
1

ARCHITECTURE AND IMPLEMENTATION OF A NEW
USER INTERFACE FOR INTERNET SEARCH ENGINES

Fidel Cacheda, Alberto Pan, Lucía Ardao, Angel Viña
Department of Tecnoloxías da Información e as Comunicacións,

Facultad de Informática, University of A Coruña
Campus de Elviña s/n, C.P. 15.071 A CORUÑA, SPAIN

e-mail: {fidel, apan, lucia, avc}@gris.des.fi.udc.es

ABSTRACT

In this paper we expose the architecture and the
implementation details of a new visualization system
suitable to any Internet search engine or directory that
tries to improve the search process done by users.
Using this new system, users can get a more
comfortable and efficient navigation through the
search results without opening new windows and
downloading simultaneously many Web pages in
background. This multi-platform system, which uses a
remote cache and many local caches to improve its
performance, was designed in a modular way and
developed using as base the Web directory called
BIWE, developed by us.

1. INTRODUCTION

The World Wide Web dates from the end of the
eighties and no one could have imagined its current
impact. The boom in the use of the Web and its
exponential growth are now well known. Just the
amount of textual data available is estimated to be in
the order of one terabyte and in addition other media
are available. Thus, the Web can be seen as a very
large, unstructured but ubiquitous database [1]. This
leads to the need of efficient tools to manage, retrieve
and filter information from this database: the Internet
search engines and the Web directories.
Nowadays much research is made around search
engines trying to improve their ranking algorithms,
their indexing techniques, etc. But meanwhile the
whole search process performed by the users doesn’t
improve and it is still the same as in the first nineties.
Search engines try to get as many documents as
possible hoping that their ranking algorithm will be
able to place in the first places the most important
Web pages. In other words, search engines try to

obtain a high recall, but this implies reducing quite a
lot the precision of their search [2].
This implies that users should perform a manual
search among the results retrieved by a search engine,
usually not checking all the different results, but the
first ten or twenty ones. This manual search is quite
time consuming because the user should select from
the results obtained which one seems to be really
suitable, then he has to go to that Web page and have
a look to the information showed in the page. Finally,
if this page is not what the user is looking for the
same process must be repeated.
In this paper we will describe the architecture and the
implementation details of a multi-platform system that
improves the traditional search process in Internet.
The system was developed using as base the Web
directory called BIWE (Spanish Web Searcher in
Internet) developed by us [3].
In the next section we describe the main types of
search processes in Internet search engines and
directories. In Section 3 we explain the objectives we
want to achieve with this system, and then we are
going to describe in detail the proposed system. First,
we describe the new user interface used by the system
and next we expose in detail the architecture and the
implementation of our system. Finally we expose the
conclusions obtained from this work.

2. STATE OF THE ART

During the last years research has been focused on
search algorithms (trying to include as many factors
as possible into the search) and on ranking algorithms
(trying to show in first place the most important Web
pages) in order to obtain the best precision and recall
as possible [4]. But on the other hand, there is not
much effort involved in the search process performed
by users.

2

The search process performed by users, in an Internet
search engine or directory, has the following steps
[6]:
1. The user specifies some keywords related with

his information need.
2. The Internet search engine performs the search

and sorts the results according to the user’s
preferences.

3. The sorted results are showed to the user in his
navigator.

4. For each “interesting” result, among the 10 or 20
first ones, the user:
4.1. Clicks over the link.
4.2. Waits until the main part of the page is

downloaded.
4.3. Checks the Web page downloaded.
4.4. If it is not interesting then this page is

discarded.
5. The user goes back to 1, trying to make a better

search changing some keywords.

Most of this steps are automatic and don’t require the
user to do any effort, except step 4 which is a manual
process completely dependent on the user interface
used by search engines. This part is quite important
because several factors depend directly on it:
- The ability to download, at the same time, many

Web pages (parallelism).
- The efficiency to check several times a Web page

previously downloaded.
- The better use of users’ connection to Internet.

Basically, there are three different methods associated
with the search process performed by users. The first
one is the classical model used by many Internet
search engines and directories. Its main characteristic
is that when the user clicks over the link (step 4.1),
the new page is downloaded in the same window (see
figure 1) where the user had made the search.

Figure 1: First method

Many important Internet search engines and
directories use this method, although it presents many
disadvantages:

- The user can just download one page at the same
time (there is not parallelism).

- If the user wants to check several times the same
page, he depends on his navigator cache and
could even have to download again the same
page.

- The Internet connection would be most of the
time under-used, and therefore this means a waste
of time and money for the user.

The second method is a small variation of this one. In
this case, when the user clicks over a link a new
window is opened and a Web page starts to be
downloaded. This modification can be performed
directly by users using their navigator options
(commonly, most users will do it this way when they
are using a search engine of the first method) or the
own Internet search engine can implement it easily. In
figure 2 we can see an example of this method.

Figure 2: Second method

With this small variation
advantages:
- The user can download

time (parallelism is supp
- The user’s Internet conn
But there are still some dis
and some newer ones:
- The user still depends o

re-check a Web page pre
- The number of window

high which can lead
navigator.

- Also, if the number of w
can have problems to
windows (problems to l
all windows, etc).

Finally, the third method
problems changing the user i
this case, the window is div
left one is used to store the l
pages and the right one is u

w

w

new windo
we can achieve several

 many pages at the same
orted).
ection is better used.
advantages not repaired,

new
window
same windo

n his navigator cache to
viously downloaded.
s opened could be very
 to failures with the

indows is high, the user
manage all the different
ocate a Web page among

 tries to repair these
nterface (see figure 3). In
ided in two frames: the

ist of all the “interesting”
sed to show the contents

of each Web page. The user must mark one page as
interesting (just clicking over a button) and
automatically the page is added to the left frame. Next
the user just selects pages in the left side and observes
them on the right side.

Figure 3: Third method

The main advantage of this
just works with one win
problems of the second meth
has all the problems of the fi
download the pages, no fa
pages and the Internet connec
In this brief state of the ar
most important and most u
Internet search engines. Ob
different methods which cou
due to space limitations.

3. OBJECTIVES

We want to obtain a syste
search process performed
search engine or directory. F
want to achieve from the serv
- The system must be m

allow a better installati
and, of course, to allo
client, independently of

- The system architectur
allow its distribution th
to adapt the system to
(number of users, minim

And, from the user point of v
a new user interface that
process performed by u
following objectives must be
- Improve the user interfa

order to get a more
through the search resu
reduce as much as p
windows used by the sys

- The user should b

simultaneously as many Web pages as he desires,
without overload the interface. This way, the
Internet connection can be better used.

- The system should provide a way to check
several times pages previously downloaded,
without depending only on the navigator cache
(because users could have previously disabled

same
window
same window
3

 method is that the user
dow, avoiding all the
od. But this method still
rst one: no parallelism to
cilities to re-check Web
tion is under-used.

t we have described the
sed search processes for
viously there are other
ld not be described here

m that makes easier the
by users in an Internet
irstly, the objectives we
er point of view are:
ulti-platform in order to
on in any search engine
w its utilization by any
his operating system.
e must be modular to

rough several computers,
 different requirements

um response times, etc.).

iew, we want to develop
makes easier the search
sers. Specifically, the
 achieved:
ce of the search engine in

comfortable navigation
lts. This interface should
ossible the number of
tem.
e able to download

this option of their browser).

4. THE PROPOSED SYSTEM

In the following sections we are going to describe the
new visualization system proposed. This system has
been designed and developed in a modular way, and
adapted to BIWE, a Spanish Internet directory, also
developed by us, which nowadays is one of the most
used directories of our country.

4.1. The New User Interface

First of all, in order to achieve these objectives, we
have designed a new user interface that will help users
in their process of searching information in the Web.
But, before we start describing this new interface, it is
important to emphasize that this system can be
installed in any kind of Internet search engine,
without important changes on the normal user
interface. Therefore, some users can use this new
interface and, at the same time, the rest of them can
carry on with their normal search.
In fact, in our implementation, the search process is
the same, but the user can select to use the new
interface and so, he will get the interface showed in
figure 4.

Figure 4: New user interface

Once the user has selected this new interface, his
search process is modified. First, he just enters some
keywords in the search engine, as he will do in a usual
search. But then, things start changing: if he wants to

Navigation control

Work areaWeb pages list

4

check a Web page, instead of clicking over the link
and opening a new window; now the user must click
over a button, which is beside the result he wants to
check, and automatically this web page is added to the
list of “interesting” pages and is started to getting
downloaded by the system without disturbing the user
interface. The user can select as many pages as he
desires and no new windows will be opened to
download these pages; instead all of them are
downloaded in background.
To support this novel search process, the new
interface is based on one main Web page divided into
three independent zones: the work area, the Web
pages list and the navigation control.
The work area is the biggest and most dynamic part
of the interface. This is the place where the user
performs his searches and where the search results
will appear (like in a common search engine).
Besides, the user can select as “interesting“ any of the
search results, and later, these selected Web pages
will be showed in this area (remember that no new
windows are opened).
The Web pages list is located on the left side of the
interface and it shows a list with all the pages
previously selected by the user as “interesting”. For
each page, the information showed is the following:
the title of the Web page, where there is a link to its
content, and an estimation of the percentage already
downloaded for this page. At this point there is an
important detail: this link is not to the original URL,
but to the URL where this page is getting downloaded
which could be local or remote to the user (see
Section 4.2). Therefore the estimation pointed before
is an important feature of each Web page in order to
detect when a page could be visible or not.
Finally, the navigation control is the main part of the
client side of this system. It is an agent that will
interact between the client and the server sides,
communicating both of them. On the one hand, it will
notify the server of all the user actions and on the
other, it will notify the user of any event in the server
side. For example, the server is notified through the
navigation control when a new user enters the system
or if a Web page is removed from the list, and it also
notifies the user of the Web pages downloaded by the
server, among many other things.
Using this new interface, the algorithm explained in
Section 2 has changed, basically in step 4 (remember
that the rest are automatic). With this new interface
step 4 is divided in the following tasks:

4.1. Add the page to the list of “interesting” Web
pages by clicking over a button.

4.2. It is in background that the selected page is
downloaded. The user waits until the main
part of the page is downloaded (using the
information showed in the Web pages list).

4.3. The user checks the Web page.
4.4. If it is not interesting then this page is

removed from the list of “interesting” Web
pages.

With this new method the advantages achieved are
quite important:
- Users can download at the same time several

pages (parallelism is achieved).
- The user interface is quite comfortable because

just one window is needed to visualize all the
pages used by the user: search results and
selected Web pages.

- Users can easily access to Web pages previously
downloaded independently of the navigator
cache.

By the other side, the implementation of this new
visualization system requires to the user an optional
component to be installed in his computer (see the
next section).

4.2. Architecture And Implementation

The architecture is divided into two zones: client and
server. On the client side there are two main
components: the user interface and optionally, a local
cache server. And the server side is made up of other
two components: the kernel of the system and a
remote cache server.
The system kernel is implemented over a Web server
using Java Servlets [5]. This is the main part of the
system because the kernel interacts with components
of both sides; on the one hand it interacts with the
client side of each user in order to detect all the user’s
actions, and on the other hand the kernel also gives
orders to the remote cache server.
The system kernel uses the HTTP (HyperText
Transfer Protocol) and TCP to interact with the client
side and it is used to receive requests from the user.
Basically the kernel is notified of the following events
on the client side:
- Entry of a user in the system, in order to keep a

trace of this user’s session.
- Selection of a page as “interesting” by a user, in

order to start to download this page.
- Navigation through the list of Web pages.

5

Figure 5: Architecture

The kernel communicates with the remote cache
server using directly the TCP protocol through
sockets. Basically the kernel, when a user has
requested a Web page, notifies the remote cache
server of the Web page to download and of the user
who requested it. It is important to use sockets to
communicate both parts, because the remote cache
server can be placed in any other computer, which
will increase the modularity of the system,
The remote cache server is a Java application that
manages a cache in the server side that stores the Web
pages requested by users. This application will
interact with the kernel and with the local cache
servers of each user. As mentioned before, this cache
server will be notified by the kernel when a user
wants to download a Web page. The cache server will
receive which user it is and the URL he wants. Next,
this server will connect to the Web site and download
all the components of the Web page; this means
download not only the HTML source, but also the
images, frame sets, etc. Then, it is important to
modify the relative links to make them absolute,
avoiding problems with references to other Web
pages, images, applets, etc. Once the download
process has finished, the cache server will store in
disk all the components of the Web page, and if it is
necessary it will remove some Web pages from disk if
the maximum size of the cache was reached.
And the final task of the remote cache server is the
communication with the client side of the system,
specifically with the local cache server of the user
who requested the Web page. First, the kernel will

have detected if the user has installed the local cache
server, in this case the remote server will send to the
local one the Web pages that the user has requested in
a gradual way. Therefore, as soon as the remote
server has downloaded a component of a Web page
requested by a user, this component will be sent back
to the local cache server. This communication is done
using a TCP connection through sockets.
The local cache server is a very similar application
(also developed in Java) as the former one. It is an
application that must manage a small cache in each
client side, in order to store the pages requested by
users. Users don’t need to install this application in
order to use the entire system, but the functionality of
the system increases because users can check off-line
the Web pages downloaded using the local cache
server. In fact, this application is quite small to allow
a quick download and a simple installation.
The user interface is also an important component of
the system because it is the part in charge of the
connection between the user and the kernel of the
system. The main part of the user interface is the
navigation control, which is an applet that controls all
user actions and notifies the system kernel of them
using the TCP protocol. The Web pages list and the
work area are dynamic Web pages, generated in the
server side using Java Servlets. In this way, each user
will have his own vision of the global cache of the
server side.
Some actions of this part are transparent to the user,
such as, the connection of a new user to the system,
which is directly notified to the system kernel. But the
main part of them are common user’s actions, such as:
select a Web page as interesting by clicking over a
button, remove a Web page from the list, refresh the
Web pages list and some others.

Once we have seen the architecture and
implementation of the system, we can describe the
new working operation. Initially, a user will use his
Web browser to connect to our system and make a
search in the work area of the new interface, where
the search results will be showed. Then the user can
select a Web page as “interesting” by clicking over a
button that will call a Java Servlet of the system
kernel. In this way, the kernel is notified that this user
wants to download that Web page. In its turn, the
system kernel will send a message to the remote cache
server to notify it of the Web page to download and
which user has requested it. Also, the kernel will
refresh the Web pages list of the user’s interface,
adding the page requested.
At this point, if the user has the local cache server,
when the remote cache server has downloaded all the
components of the Web page, it will send them to the
local cache server of the user who made the request.

Web Server

Kernel

Remote
Cache
Server

HTTP
Local
Cache
Server

Local
Cache
Server

TCP

TCP

6

Otherwise, the remote cache server doesn’t need to
perform any action.
Finally, the user can check, in the working area, a
Web page previously select just by clicking over the
link in the Web pages list, but the place where this
link points to is very important. If the user has
installed the local cache server then he will access
through the link to the page stored in his own
computer. In other case, the user will access to the
Web page stored on the server side, in the remote
cache server through the Web server.
At this point it is important to point up that each user
is handled individually using sessions. This implies
that each Web page requested by each user is
managed separately, although this doesn’t mean that
each page is stored separately. This is necessary
because each Web page is sent back to the user who
requested it.

One of the main advantages of this implementation is
the high degree of independence of the system,
achieved due to Java and the communication structure
among all the components. On the one hand, Java
allow the system to be platform independent which is
quite important in order to obtain a system suitable to
be installed over any search engine or directory. On
the other, the use of sockets to communicate allows a
more flexible architecture because the different layers
can be located in different computers. This is quite
important in the server side because the system kernel
could be placed in a computer (for example, the host
where the search engine is running) and the remote
cache server in another one.
Another special characteristic of this system is the
presence of a cache server in the client side. With this
local cache the user can check instantaneously the
Web pages previously selected without delays, and
these Web pages will remain in the local cache for
future enquiries. But on the other side, the user will
need to download and install the local cache server on
his computer; this is the reason why the local cache
server is a small application and with an easy
installation process.
Related with the former, is the double cache system
used (one remote and many local). This double cache
means that users will need two hops to download the
Web page required to their computers, which could
be a problem because this will slow down the user’s
navigation. But we have to take into account that the
remote cache is global to all users and that in Internet
search engines and directories many searches are
repeated, which implies that an important percentage
of the Web pages required will already be stored in
the remote cache. Anyway, Internet search engines
and directories usually have a high throughput in
order to avoid congestion problems accessing their

Web sites, which makes the last hop (remote to local)
quite short.

5. CONCLUSIONS

In this paper we have described the architecture and
the implementation details of a multi-platform system
that improves the traditional search process in Internet
search engines and directories.
This system improves the user interface of search
engines in order to get a more comfortable navigation
through the search results, without opening new
windows and downloading simultaneously several
Web pages. Additionally, the system allow users to
check off-line Web pages previously downloaded
using their local cache servers.
In order to get an easier installation and adaptation to
any kind of search engines or directories, the system
architecture was developed in a modular way and the
system implementation was done using the features of
a multi-platform language as Java.
This new visualization system uses a double cache
system (one remote and many locals) to improve the
efficiency of the system, reducing the download times
through the remote cache and allowing users to check
off-line Web pages through their local cache. On the
other side, the local cache server is optional, because
users must download and install it. Therefore, users
can use the whole visualization system without
installing anything, although the performance
obtained is reduced.
In future researches we will use this system to
schedule the download of Web pages off-line. In this
way, users could select the Web pages to download
off-line and later, connect to the server and download
automatically to the client side the pages scheduled.
Finally, users could check off-line in their computers
the Web pages selected without additional costs.

ACKNOWLEDGMENTS

This work has been partially supported by PGIDT
99PX11050/B.

REFERENCES

[1] R. Baeza-Yates and B. Ribeiro-Neto, “Modern
Information Retrieval”, Ed. Addison Wesley,
ISBN: 0-201-39829-X

[2] G. Salton and M. McGill, “Introduccion to
Modern Information Retrieval”, Ed. McGraw-
Hill, ISBN: 0-07-066526-5

[3] F. Cacheda, A. Pan, L. Ardao and A. Viña “A
Layered Architecture based on Java for Internet
and Intranet Information Systems”. International
Journal of e-Business strategy Management.
November/December 1999, volume One. Pages:
123-129.

7

[4] E. Lagergren and P. Over, “Comparing interactive
information retrieval systems across sites: The
TREC-6 interactive track matrix experiment”.
Proceedings. of 21st Annual Int. ACM SIGIR
Conference, pages 164-172, Melbourne,
Australia, 1998.

[5] O. Lubling and L. Malave, “Developing Scalable,
Reliable, Business Applications with Servlets”.
Java Developer Connection White Paper.

 [6] B. Shneiderman, D. Byrd and B. Croft, “Sorting
out searching: A user-interface framework for
text searches”. Communications of the ACM,
41(4): 95-98, 1998.

[7] M. Chen, M. Hearst, J. Hong and J. Lin “Cha-
Cha: A System for Organizing Intranet Search
Results”. Proceedings of the 2nd USENIX
Symposium on Internet Technologies and
SYSTEMS (USITS), Boulder, CO, October 11-
14, 1999.

	INTRODUCTION
	STATE OF THE ART
	OBJECTIVES
	THE PROPOSED SYSTEM
	The New User Interface
	Architecture And Implementation

	CONCLUSIONS

