVP
attempts to forward the Path message through the
given interface. Hence, RSVP has insufficient
information (an interface identifier and the
destination IP address, which may or may not reside
on the subnet attached to the specified interface) to

6

identify the next-hop of the Path message. The
missing point is the physical interface address of the
next hop along the path, as the outgoing interface
information simply does not provide any means to
determine the physical address of the next-hop. Some
silly ARP requests are originated (“arp who-has
destination IP address tell routers physical
address”), and the Path message is silently discarded,
since nobody responds the ARP requests. Therefore
the inaccurate design of the RSVP − Routing
interface prevents the establishment of the signaling
connection in the communication initialization phase.
This is a serious design issue, which was not
addressed in any of the above mentioned standards on
the RSVP − Routing interface. Suppose the situation
of having a multi-access LAN attached to the
outgoing interface of the router, where the Path
message should be forwarded. There is no way to
determine, which is the proper physical address of the
Path message, mostly, if there are multiple routers
attached to the multi-access LAN. Figure 2. shows
this situation.

The solution is straightforward: the interface has to be
completed to pass not solely the outgoing interface
information, but the complete IP address of the next
hop router. Furthermore, QoSPF has to be modified
to store the next hop address associated with each
entry in the pre-computed QoS routing table. RSVP
should be updated to utilize this information in order
to pass the Path message to the gateway, specified by
QoS routing.

3.2. A Framework for Implementing an RSVP
Classifier Module in the Linux Kernel

Nowadays Linux is the only operating system that is
equipped with efficient IntServ support. There are
sophisticated lower layer filtering and scheduling
mechanisms implemented in recent Linux kernels.
However, even Linux lacks an RSVP Classifier
module that is responsible for forcing QoS packets on
routes selected by QoS routing.
Currently routing is done based on a common kernel
routing table. Incoming packets, regardless of their
QoS or best-effort nature are forwarded in the same
manner: the best match is searched in the routing

table according to the destination address of the
packet. Then packets are matched against RSVP
filters, and inserted into the appropriate scheduler’s
queue. Nevertheless, in the previous section we
concluded that the kernel routing table does not lend
itself to install QOS routes easily, thus some
modifications are required to the current routing
infrastructure.
Herein we briefly outline the structure of an RSVP
compliant Classifier. Although there is no such
module currently available, the basic building blocks
(i.e.: RSVP filtering mechanisms, Netlink Socket
architecture, Netfilter) are implemented in recent
kernels.
The main components of the RSVP Classifier is a
packet filtering block, which filters all incoming
packets by matching them against RSVP filters
subsequently. A match indicates that the packet
belongs to a known session, and there must be a QoS
routing entry and a queue associated with it. The
packet is then taken away from the standard Linux
forwarding engine, and the appropriate QoS routing
entry is looked up. This specifies the gateway address
of the packet (next-hop’s IP address) and the
prioritized queue, it has to be inserted in (see Figure
3.). When a reservation is established, RSVP installs
a filter and the queuing discipline for the new
reservation in the kernel, and adds the proper QoS
routing entry. Detailed implementation issues of the
RSVP Classifier are beyond the scope of this
document.

 Also it is important to note, that proper user domain
applications have to be implemented to assure
uniform access to lower layer QoS routing
mechanisms.

4. MEASUREMENTS
The previous sections of this paper presented
evidence, that RSVP’s current design does not allow
the co-operation with QoS routing, therefore QoS
flows are restricted to best-effort routes. However, in
some very special network scenarios, the above
identified problems do not emerge. By means of
some manual pre-configuration even the current
RSVP − Routing interface can be used. Thus a series
of measurements can be done to demonstrate the
gains in performance and overall network utilization
QoS routing may result.

Figure 2.: Establishment of the data forwarding path

Figure 3.: RSVP Classifier in the Linux Kernel

7

4.1. Measurement Configuration
Our measurements aim to facilitate the comparison of
the services a QoS flow can obtain from the network
at the current state of development.
In our first measurement scenario we investigated the
behavior of QoS flows in a congested best-effort
network. This scenario is believed to represent the
“ancient” Internet, where no prioritized treatment
could be offered to a particular flow. The second
scenario represents the current situation as we used
RSVP without taking advantages of QoS routing. To
demonstrate the benefits of QoS routing in the third
scenario we used RSVP and QoSPF in the same time.
Nevertheless, we have to emphasize, that these
mostly unsophisticated measurements are purely for
demonstration purposes.
In order to mimic a fully functional RSVP − Routing
interface’s functionality, some manual pre-
configuration is required based on the knowledge of
the paths QoSPF may select. Since there is no way to
distinguish QoS packets destined to the same
interface we need to send traffic directly to the proper
interface of the destination. At intermediate routers
appropriate static routes have to be added in
accordance with the QoS paths, QoSPF is expected to
select. Also rp_filtering (reverse routing for security
purposes) has to be disabled to enable IP spoofing.
To facilitate the proper establishment of the signaling
connection we have to avoid the discarding of Path
messages with unknown next hop MAC address. A
quite elegant solution is Proxy_ARP: a router can be
told to answer any ARP request concerning a
particular IP address by its own MAC address. Recall
that before attempting to emit the Path message to the
interface specified by QoSPF, the kernel tries to
resolve the Path message’s destination IP address
through ARP. The next hop is set to answer these
ARP requests by Proxy_ARP, thus Path messages are
drawn in the right direction.
We chose the disjoint multipath network topology
depicted in Figure 4. Bandwidths at network links are
set in a way assuring the admission of three 10
Mbit/sec UDP flows (QoS_short, QoS_longer_5_2,
QoS_longer_6_1) to the three feasible paths. As the
scheduling architecture is quite complex, there are
some inaccuracy in limiting the overall traffic to the
desired rate, but it does not affect the essence of the
measurements. The entire traffic travels from the
Terminal to Router_4. Also we injected TCP traffic
(tcp_short) in the network as well to investigate the
service level delivered to elastic best-effort traffic in
the IntServ platform. TCP traffic will always adjust
its throughput to the bandwidth that remains available
for best-effort communication. UDP traffic is delayed
by two seconds to allow TCP to initially fill the
whole bandwidth range.

4.2. Pure Best-effort Service
In the first scenario we tried to forward all the traffic
over the well-known best-effort infrastructure without
delivering any prioritized services to any of the
sessions. The best-effort routing protocol (actually a
standard OSPF) picked the same shortest path for all
the traffic regardless of their QoS or best-effort
nature.
Figure 5. shows the throughput of the three QoS
flows and the TCP traffic in the function of elapsed
time.

In this scenario, about 30 Mbit/s QoS traffic and
the best-effort traffic aim to pass over the same 2 long
hop path, thus, the second link of this path (Router_1
− Router_4) gets seriously congested. Due to the
congestion each session, regardless of their required
QoS obtains unpredictable and undeterministic
service. There are some periods of the transmission,
when the entire traffic of a QoS flow is lost.

4.3. RSVP co-operating with best-effort routing
The previous measurement aimed to represent the

current Internet services. This scenario is for
demonstrating the current state of development,
namely RSVP, taking advantages of a best-effort
routing protocol (again OSPF). Each QoS flows are
limited to the same shortest path, as before. This path

Figure 5.: Throughput in the first scenario

Figure 4.: Measurement configuration

8

can admit solely one QoS flow, therefore the QoS
flow initiated first obtains real QoS (Figure 6). Other
QoS flows are treated as best-effort, therefore one of
them is completely lost.

4.4. RSVP co-operating with QoSPF
The third scenario aims to represent the next step

in the development towards a future QoS Internet.
QoSPF is capable of identifying the three feasible
disjoint paths for RSVP, therefore each QoS flow can
be admitted in the network. 10 Mbit/sec bandwidth is
allocated for each of the QoS flows along the three
feasible paths, so effective QoS is offered to QoS
sessions as it is depicted in Figure 7.

The gains involved by QoS routing are finally
considered. First, there is about 300 percent increase
in the throughput of QoS flows owing to the ability of
forwarding data not only along shortest paths, but via
other feasible paths as well. The total throughput also
increased, this growth can be viewed as gains in
overall network utilization.

Based on the above considerations, the author’s
view is that it is worth to utilize QoS routing over
rather meshed topologies, because it can dramatically

increase the performance of QoS sessions in a
congested IntServ network.

5. Conclusions
This paper aims to identify the most important

building blocks of an Integrated Services architecture
and describe the role, these components play in
delivering prioritized services for QoS sessions over
the well-known IP infrastructure. Also we presented
evidence, that currently QoS routing can not be used
together with RSVP despite of the fact, that plenty of
standards defined the co-operation. A simple solution
is proposed to allow interfacing of RSVP and QoS
routing. Also we pointed out, that implementing an
RSVP Classifier is necessary to facilitate routing QoS
packets optimally. To demonstrate the benefits of
QoS routing a series measurements is presented.
These measurements show, that QoS routing provides
means to increase the performance of the IntServ
architecture over rather meshed topologies, and
therefore it is a real alternative, which is worth to
consider.

REFERENCES
[1] Braden R., Clark, D., Shenker, S.: “Integrated

Services in the Internet Architecture: an
Overview”, RFC 1633, IETF, June 1994.

[2] E. Crawley, R. Nair, B. Rajagopalan, and H.
Sandick: “A Framework for QoS-based Routing
in the Internet”, RFC 2386, IETF, August 1998.

[3] G. Apostolopoulos, R. Guerin, S. Kamat, and S.
Tripathi: “Quality of Service Based Routing: A
Performance Perspective”, In Proceedings of
SIGCOM, pp. 17-28, Vancouver, Ontario,
Canada, September 1998.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S.
Jamin, "Resource ReSerVation Protocol (RSVP)
- Version 1 Functional Specification", RFC 2205,
IETF, March 1997.

[5] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda,
T. Przygienda, and D. Williams: “QoS Routing
Mechanisms and OSPF Extensions”, RFC 2676,
IETF, August 1999.

[6] G. Apostolopoulos, R. Guerin, S. Kamat: “Design
and Implementation of QoS Routing Extensions
to Gated OSPF with Interface to RSVP”,
unpublished manuscript, December 4, 1998

[7] J. Moy: OSPF Version 2 -RFC No. 2178, IETF,
July 1997.

[8] Roch Guérin, S. Kamat, E. Rosen: “Extended
RSVP-Routing Interface”, Internet Draft, July
1997.

[9] D. Zappala, J. Kann: “RSRR: A Routing Interface
For RSVP”, Internet Draft, July 1998

Figure 7.: Throughput in the third scenario

Figure 6.: Throughput in the second scenario

	ABSTRACT
	INTRODUCTION
	SYSTEM COMPONENTS
	Resource Reservation
	QoS based Routing
	Local traffic Control

	WHY QoS ROUTING IS USELESS CURRENTLY?
	Insufficient QoS routing – RSVP inter-process interface
	A Framework for Implementing an RSVP Classifier Module in the Linux Kernel

	MEASUREMENTS
	Measurement Configuration
	Pure Best-effort Service
	RSVP co-operating with best-effort routing
	RSVP co-operating with QoSPF

	Conclusions
	REFERENCES

