
3

JAVA BASED TALKING FACES FOR ADVANCED WEB
USER INTERFACES

Carlo Bonamico1, Roberto Pockaj1

1DIST, University of Genova
 Via Opera Pia 13, 16145 GENOVA, Italy, email: {charlieb,pok}@dist.unige.it

ABSTRACT

Parameter-based facial animation is now a mature
technology, and has also been included in the
MPEG4 standard. To make this technology available
on the Web, the authors have developed a Java port
of the FAE facial animation software created at
DIST. While showing an acceptable performance
reduction with respect to the original FAE, the Java
version is considerably more flexible, since it can be
used either as a stand-alone Java applet and as part of
more complex, multi-user on-line worlds. This paper
describes JFAE architecture, based on the Java3D
object-oriented graphics library. The results of
several tests that compare performances of the Java
and native code versions are also presented.
JFAE allows for the use of virtual consultants, clerks
or testimonials to create easy to use user interfaces
for e-Commerce sites and Web call centers. As a
sample, a prototype Web-based virtual news service
is described.

1. KEYWORDS
Java multimedia applets, Java3D, facial animation,
MPEG-4, Web user interfaces, Web call centers, e-
commerce.

2. INTRODUCTION
With the exponential diffusion of electronic
commerce on the Web, site developers are always
looking for new types of interactive content, not only
to distinguish their virtual shop from the competition,
but also to create easy to use user interfaces, in order
to attract a wider customer audience.
 On the side of machine-to-man interaction,
computer-animated characters, acting as virtual
consultants, clerks or testimonial are obviously of
great interest to online businesses.
Parameter-based facial animation is now a mature
technology: the inclusion in the MPEG4 standard
eases interoperability and integration with other
multimedia content [13]. However, while high quality
results have been obtained with stand-alone facial
animation software, only a small number of very
simple talking heads are presently available on the
Web.

Starting from our experience in the European
Community funded VIDAS and InterFace projects,
we developed a Java port of the FAE facial animation
software created at DIST’s DSP-Lab. While showing
an acceptable performance degradation with respect
to the original FAE, the Java version is considerably
more flexible. Not only it can be inserted as an applet
in static web pages, but it may also be integrated in
more complex, interactive web applications where
several faces interact with each other and with the
user. This would allow the creation of user friendly
(and possibly fun) Web sites, especially targeting
non-technical users and children.

This paper is organized as follows: section 2 presents
a range of facial animation systems for the Web, and
describes the animation algorithms used in the
DIST’s Facial Animation Engine. Section 3 analyzes
the Java version of this engine. Section 4 describes
animation and performance results. Section 5
suggests some possible applications of this
technology, while describing the virtual news service
that was realized as a proof-of-concept. Section 6
suggests some future developments of this
technology.

3. STATE OF THE ART
Since the early work of Parke [12] and Waters [17],
facial animation techniques have evolved
significantly, while progressively gaining more
relevance in the development of multimedia systems.
This has lead to the inclusion of detailed
specifications for facial animation modules in the
ISO/IEC MPEG-4 standard. While traditional video
coding frameworks are based on the idea of a
rectangular window of pixels, with an associated
audio stream, MPEG-4 organizes multimedia data in
scene graphs composed by individual objects. This
allows the adoption of optimized coding techniques
for each individual class of objects: natural video,
text, high and low quality audio, 3D meshes, and so
on.
The Synthetic Natural Hybrid Coding (SNHC) ad hoc
group operates in MPEG since 1996, with the
mandate of defining efficient techniques for the
coding of synthetic objects. Its choice for coding
synthetic faces was to define a standard set of
parameters for animating and reshaping virtual heads.

4

Figure 1. Effects of varying FAPs 5, 10, 11, 52, 57,
58.

68 Facial Animation Parameters (FAPs) are
responsible of describing the movements of the face,
both at low level (i.e. displacement of specific
characteristic points of the face, like lip corners, as in
Figure 1), and at high level (i.e. reproduction of a
facial expression, like joy or anger).

Figure 2. The 84 feature points defined by MPEG4.

Other parameters may be used to modify the
geometry (through a set of feature points) and the
appearance (through the mapping of texture images)
of the face.

It should be noted that the standard defines only the
displacement of 84 feature points, while leaving to
developers of the decoding software the duty of
moving any other point of the face model in order to
create realistic animations (Figure 2).

As an example, we will shortly describe the algorithm
used in the MPEG-4 face decoder developed at DIST.
The Facial Animation Engine is an Open-GL based
application, written entirely in C, which runs on
Windows PCs and Silicon Graphics workstations.
 The engine is divided in two blocks (Figure 3).

Facial Animation Engine

Animation
Block

Calibration
BlockGeometry

Semantics

Face Model

FDP FAP

Rendered Face

Figure 3. Structure of the Facial Animation Engine.

 The animation block is able to perform the optional
calibration phase, where a generic face model is
reshaped to better represent a given real face. A
second animation block, given a VRML 2 file

containing a face model, an MPEG-4 parameter
stream, and an audio stream, produces a realistic
animation of the entire face.
The algorithms used in FAE are based on the concept
of a semantic file, which contains model-specific
information about the correlation between the
displacement of the feature points and the
displacement of adjacent points [8].

Figure 4. Example of application of FAE algorithms
to the model Oscar.

To give an example, let’s consider the 19th FAP
("close top left eyelid"), which describes the 1-D
movement of feature point 3.1. From the semantic
file, the animation block knows which vertex
corresponds to the feature point, and has a list of all
the vertices that must be moved, and the weight
associated to each of them. The animation block also
knows that the predefined movement associated to
FAP 19 is the "weighted rotation along a line parallel
to the X axis", and can therefore start rotating the
vertices, each with an angle whose amplitude is
function of the weight associated with it. Figure 4
shows the result of the described procedure.

The parameter streams can be produced either with
motion capture techniques, using dedicated cameras,
or with a text-to-speech engine, by deriving mouth
movements from phonemes.

Many other universities and research laboratories
have developed MPEG-4 compliant facial animation
software. A quite complete list is present in [16].
However, while high quality results have been
obtained with stand-alone facial animation software,
only a small number of very simple talking heads are
available on the Web.
Apart from sprite-based characters derived from
Microsoft’s Agent Development Kit [1], existing
web-based facial animation systems can be divided
into 3 categories, according to the underlying
technologies:
• VRML+EAI Java applets (Tinky);
• Self contained Java applets (RedTed’s JavaHead,

W Interactive);

Facial Animation
Engine

Rotate left eyelid

FAP 19 = 5

parameter streamAnimation
rules

VRML model in
neutral position

Animated
model

5

• ActiveX controls for Internet Explorer and
plugins for Netscape (RedTed, NTU university’s
VRTalk).

Tinky is a face player implemented in JAVA by
GMD-IPSI. It is an applet which can control a VRML
model of a face displayed externally by a VRML
plugin like SGI CosmoPlayer, using the External
Authoring Interface (EAI). Tinky permits the
visualization of various expressions, and the
reproduction of MPEG4 streams. However, the face
models used are really simple [6].

A pure Java solution is the one choosen by the
developers of W Interactive [19]. The applet displays
texture-mapped 3D models derived from real faces.
Actually, 2D images are rendered off-line and stored
on a server. The player can then download and
reproduce a sequence of frames synchronized with an
audio stream. Animation is based on the reproduction
of MPEG-4 visemes (high level parameters which
describe the mouth position corresponding to the
emission of a given phoneme).

RedTed’s JavaHead [14] uses texture mapping over
very simple 3-D models, which can move mouth and
eyes. It is not MPEG-4 compliant. RedTed also
provides an ActiveX version of its software, for use
with the Internet Explorer browser.

Internet Explorer is also required by the VRTalk
Player developed by Dr. Chen at NTU university
(Taiwan). It is speech-driven, in the sense that it
obtains mouth movements from the analysis of an
audio stream. It is not based on MPEG4 [2].

4. JFAE
The Java version of the Facial Animation Engine is
based on the same animation algorithm as the native
version, with minor changes in the audio/video
synchronization mechanism due to the use of the
javax.sound.sampled library instead of
DirectSound.

The main obstacles to porting an animation engine
(or any other multimedia software) to the web are the
management of streams coming from remote servers,
the peculiarities of browser plugin APIs, and the
limited graphic APIs available to Java applets. This
situation has changed with the introduction of the
Java 2 platform, which offers good support for stream
handling, complete browser integration, and high
level graphics manipulation through the Java3D
visualization library.

Java 3D is an Application Programming Interface for
the creation, visualization and animation of three-
dimensional graphics [15]. The API is specified by
Sun, which offers also implementations for
PC/Windows and Solaris. There are compliant
implementations for SGI, HP-UX, MacOS and Linux.

It offers a platform-independent high level interface
to a native library (like OpenGL/Mesa or DirectX).
The main advantages of using Java3D come from its
object-oriented structure. A complex 3D scene may
be described as a set of individual objects which are
composed into a so called scene graph (Figure 5).

Figure 5. Structure of a generic Java3D scene graph,
which is composed of both group and leaf nodes.

Graphic objects are either simple geometric
primitives (cubes, triangles), or user-defined
structures which are in turn defined as a subgraph of
simpler objects. Transform nodes may be inserted in
the scene graph to correctly locate shapes in 3D
space. Each shape may be animated separately by an
object of class Behavior.

Following this philosophy, we designed the Java face
module as a sub-tree containing several objects,
derived from Java3D’s base classes
TransformGroup, Shape3D, and Behavior.(Figure
6).

Figure 6. Structure of the JFAE sub-graph.

The JavaFacialAnimationEngine class
represents the external interface of the module. It
extends the BranchGroup class, and thus can be

J-FAE

Scale

GRotX

GRotY

GRotZ

Animate Behavior

Face

Appearance Geometry

AudioJava

6

inserted in any Java3D scene as easily as a single
triangle. It has methods for selecting face models and
streams to play, and to start and stop animation.

Three TransformGroup nodes handle the rotation of
the head over the X,Y, and Z axes. They are directly
controlled by the GROTX, GROTY and GROTZ
parameters extracted from the FAP stream. A scaling
TransformGroup allows the correct sizing of the
virtual face, as the VRML coordinates may be
expressed in different measurement units.

The Face class extends the Shape3D generic base
class, and holds the description of the geometry of the
face, as specified in a VRML file. Geometric
information is stored in 4 data structures:
• VertexData, which contains the coordinates of

all vertices, and, for each vertex, a list of the
polygon to which it belongs to;

• PolygonData, which describes the triangles
which define the face, and links each triangle
with the information about its vertices contained
in VertexData;

• GroupData, which divides the triangles into 24
groups corresponding to the various anatomic
parts of the head (lips, eyes, hair, ad so on);

• FeaturePointsData, which tells which
vertices of the model correspond to the key facial
features defined by the standard (the corners of
the mouth, the point of the nose, and so on).

 The Face class also defines the appareance of the
head, e.g. the set of parameters which controls its
rendering: reflectiveness, shading model, and back
faces culling.

A FapStream class parses the animation stream
coming from a remote URL, and, at each frame,
makes the animation parameters available to the
animation engine via the getFAPFrame() method.

The AnimateBehavior class controls the animation
of a Face object.
During the construction phase, it creates an
AudioJava object (described later), and registers
itself with the Java3D rendering engine, by
specifying that it must be activated each time Java3D
renders a frame. In fact, Java3D conceptually follows
this simple cycle continuously:
1. Read inputs from keyboard, joystick, mouse, or

other 3D input devices
2. Activate all registered behaviors
3. Render the current frame
4. Go to step 1

During step 2, Java3D calls the method
processStimulus() of each Behavior. In this
method AnimateBehavior performs
synchronization with audio and computes the current
position of the face.

Each time it is called, this method computes the
number of the FAP frames to display from the
number of audio samples already played by
AudioJava (this is possible as both the audio
sampling rate and the FAP frame rate are known).

To obtain realistic audio/video synchronization at a
25 fps video frame rate, the clock reference used must
vary at least every 40ms. With Sun’s JDK 1.3, it was
not possible to extract synchronization information
from the system clock through calls to
System.getCurrentMillis()(which returns the
numbero of milliseconds elapsed since midnight of 1st

Jan. 1970) as the return values are update only every
60 ms.If it has already be displayed (this is possible
with fast machines), the method returns immediately.

If the animation is late with respect to audio, a
number of FAP frames are skipped.

AnimateBehavior performs then an interpolation
phase, during which the position of the mouth due to
the presence of a viseme parameter is mixed with the
position defined by the low-level parameters. The
same process is repeated for the high-level parameter
expression. As an example, if the expression is joy,
the face must smile, and if low-level parameters
indicate to close eyes, the result is a smiling face with
closed eyes.
Two other interpolations allow a considerable
bandwidth reduction by exploiting symmetries of the
head:
• Animation parameters relative to the right side of

the face may be recreated from those relative to
the left side (and vice versa)

• Animation parameters relative to the outer and
inner part of the lips are also very strictly
correlated

When all FAP values for the current frame have been
correctly computed, the vertex coordinates of the
head model are initialized with the values
corresponding to the “neutral face” (eyes opened,
mouth closed, face looking to the user, all muscles
relaxed). Then the position corresponding to the
current FAP frame is obtained by applying several
base movements to the vertices surrounding each
feature point (see Table 1 for examples).

Method Effect
MoveWTRANSX Weighted translation over

the X axis
RotateYROTX Rotation around the X axis

with an angle computed
from the projection of the
feature point on the Y axis.

RotateGROTX Rotation the entire model
around the X axis

Table 1. Some examples of the base coordinates
transformations used in JFAE.

7

These so-called animation rules are dynamically
computed by the SemanticData class for each
model. SemanticData loads from a model-
dependent semantic file the relation between the
displacement of feature points and the displacement
of surrounding vertices. It computes the FAP units
from the distances between some key feature points,
like the distance between the eyes, the distance
between the upper corner of the mouth and the nose,
and so on. In fact the values of animation parameters
defined by MPEG 4 are referred to these units, so that
the same FAP stream can animate correctly different
faces.
The reproduction of the associated audio stream is
delegated to the AudioJava class. It uses the
javax.sound.sampled library which is included in
the JDK since version 1.3. The library supports the
transparent reproduction of various file formats.
While at present only mu-law compression is
available, several third-party developers are working
on other audio coding formats, including MP3 [7].

Advaced browser integration may be obtained
through LiveConnect [11], a framework developed by
Netscape to allow interaction between Javascript code
in an HTML page and Java applets contained in the
page.

The requirements for running the Java Facial
Animation Engine as an applet are:
• Netscape 6 for seamless browser integration

(because Netscape 6 includes the JRE 1.3 as its
default Java Virtual Machine)

• Java 3D (any version)
However, it is possible to use older browsers if JDK
or JRE, release 1.3, are installed on the client
machine. Even JDK 1.2 is suitable if the Java sound
library, available from Sun as part of Java Media
Framework version 2.0, is installed separately.

5. RESULTS AND PERFORMANCE
EVALUATION

The use of an high level graphics library helped us
reducing applet size and thus download times. JFAE
is contained in a 34 kB JAR file. A compressed
model, with the related semantic file, adds another 30
to 100kB, according to the complexity of the model.

The animation parameter stream has very low
bandwidth requirements: 9kbit/s for the ASCII format
and 1.2 kbit/s for the binary format. Our prototype
presently uses 8khz, 8 bit per sample, mu-law audio
files, which require 64kbit/s. When integration of a
Java MP3 decoder, like the freely available JavaLayer
will be complete, the overall required bandwidth for
audio and 25 fps animation will remain under
10kbit/s. In comparison, MPEG1 CIF video requires
50 kbits for a single frame.

JFAE showed good animation results with respect to
rendering of facial expression (Figure 7).

Figure 7. Model Oscar performs the six base
expressions defined by MPEG4: fear, disgust,
happiness, sadness, surprise, anger.

Using a Java3D VRML object loader from the
Web3D consortium [18], we easily created complex
scene including several objects and virtual faces.

Since performances of Java code are usually lower
than those of native code, we conducted several
experimental evaluations in order to quantify this gap
in the case of 3D animation software.
Anyway, it must be noted that current Java 3D
implementations are in turn based on OpenGL native
code. In this hybrid architecture, while native code
speeds up graphic rendering, an additional overhead
is introduced by the data translation required to do
method calls between native code and Java.

For all tests the software configuration was the
following:
• Windows NT Workstation 4.0
• Sun JDK 1.3rc 2
• Java3D 1.2beta1 for OpenGL
The hardware configurations for the three test
machines were:
P III 600: Intel Pentium III 600 MHz, 128 Mb of
RAM, Asus V-6800 video card with a GeForce 256
graphic processor and 32 Mb of video RAM
P II 400: Intel Pentium II 400 MHz, 128 Mb of
RAM, ASUS V3200 TNT video card with 16 Mb of
video RAM
K6 II 350: AMD K6 II 350 MHz, 128 Mb of RAM,
Matrox G400 DualHead video card with 32 MB of
video RAM.

A first test was addressed at evaluating computational
load in function of model complexity. For this test we

8

used the Pentium III 600 workstation, with a 200x200
visualization window, which correspond to the typical
size of an image/video in a Web page. As Figure 8
shows, the activation of hardware acceleration in the
video card greatly improved the obtained frame rate.

This test also confirmed experimental evidence
collected by the MPEG 4 Implementation Studies
Group [9], which showed that rendering time is
usually a linear function of the number of polygons
and of the number of pixels displayed.

Figure 8. Performance versus model complexity.

Figure 9. Performance with different hardware
configurations.

In a second test we compared the frame rate obtained
on the 3 different hardware configurations with the
two models Oscar and Mike. While the simpler
model, Mike (abour 800 polygons) was animated at
good frame rates even on the lower end
configurations, we verifyied that more complex
models require at least a Pentium III class machine
(Figure 9). In some cases, the K6-III PC
outperformed the more expensive Pentium II, thanks
to the advanced hardware acceleration of 3D graphic
rendering implemented by the Matrox video card.

A third test was conducted on the Pentium II PC to
directly compare the rendering times of the Java and
native versions of our animation engine(Figure 10).

Figure 10. Comparison between Java and native code
versions fo FAE.

The results showed that rendering times were at least
2-3 times higher in the Java version, while the gap
was considerably reduced when displaying the
animations in larger windows or full-screen.

A fourth test evaluated the performance degradation
caused by the simultaneous animation of several
models (which is not possible in the C version).
While the frame rate was cut by an half each time a
new model was added to the scene, JFAE
successfully animated 3 copies of model Mike at 20
fps on a 900x600 pixel window on the Pentium III
machine (Figure 11).

Figure 11. Performance degradation when animating
multiple models simultaneously.

In conclusion, even if the Java version showed
somewhat slower frame rates with respect to the
native version of FAE, it proved to be usable on low
end PCs if simpler face models are used. Overall,
JFAE showed less degradation of performances when
rendering the animations full-screen.

6. APPLICATIONS
Between the different possible applications of virtual
characters we would like to cite four web-oriented
applications.

A virtual salesman, hosted in catalog pages of e-
commerce sites, could read product descriptions, and
give advice to users. As JFAE can be easily inserted
into more complex Java3D virtual scenes, it is
possible to use it as the clerck of a 3D virtual shop
[10].

0
1 0

2 0
3 0
4 0

5 0
6 0

7 0
8 0

1 2 3

N . o f fa c e s

F P S

mike
(fps)

oscar
(fps)

sarah
(fps)

NO ACC.

ACC.
0

20
40
60
80

100

FPS

N. of polygons

NO ACC. 36.2 15.5 11.2

ACC. 82.1 24.2 16.5

mike (fps) oscar (fps) sarah (fps)

K6 II 350
P II 400

P III 600

oscar

mike
0

10

20

30

40

50

60

F P S

C P U

Mode l

oscar 15.2 6.7 18.6

mike 26.9 19.6 57.6

K6 II 350 P II 400 P III 600

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20

Relative window size

R
en

d
er

in
g

 t
im

e
(m

s)

C Java

9

Many sites now offer free, web-based email to
millions of users. Their user-interface could be
greatly enhanced by the presence of an animated mail
reader, if JFAE is integrated with a text-to-speech
engine.

An extension of traditional telephone call-centers, the
Web call-center may use a virtual face as a common
front-end to the user, while animating it either from a
human or an automatic operator on the server side.

For the fourth application, the virtual news service,
we have developed a simple prototype where our two
models Oscar and Mike, act as virtual anchormen and
comment some images regarding last-minute news
(Figure 12).

Figure 12. A virtual news service on the Web.

Presently, our laboratory is working with the italian
deaf people association (FIADDA), to investigate
how much the possibility to read the mouth
movements of the virtual character helps hearing
impaired people to better understand speech. As part
of this research, we are conducting a user survey with
both deaf people and their relatives to evaluate user
reactions to this technology.

7. FUTURE WORK
In order to improve the flexibility of the Java Facial
Animation Engine, we plan to implement in Java a
calibration algorithm, so to be able to derive several
different faces from a single VRML model [4]. Also
the integration of a pure Java Mpeg 2 layer 3 audio
decoder would improve audio quality over slow
networks.
The use of the phoneme to FAP converter under
development in our laboratory would let any SAPI
compliant text-to-speech engine dynamically generate
animation sequences from text. It will be possible to
use our virtual face as a front-end to “intelligent”
conversation engines, like Eliza[5] or CLIPS [3],
which presently uses a textual interface.
 On the long term, our research will be focused on the
extension of animation to the entire body, as specified
by version 2 of the MPEG 4 standard.

8. REFERENCES
[1] La Cantoche, http://www.cantoche.com
[2] I. Chen, “A speech based facial animation

decoder”,http://www.cmlab.csie.ntu.edu.tw/~iche
n/VRTalk_Demo.htm

[3] CLIPS project, http://www.ghgcorp.com/clips
[4] M. Costa, L. Ambrosini, F. Lavagetto, R. Pockaj,

"3D Head Model Calibration based on MPEG-4
Parameters", The 6th IEEE International
Workshop on Intelligent Signal Processing and
Communication Systems, Melbourne, Australia,
1998.

[5] Joseph Weizenbaum ,"ELIZA--a Computer
Program for the Study of Natural Language
Communication Between Man and Machine,"
Communications of the Association for
Computing Machinery 9 36-45, 1966.

[6] G. Fries, A. Paradiso, F. Nack, and
K.Schuhmacher ”A Tool for Designing MPEG-4
compliant Expressions and Animations on VRML
Cartoon-Faces“, in Proceedings of AVSP
Conference, August 7-9 1999.

[7] ”A pure Java Mpeg 2 Layer 3 decoder”,
http://javazoom.hypermart.net/javalayer/javalaye
r.html.

[8] F. Lavagetto, and R. Pockaj, “The Facial
Animation Engine: towards a high-level interface
for the design of MPEG-4 compliant animated
faces”, IEEE Trans. on Circuits and Systems for
Video Technology, Vol. 9, n.2, March 1999.

[9] G. Lafruit, L. Nachtergaele, A. Scherpenberg, T.
Huybrechts, and J. Bormans, “Computational
Graceful Degradation Analysis in SNHC”,
ISO/IEC JTC1/SC29/WG11/MPEG98/M3567,
July 99.

[10]A. Marriott, L. Ambrosini, and F. Lavagetto,
“Virtual Salesperson”, In Proceedings of
Australian. Workshop on AI in Electronic
Commerce, Sydney, Australia, December 1999.

[11]“Netscape Navigator and LiveConnect”,
http://home.netscape.com/navigator/v3.0/livecon
nect.html.

[12]F. Parke, “Parametrized Models for Facial
Animation”, IEEE Computer Graphics
Applications, 2(9):61-68, November1982.

[13]Rob Koenen, “MPEG-4 Multimedia for our
time”, IEEE Spectrum, february1999.

[14]RedTed, http://www.redted.mcmail.com.
[15]H. Sowizral, K. Rushforth, and M. Deering, “The

Java 3D API specification“, Adison-Wesley,
1998.

[16]Facial Animation sites list,
http://mambo.ucsc.edu/psl/fan.html.

[17]K. Waters, and F. Parke, “Computer Facial
Animation”, A. K. Peters Ltd, 1996.

[18]Web3D Consortium, http://www.web3d.org.
[19]W Interactive, http://www.winteractive.fr.

http://www.cantoche.com
http://www.cmlab.csie.ntu.edu.tw/~iche
http://www.ghgcorp.com/clips
http://javazoom.hypermart.net/javalayer/javalaye
http://home.netscape.com/navigator/v3.0/livecon
http://www.redted.mcmail.com
http://mambo.ucsc.edu/psl/fan.html
http://www.web3d.org
http://www.winteractive.fr.

