
APPLICATION AND SERVICE DEVELOPMENT

USING UML AND SDL

Christian Schwingenschl�ogl, Stefan Sch�onauer

Technische Universit�at M�unchen (TUM), Institute of Communication Networks
Arcisstr. 21, D-80333 Munich, Germany, e-mail: schwinge@lkn.ei.tum.de
Arcisstr. 21, D-80333 Munich, Germany, e-mail: stefansc@lkn.ei.tum.de

Abstract

SDL is a formal description language and is especially
useful for software engineering in the area of commu-
nication networks. As communication systems can
be planned and implemented very elegant and fast
when using SDL, it is widely used by universities
and industry working in this �eld. However, there
is still room for improvement in the typical software
engineering process. In early phases the speci�cation
of the system is usually done with a simple word pro-
cessor or something similar. This approach has ma-
jor disadvantages: The format of the speci�cation is
not standardized, diÆcult to read and often highly
ambiguous. As it is diÆcult to develop the applica-
tion based on this speci�cation, the programmer will
probably regard the writing of the system speci�ca-
tion a tiresome task. Given the fact that software
is frequently changed resp. updated and that every-
thing has to be completed until yesterday we come
to the next problem: Changes made in the system
have to be manually inserted in the speci�cation doc-
uments. Regarding the various di�erent formats of
the speci�cation, it is often more work to make the
correkt changes in the speci�cation then the program
changes itself.
In our paper we describe the integrated utilization
of UML and SDL in the software engineering pro-
cess to overcome these problems. It is based on our
experience in a software development project with
one of our industry partners, the tool we used for
speci�cation and development with UML and SDL

was TAU4.0 from Telelogic with its integrated UML-
Suite.

analyze

design

implementation

testing

R-Spec

F-Spec
D-Spec

Code

Figure 1: model of the process

1 PROBLEMS IN 'CONVENTIONAL'

SOFTWARE DEVELOPMENT

The software engineering process usually consists of
the phases requirement analysis, speci�cation, de-
sign, implementation and testing. The beginning
of each stage is based on the results from previous
stages. In this paper we will not discuss the advan-
tages and disadvantages of well known models, e.g.
the waterfall- or the spiral model [Boe81]. We will
rather discuss problems and shortcomings that arise

in software engineering projects and which are in-
dependent of the used model. However, to discuss
these shortcomings, we have to exemplarily explain
one software development model �rst. We have de-
cided to show a model (see Fig. 1) which corresponds
to a iterative phase model, i.e. compared to the basic
waterfall model it has iterations between its phases.

In the analysis phase the technical and qualitative
demands on the system are usually speci�ed in close
work with the costumer. The formal result of the
analysis phase is the requirement speci�cation (R-
Spec) which contains all demands on the software.
Up to now, the R-Spec often consists of prose text
and non standardized graphics. Similar to other doc-

uments and also the source code, this document is

1

reviewed. In the design phase, which comes directly
after the analysis phase, two documents are produced
as the main result: the so called functional speci�ca-
tion (F-Spec) and the design speci�cation (D-Spec).
Roughly speaking, the F-Spec describes what is de-
veloped, the D-Spec describes how it is developed.
After the design phase the implementation phase is
started - here the F-Spec and D-Spec are transformed
into code. The last phase in our model is the test-
ing of the system. Not completely unexpected, the
pracical experience shows remarkable weak points in
this and also in other development processes (see
[Bur99]).

� Results from one phase usually in
uence the re-
sults from previous phases. Therefore it is rather
diÆcult to keep e.g. documents from early de-
sign phases consistent with documents written
in later phases or the source code. Usually,
changes made in the software during implemen-
tation or during a redesign have to be inserted in
the various documents manually. As a change in
the demands (which is not unusual in everyday

work) after completing a phase has an impact
on all the previous results, the change of docu-
mentation means a lot of work.

� In the individual phases a lot of di�erent rep-
resentations are used - caused by e.g. the uti-
lization of di�erent tools on di�erent plattforms.
The de�nition of common 'document formats'
(widely used in things like word, etc.) does not
help to improve this situation. One developer
describes his software in text only, the next one
is a friend of graphical representation which is
not necessarily standardized.

� The integration of actual results in results of
later resp. previous phases is a work intensive
task and also a well known source of various er-
rors. If results from the design-phase can not or
only to a small part be used during development
and testing, this is highly demotivating for the
developer. Therefore, design speci�cations are,
despite their importance, widely regarded as a
useless task.

The utilization of UML in connection with the ap-
propriate tool can provide a lot of improvements in
this situation. A goal of this paper is to show pos-
sibilities and advantages of UML when used in the

right situations. Particularly, the integration of UML
and SDL in software engineering projects for network

protocols and real time problems is regarded.

2 THE UNIFIED MODELING LAN-

GUAGE (UML)

In this paragraph we will give a brief overview of the
UML and describe which concepts are included in
this modeling language. We will also describe some
scenarios in which we think utilization of the UML
will be especially advantageous. Further information
about UML can be found in the corresponding
literature, e.g. [FK97], [Oes98] and [BRJ98].

The uni�ed modeling language is a standardized
modeling language for describing software systems.
It can also be used to specify other complex sys-
tems, however, we will focus on software systems
in this paper. Basically, graphical descriptions
are used in modeling languages for describing the
system structure and the di�erent methods [FK97].
According to [Kah98], a 'modeling language' is
conceptually similar to programming- and machine
languages. We don't agree with this completely and
prefer the characterization in [BRJ98]. Here, the
UML is described as a language for visualizing, for
specifying, for constructing and for documenting.

So, the UML does basically describe a uniform
notation and a semantic - i.e. it is de�ning a meta
model and can not be described as a 'development
technique' [Oes98].

The attribute 'uni�ed' is expressing the basic idea be-
hind the UML - the usage of a uni�ed and standard-
ized notation in various areas. The UML consists of
di�erent types of diagrams, the diagrams themselfes
consist of various di�erent graphical elements. With
the diagrams, one can describe static and dynamic
aspects of the system - dependent on which diagrams
are used with di�erent points of emphasis. The fol-
lowing overview shows the di�erent types of diagrams
available, the corresponding operational area and the
phases in the software engineering model where they
are used preferrably.

The attribute 'uni�ed' is expressing the basic idea be-

2

hind the UML - the usage of a uni�ed and standard-
ized notation in various areas. The UML consists of
di�erent types of diagrams, the diagrams themselfes
consist of various di�erent graphical elements. With
the diagrams, one can describe static and dynamic
aspects of the system - dependent on which diagrams
are used with di�erent points of emphasis. The fol-
lowing overview shows the di�erent types of diagrams
available, the corresponding operational area and the
phases in the software engineering model where they
are used preferrably (according to [Wah98]).

static diagrams

� class diagram

{ analyze, design, implementation

{ The class diagram is the most important
and most common diagram of the UML.
You can use it almost everywhere.

� package diagram

{ design

{ General overview showing which class you
�nd in which modul.

� implementation diagram

{ analyze, design

{ Description of the systems structure of
hardware and software. The UML knows
two kinds.

1. component diagram:
Software components, their interfaces and
their interrelationships. Connections be-
tween the di�erent software moduls.

2. deployment diagram:
Con�guration of run-time processing units,
including the hardware and software that
runs on them. Shows the physical structure
of the system.

behavioral diagrams

� use case diagram

{ analyze, design, testing

{ Shows the interactions between acteurs and
the system. General operational areas (e.g.
also business processes).

� interaction diagram

{ analyze, design, implementation

{ Shows the massage
ow between the ob-
jects and so the temporal behavior of the
system.

1. sequence diagram:
Temporal Calling structure with a little
number of classes.

2. collaboration diagram:
Temporal Calling structure with a little
number of messages.

3

Conventional Development Development using SDL/SDT

Description of the Problem, Requirements, Objectives

Specification

Design

Coding

Simulation

Verification
Validation

System

Specification

Design

Coding

SDL MSC

Simulation

Verification
Validation

System

autom. generation of sim. code

validation
automatic

Figure 2: Comparison between conventional develop-
ment and development using SDL (Source: [Kel95])

� statechart diagram

{ analyze, design, implementation

{ Shows a state machine. Representation of
the dynamic bahavior.

� activity diagram

{ analyze, design

{ A special form of statechart diagrams. Use-
ful for showing parallel processes.

3 THE SYSTEM DEFINITION LAN-

GUAGE (SDL)

The application of SDL in engineering o�ers a se-
ries of advantages. Fig. 2 shows the comparison
between conventional development and development
using SDL.

As several phases of development are grouped to-
gether, the use of SDL accelerates and simpli�es the
engineering process. Startimg from a rough system
description all work can be done within one docu-
ment. In the conventional development, many doc-
uments are needed. These documents are usually
written in di�erent (programming) languages, result-
ing in an increased e�ort. The SDL Design Tool
SDT which we currently use provides the possibility
of doing simulations, system veri�cation and valida-
tion automatically. In conventional development, an
additional 'simulation code' has to be added to the
system code.

3.1 Development of SDL

This section gives a brief overview about the devel-
opment of SDL [wf]:

� 1968: ITU study of stored program control sys-
tems

� 1972: Speci�cation, programming and HMI
studies are started

� 1976: 'Orange Book SDL': Basic graphical lan-
guage

� 1980: 'Yellow Book SDL': Process semantics de-
�ned

� 1984: 'Red Book SDL': Structure and data
added, a more rigorous de�nition. Start of tools
and user guide.

� 1988: 'Blue Book SDL' (aka SDL-88): Formal
syntax de�nition, e�ective tools. Language is
similar to Red Book SDL.

� 1992: 'White Book SDL' (aka SDL-92): Types
for blocks, processes, services with inheritance
and parameterisation. Methodology guidelines.

� 1995: SDL with ASN.1 (Z.105)

� 1996: Addendum 1 to SDL-92. SDL+ Method-
ology. Tools o�er SDL-92 features.

� 1999: 'SDL-2000': Object modelling support,
improved implementation support. Revised
data model. (ITU-T Z.100)

4 SOFTWARE DEVELOPMENT USING

UML AND SDL

Using UML today usually means speci�cation in
UML and implementation in C++ or java. Also the
automatic code generation function of UML tools is
often used. This function can generate the 'head-
ers' of the software, or, in other words, translates
the UML speci�cation into the corresponding class
de�nitions. Without doubt, the UML is a great help
to develop the software system in such cases, how-
ever, there are still problems using it for real time
systems.
We have had exactly these problems in one of our
projects - it involved the development of a relatively

4

Analyze:
Requirements

Analyze:
System

System Design

Detailed Design

Implementation

UML

SDL

Figure 3: advantages of UML and SDL

large and complex real-time system for telecommuni-
cation equipment. As we have some experience with
SDL our �rst thought was to use this FDT. Due to
the complexity of the system we wanted to start our
software engineering process with simple use-cases.
Here we experienced exactly the problem described
above - we would be specifying our system using use
cases, etc. and later we would have to transfer the re-
sults manually in our SDL diagrams. So we decided
to try the integrated approach - starting with UML
and switching to SDL somewhere during the software
engineering process. These two mainly graphic ori-
ented description techniques can very well be used
in combination: as the UML has its strengths in the
early phases of software engineering because of its in-
formality, the SDL has its advantages mainly in the
design phase and later. (see Fig. 3 (source: [And99])).

Due to the quite similar concept of the two for-
mal description techniques, the automated genera-
tion from UML to SDL and also the possibility of
reverse-engineering is becoming more and more at-
tractive. The standardization e�orts of the ITU
(Z.100 [Z.199a] and Z.109 [Z.199b]) show that this
is a point of general interest. In a diploma thesis at
the LKN ([Sch00]) we have designed a software en-
gineering process that shows the integration of UML
and SDL with focus on design and implementation
phases.

4.1 The Tool Telelogic Tau 4.0

In our project we use the tool Tau4.0 from Telelogic
as our development environment. This tool does al-

ready integrate the two methods UML and SDL. Af-
ter the standards are approved by the ITU, we expect
further improvement of this tool regarding the inte-
gration of these two concepts. Besides the automatic
generation of SDL fromUML, this tool does also pro-
vide the possibility to generate (at least parts of)
the development documentation automatically. Up
to now, the translation from UML to SDL is done as
follows:

� SDL structures (SDL-system structures or SDL
package structures) are generated from class di-
agrams. Based on the stereotype of a class in
UML it can be decided if SDL processes or SDL
blocks should be generated. The methods and
attributes of a class with stereotype process are
translated into procedures and variable declara-
tions of the according SDL process. Also asso-
ciations (they are translated into channels) and
inheritance relations are regarded when gener-
ating SDL.

� UML statecharts are translated into SDL state
machines. Here we have to regard the �rst dis-
crepancies between the two techniques: Up to
now we can not describe all possible SDL class
concepts as UML statecharts. As the UML is a
technique for modeling and not necessarily for
implementation it is not the main goal of UML
to support all SDL class concepts. However, this
'feature' is needed for reverse- and roundtrip-
engineering.

� The UML sequence diagrams can be translated
into SDL MSCs (message sequence charts) - as
sequence charts are only a slightly di�erent rep-
resentation of MSCs this is the easy part of the
whole thing.

4.2 THE DEVELOPMENT PROCESS

WITH UML AND SDL

In Fig. 4, the process for the phases analysis design
and implementation is given.

For the analysis phase, the UML is usually a good
choice. Here the UML use case and sequence
diagrams can be used. It is not the goal to specify
all thinkable use cases in this phase - only the most
important use cases (i.e. relevant to the system

design) have to be speci�ed. Furthermore informal
class diagrams can be very usefull for a graphical

5

analyze

design

implementation

testing

R-Spec

F-Spec
D-Spec

Code

Figure 4: modi�ed process

representation of special problems. After completing
these steps, a R-Spec can be generated automatically
by the tool. The format of the document can be
speci�ed in the generation preferences - i.e. the
user can choose which diagrams and which graphics

should be used in the document. It is not yet
possible to generate a R-Spec which has not to be
edited manually, but the result is very near to this
goal. The results from the R-Spec can nwo be used
directly by the developer in the integrated develop-
ment environment. If a developer wants to read the
requirements for a system which have often been
speci�ed by other developers, he does not have to
deal with several R-Specs in di�erent representations
any more - he can work in a uniform development
environment and with a uniform notation.

Deployment diagrams provide a very good overview
of the whole system in the design phase and the
system structure can be shown in a more uniform
way as before. Another advantage is the possibility
to generate SDL code directly from statecharts
and sequence diagrams. This means the results
from the design phase are not only available for
the documentation in the F- and D-Specs - as with
R-Specs, the results can directly be used for coding.

As shown in Fig. 4 it is now possible to keep code
and documentation consistent with only moderate
e�ort. The next goal here is to eliminate still neces-
sary manual tasks for documentation. We think the
direct utlilization of sequence diagams from the anal-
ysis phase for system testing will be possible in the
near future. Also 'big' iterations (they have to be
made if the requirements change) can be managed

analyze

design

implementation

testing

R-Spec
F-Spec
D-Spec

Code

Figure 5: future process

easier as without the UML-SDL integration. The
documents do not have to be changed manually,most
of this work can be done automatically.

4.3 A Future Software Development Pro-

cess

The process described above is based on our current
work. Possible improvements include better support
for iterations and the orientation on processes like
the object engineering process (see [OHJ+99]). In
�gure 5 a proposal for a future software development
process is given.

5 UML OR SDL?

We expect exciting developments in the area of UML
and SDL for the next years. We have clearly seen the
trend to reuse results from early speci�cation and
analysis phases in later phases of software engineer-
ing. Work in this direction is done by the ITU-T in
Z.100 (SDL2000) and Z.109 (UML and SDL). Espe-
cially Z.109 provides help for SDL developers who
want to integrate UML in their software engineering
process.
Up to now, mainly SDL is used in software engineer-
ing for real time systems (sometimes integrated with
UML in the early phases). As of today, UML-only
approaches in software engineering for real time sys-
tems are very rare because the UML is not yet precise
and formal enough to be used for the whole process
for such systems. But as we see in the OMG RFP

ad/98-11-01 "Action Semantics for the UML", the
OMG is starting to work in exactly this direction.

6

References

[And99] J. Andersson. Die UML echtzeitf�ahig
machen mit der formalen Sprache SDL.
OBJEKTspektrum, 6(3):80{85, 1999.

[Boe81] B. W. Boehm. Software Engineering Pro-
cess. Englewood Cli�s, 1981.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacob-
sen. The Uni�ed Modeling Language User

Guide. Addison-Wesley, Bonn, New York,
Sydney, 1998.

[Bur99] R. Burkhardt. UML Uni�ed Modeling

Language. Objektorientierte Modellierung

f�ur die Praxis. Addison-Wesley, Bonn,
New York, Sydney, 1999.

[FK97] M. Fowler and S. Kendall. UML Distilled.

Addison-Wesley, Bonn, New York, Syd-
ney, 1997.

[Kah98] B. Kahlbrandt. Software-Engineering.

Objektorientierte Software-Entwicklung

mit der Uni�ed Modeling Language.

Springer, Berlin, Heidelberg, New York,
1998.

[Kel95] W. Kellerer. Spezi�kation, Simu-
lation und Implementierung eines
Sicherungsprotokolls mit SDL. Master's
thesis, Lehrstuhl f�ur Kommunikation-
snetze, TU M�unchen, 1995.

[Oes98] B. Oesterreich. Objektorientierte Softwa-

reentwicklung. R. Oldenburg, M�unchen,
Wien, 1998.

[OHJ+99] B. Oestereich, P. Hruschka, N. Josuttis,
H. Kocher, H. Krasemann, and M. Rein-
hold. Erfolgreich mit Objektorientierung.

Vorgehensmodell und Managementprak-

tiken f�ur die objektorientierte Softwareen-

twicklung. Oldenbourg Wissenschaftsver-
lag, M�unchen, 1999.

[Sch00] Stefan Sch�onauer. Development of a
Maintainance Component using UML and
SDL. Master's thesis, Munich University
of Technology, 2000.

[Wah98] G. Wahl. UML kompakt. OBJEKTspek-
trum, 6(2):22{33, 1998.

[wf] www.sdl forum.org. SDL Forum Society.

[Z.199a] ITU-T Recommendation Z.100. Speci�-
cation and Description Language (SDL).
ITU, 1999.

[Z.199b] ITU-T Recommendation Z.109. SDL in
combination with UML. ITU, 1999.

7

