
Managing Dynamic Service Dependencies

PeerHasselmeyer

IT TransferOffice, DarmstadtUniversity of Technology,
Wilhelminenstr. 7, 64283Darmstadt,Germany
hasselmeyer@ito.tu-darmstadt.de

We anticipatethat softwaredevelopmentwill beservice-centricin thenearfuture. Applicationswill becreatedfrom
existing servicesthat aredistributedthroughouta network. Sureenough,managementof thosecomponentswill be
mandatory. While servicemanagementis usuallyservice-specific,a few areascanbe identifiedthatcanbeaddressed
in a genericway. Oneof theseareasis themanagementof dependenciesbetweenservices.Despiteits genericity, this
problemis currentlymostlyaddressedin a service-specificway. This paperdetailstheneedfor a genericdependency
managementapproach,identifiesthekey propertiesof dependenciesaswell astherequirementsfor dependency man-
agementschemes,describesthemodelderived from the requirements,andpresentsan implementationusingtheJini
connectiontechnology.

Keywords: Dependency management,servicemanagement,component-basedmanagement,dynamicservicenetworks

1 Motivation
Servicemanagementis becomingincreasinglyimportant. It is well establishedin the areaof network
services,suchaswebservers.With themigrationto building applicationsfrom distributedservices,service
managementwill becomeeven more important. While servicemanagementis mostly service-specific,
thereare a few areasthat are importantto all services. Besidesstatemanagement[CCI92], an areaof
major importanceis dependency management.Dependency managementis a specialareaof relationship
managementasdependenciesareaspecifictypeof relationship.A componentis saidto dependonaservice
if it (maybeonly temporarily)needsthefunctionalityof thatservice.Althoughtheremightbedependencies
betweenobjectswithin a component(“intra-component”),this paperfocuseson dependenciesbetween
components(“inter-component”).

Dependencieshave a certainsetof properties.An importantpropertyis that they aredynamicandcan
changeover thelifetime of thedependency. This is dueto thefact that in a complex systemof distributed
components,componentscanbecomeunavailable,maymigrate,or maybeupgraded.In thesecases,con-
nectionsbetweenservicesandits clientsmustbealteredto adaptto thesechanges.

The knowledgeof a service’s dependenciesis importantfor a numberof managementactivities. Fault
managementneedsthis informationto trackproblemsin adistributedservicenetwork. Configurationman-
agementneedsthis information to know which servicesare currently in useand appropriatelyadaptto
changesin theenvironment.Accountingmanagementneedsto know dependenciesto appropriatelycharge
for serviceaccess.Policy-basedmanagementneedsto know dependenciesandmustbeableto changethem
to enforcethepolicies.All thesemanagementactivities musthavewaysto learnthecurrentdependencies,
discover their properties,andpossiblyperformrebindingof services.As dependencieshave a limited set
of genericproperties(describedin Section2), it is possibleto representandmanagedependenciesin away
thatis not specificto a certainservice.Furthermore,dependency informationhasto bemadevisible to the
outsideof theservice.We will arguethat it is mandatorythat theserviceitself publishesandmaintainsits
dependency data.Appropriateinstrumentationof servicesis thereforerequired.

Thispaperdealswith dependenciesbetweencomponentsof a distributedsystem.Someof thesecompo-
nentsoffer their functionalityto othercomponents.Thesearereferredto asservices. Althoughcomponents

O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and Management
DSOM'2001 Nancy France, October 15-17, 2001.

PeerHasselmeyer

accessingaservicearesaidto actin theclient role,they canbeservicesthemselves.Componentscanthere-
foreform arbitraryusagestructureswhichareusuallynothierarchical.Viewedfrom onesinglecomponent,
thecomponentwill be thecentralnodeof a directedgraphof components.Viewed together, components
form a meshof interconnectednodesthatwork togetherin a peer-to-peerfashion.

Thepaperis structuredin thefollowing way: Section2 detailsthedescriptionof dependencies.Section3
analyzestherequirementsthatamanagementschemefor dependencieshasto fulfill. Section4 presentsour
dependency managementimplementationusingtheJini connectiontechnology. Relatedwork is reviewed
in Section5, while Section6 concludesthepaperandpointstowardsareasof futurework.

2 Dependencies
This chaptertakesa detailedlook at dependenciesbetweensoftwarecomponentsandidentifiestheir prop-
erties.

A dependency in the context of this paperis a specialkind of relationshipbetweentwo (or more)dis-
tributedsoftwarecomponents.If a componentneedsa certainexternalfunctionality, it is saidto depend
on that functionality. In our model, functionality is offeredby services. As a componentis the unit of
granularity, we only dealwith dependenciesbetweencomponents.We do not addressintra-component
dependencieswhich relatesoftwarepartswithin a component.Theseareusuallyonly importantat devel-
opmentandcompiletime andarethereforea debuggingtopic. Someof theseintra-servicedependencies,
e.g.theselectionof aciphersuite,areneverthelessdynamicandmightbeconfigurableat installationor run
time. As this typeof configurationis almostalwaysservice-specific,it is notaddressedin this paper.

dependency

type

�

access pattern

dependency

access pattern

dependent component

antecedent

component

antecedent

component

antecedent

component
type

�

dependency

type

�

access pattern

bindings

Fig. 1: Anatomyof a Dependency

A dependency is a directedrelationshipbetweena setof components.It hastwo roles: the dependent
componentandtheantecedent(“free”) component(s)(seeFigure1). Thecardinalityof thedependentrole,
i.e., thenumberof componentsassignedto theclient role, is exactlyone.If therewasno dependentobject,
thedependency wouldnotexist. If morethanonecomponentdependson thesameservice,eachdependent
componenthasits own dependency. Themaximumcardinalityof theantecedentrolecanbeoneor infinite,
dependingon the application. If a word processordependson a spell checkingservice,the maximum
cardinalityof thisdependency is one.If a travel servicedependson airlinecompanies,it probablydepends
onmorethanone.Themaximumcardinalityof thisdependency is thereforeinfinite. Theactualcardinality
of theantecedentrole canchangeduringthe lifetime of a dependency andcanbeany valuebetweenzero
andthemaximumcardinality.

As indicatedbefore,a dependency hasan abstracttype (previously referredto as“functionality”) and
concretebindings(theconnectionsto serviceinstances).The typedescribeswhatkind of functionality is
required.A bindingis a concreteassociationbetweenthedependentcomponentandanantecedentservice.
Boundserviceshave to beof thetypeof thedependency.

When we analyzedthe dependenciesof a numberof servicesand componentsthat we implemented
[ADH

�
99, HSV00], we discoveredthatservicesareselectedandaccessedin a numberof differentaccess

patterns. Thediscoveredaccesspatternsandtheir propertiesarelisted in Figure2. An accesspatterncan
bedescribedby a numberof dimensions.Thedimensionsare: quantityof rememberedservices,quantity
of accessedservices,and the selectionscheme.Furthermore,the accesspatterndependson whetherall
servicesarethesameor differentfrom eachother. Thislastpropertyhasto bedistinguishedfrom thetypeof
theservices.Althoughtheserviceshavethesametype,they candiffer in otherrespects,asmentionedbefore

ManagingDynamicServiceDependencies

quantity of quantity of services have
name remembered services accessed services priorities services are
single one one n/a equal

random,round-robin multiple one no equal
ordered multiple one yes equal

first match multiple subset yes different
all multiple all no different

Fig. 2: AccessPatterns

whenwedescribedthemaximumcardinality:shoppingservicesfor exampledifferby thepricesthey charge
for theirproducts.All spellcheckersshouldreturnthesameresults,though.This informationis impliedby
theotherdataandis shown in thefigureonly for illustrativepurposes.Thequantityof rememberedservices
caneitherbesingleor multiple. A wordprocessoronly needsto rememberthesinglespellcheckingservice
instanceit is currentlyrelying on. Thenameresolver serviceprobablyremembersmorethanonedomain
namesystem(DNS) serviceinstancefor fault tolerancereasons.The quantityof accessedservicescan
eitherbe a single instance,a subsetof the rememberedservices,or all rememberedservices. Again, a
word processoronly needsoneinstanceof a spellcheckingservice.A shoppingapplicationwould useall
services,if it wantsto find the bestdealavailable. Only a subsetof the rememberedservicesis needed
if not all servicesoffer the samedata,but any answerwill do. If you storeconfigurationdatadistributed
over a numberof differentservices,theconfigurationfrom thefirst servicethatcansupplya valid DHCP
configurationwill be selected.The selectionschemeis only importantif a subset(including one)of the
rememberedservicesis accessed.We found the following schemesusedwhenonly a singleinstancehas
to beselected:random,round-robin,andordered.With therandommethod,oneserviceinstanceis chosen
at randomeachtime it hasto beaccessed.Theround-robinschemealsoselectsa differentserviceinstance
eachtime,but in a sequentialfashion(wherethesequenceis randombut staysthesamefor all iterations).
Both randomand round-robinschemescan be usedfor load distribution. The orderedschemeassigns
prioritiesto theavailableserviceinstances.Theservicewith thehighestpriority is alwaysaccessedfirst. In
caseit couldnot supplya valid result,e.g.becauseof a communicationserror, theservicewith thesecond
highestpriority is selected.The processcontinuesuntil a valid resultwasreturned. This last schemeis
commonlyused,for example,for DNS queries. It is similar to the first-matchschemebut assumesthat
all servicesequal. The third dimension,the selectionscheme,is currentlynot formalized. It is implied
in the nameof an accesspatternand is thereforeonly useful for humanoperators. We found that the
maximumcardinalityis not anadequatepropertyto describea dependency. It conveyssimilar information
asthe quantityof accessedservicesbut it is lessdetailed.We thereforerefrain from usingthe maximum
cardinalityandonly usetheaccesspatterninformationinstead.

The lifetime of a dependency equalsthe lifetime of the dependentcomponent.Althougha component
might not immediately(or not at all) needthe functionality of a serviceit dependson, the dependency
is still there. An exampleis a print servicethat dependson an accountingservice. Although accounting
recordsaresentinfrequently, thedependency existsover thewholelifetime of theprint service.While the
type (here: accountingservice)andthe accesspatternof the dependency staythe sameover the lifetime
of the dependency, its binding is dynamicandcanchange.Theremight even be no bindingsfor periods
of time. If we take a look at the exampleagain,the accountingservicemight be replacedby a new one
from a differentvendor. In this case,theantecedentcomponentchangesandthereforethebindingchanges
aswell. In casethetransitionfrom theold to thenew accountingservicetakessometime, theremight be
no bindingsfor someperiodof time. Theprint servicemight still beableto provide its serviceasit might
beableto storeaccountingrecordsuntil theaccountingservicebecomesavailableagain.Theoretically, the
selectionschemeof theaccesspatterncouldchangeoverthelifetime of adependency aswell. Theanalyzed
servicesdid not show this behavior, though.As theselectionschemeis chosenfor importantreasons(e.g.
equalityof serviceinstances,quantityof requiredservices,loaddistribution),we believe that theselection
schemewill not changedynamically.

Becausethe lifetime of a dependency equalsthe lifetime of the associateddependentcomponentand

PeerHasselmeyer

the dependentcomponentof a dependency doesnot changeover the dependency’s lifetime, we seea de-
pendency asa propertyof the dependentobject. This is an obviouschoicefor dependency management,
aseachcomponentknows bestwhich servicesit relieson. This is in contrastto otherrelationships.In a
connectionrelationship,theconnectedterminationpointsmightchangeover thelifetime of theconnection.
Theconnectioncannot beattributedto oneof theterminationpoints.

As mentionedbefore,bindingsof adependency aredynamic.Bindingschangebecauseof stimuli coming
from either inside the dependentcomponentor from the outside. Stimuli from the inside can include
failure of the old binding,andload distribution. Stimuli from the outsidearethe resultsof someservice
managementactions.Thestimuli canhave many sources.A few examplesareservicemigration,service
updates,loaddistribution, andchangesin otherservicesor policies. Changingthe bindingsfrom outside
thedependentcomponentis a configurationmanagementactivity asit altersthestructureof themanaged
system.

To sumup this section,we list thepropertiesto describea dependency:

� thedependentcomponent,

� thedependency’stype,

� theaccesspattern,and

� theboundantecedentcomponents.

3 Requirements for Dependency Management
Dependency managementrequiresthe infrastructureandparticipatingcomponentsto fulfill a numberof
requirements.Theseareintroducedin this section.

To performdependency management,thedependenciesmustbeaccessibleto managementapplications.
For analyzingor displayingcomponentdependencies,the availablecomponentsand their dependencies
mustbe visible from the outside. The datato be madevisible is all the dataidentifiedin Section2: the
dependentcomponent,thetypeof thedependency, theaccesspattern,andthecurrentbindings.

In additionto retrieving the currentdependencies,dependenciesmustbe changeableat runtime—from
within thecomponentaswell asfrom theoutside.As mentionedbefore,thedependentobject,thetype,and
theaccesspatternof a dependency staythe sameover the lifetime of thedependency. Theonly datathat
canbechangedis thebindingof a dependency, i.e., theserviceinstancesa componentuses.A component
musthave the possibility to changeits own bindingsasit mustbe ableto respondadequatelyto services
becomingunreachable.Externalcomponentsalsomustbe able to changea componentsbindings. This
might be due to a policy forbidding the useof certainservicesor an administratordirecting traffic to a
specificserviceinstance.A dependency managementframework thereforehasto offer the possibility to
changedependency bindingsat runtime. Changesfrom within aswell asfrom the outsidethe dependent
componentmust be possible. It is important to note that changesare reconfigurationsof the managed
system.As changes—andthereforereconfigurations—canbeperformedby thecomponentitself, it canbe
consideredpartof themanagingsystem.

We alreadymentionedthatwe seedependenciesaspropertiesattachedto dependentcomponents.Fur-
thermore,all dependency datashouldbesupplieddirectly by thecomponenthaving thedependency. This
approachremovesthe possibility of having inconsistenciesbetweendependency dataandactualcompo-
nentinteraction. Inconsistenciesarepossiblefor examplein a schemewheredependency datais derived
from configurationfiles. Many servicesonly readtheir configurationdatawhenspecificallyinstructedto
do so. Therefore,changinga configurationfile is not enoughto changethe dependenciesof the running
serviceinstance.In this case,dependency dataderivedfrom configurationfiles is inconsistentwith actual
servicebindings—atleastfor a certainperiodof time. We thereforeproposethatdependency databepub-
lishedby anddirectlyretrievedfrom therunningserviceinstance.Thisdatapreciselyrepresentsthecurrent
componentdependencies.

Changesin thedependency graphcanbediscoveredby periodicallypolling theobserveddependencies.
Dependingon the polling frequency andthe numberof observeddependencies,this methodcanwastea

ManagingDynamicServiceDependencies

Lookup
Service

Service Provider Client

Service
Proxy

Service
Proxy

Service
Proxy

Fig. 3: Jini Architecture

largeamountof bandwidth.A pushmodelis thereforedesirable.Appropriatenotificationsshouldbesent
out upondependency changes.

Bindingsarereferencesto runningserviceinstances.Serviceinstancesmust thereforebe identifiable,
i.e., they musthave a uniqueidentifier. Appropriateidentifiersareusuallyavailable in middlewareplat-
forms,e.g.distinguishednamesin theTMN framework, or objectreferencesin CORBA. It is importantto
notethat this last requirementdoesnot have to befulfilled by dependenciesbut by theunderlyingservice
infrastructure.

To sumup this section,dependency managementschemeshaveto satisfythefollowing requirements:

� dependenciesmustbevisible from theoutside,

� dependenciesmustbechangeablefrom theoutside,and

� dependenciesmustbesuppliedby thedependentcomponent.

4 Implementation
Basedonourdependency managementanalysiswe implementedourown dependency managementsystem
usingthe Jini connectiontechnology[Sun00]. This technologywaschosenbecauseit is a service-based
infrastructureandcontainsa largenumberof featuresthatwebelievewill beincorporatedin futuremiddle-
warearchitecturesfor service-basednetworks. In this section,we first introducethepropertiesof Jini that
arerelevant to this paper. We thendescribethemappingof thediscoveredpropertiesandrequirementsto
theJini technologyandpresentanumberof detailsof our implementation.

4.1 Jini
SunMicrosystems’Jini is aJavatechnologywhichallowsservicesandclientsonanetwork find eachother
in an easy, automatic,anddynamicway. This descriptionis not intendedto presentan overview of Jini,
it ratherfocuseson thefeatureswhich areneededto understandthearchitecturedescribedin this section:
serviceproxies,attributes,andtherole of thelookupservice.

A Jini federation is thecollectionof all Jini-enabledcomponentsthattakepartin aJini systematacertain
point in time. This includesentitiesin the role of serversaswell asin the role of clients. The bindings
betweentheseentitiesareestablishedat runtimeandcanbechangeddynamicallyduringthelifetime of the
components.Thedynamicbehavior of a Jini federationis enabledby theuseof so-calledlookupservices.
Servicesthatwant to offer their functionality to a Jini federationcontactoneor morelookupservicesand
registerwith them.Clientsalsocontactlookupservicesandaskfor desiredservices.If a client findsmore
thanoneinstanceof a servicetype, it hasto selectthe instancethat it wantsto use. Selectinga service
instancerelatesto bindingthatinstanceinto adependency in ourmodel.

Figure3 showsamoredetailedview of theactualinteraction.It is importantto notethatall communica-
tion is mediatedby serviceproxies. Proxyobjectsaresuppliedby theserviceprovider that they represent.
Theserviceprovider is theback-endandusuallyprovidestheactualservice.Theserviceproxy consistsof
a setof mobileobjectswhich aresentto a client to interfacewith theserviceprovider. A registrationwith

PeerHasselmeyer

a lookupserviceconsistsof theserviceproxy anda setof attributescalledentries. Both partsof theregis-
trationarestoredat thelookupservicefor laterretrieval by serviceusers.Theentriesaswell astheservice
proxy arearbitraryJava objects.As Jini builds on thecodemobility capabilitiesof Java, theseobjectscan
travel aroundthenetwork anddo notonly containdatabut alsocode.

4.2 Dependency Management Architecture

Dependenciesconsistof the following data: the dependentcomponent,the type, the accesspattern,and
the antecedentservices. Appropriatestoring placeshave to be allocatedfor this data. As we consider
dependenciespropertiesof the dependentservice,it wasan obviouschoiceto attachdependenciesto the
componentthey belongto. Theinformationaboutthedependentcomponentis thereforeimplicitly storedin
thisattachment.Theremainingthreepropertiesareaccessiblevia objectsthatimplementtheDependency
interface(furtherdescribedin Section4.3).

Attachingdependency datato servicesis possiblein many ways. We evaluatedtwo possibilities: en-
tries anddedicatedobjects. As describedbefore,entriesarearbitraryobjectsthat areattachedto service
proxies. Dependenciescould be storedasentriesin the lookup service. An advantageof this methodis
thatentriesaresearchable.Managementapplicationsthereforeneedto contactonly a smallnumberof ser-
vices(all reachablelookupservices)to discover thedependency graph.They canalsoasklookupservices
for componentsthatdependon a certaintypeor evena certaininstanceof a service.Servicemapscould
be createdquickly andwithout a large communicationsoverhead.Therearea numberof disadvantages,
though. First, this methodincreasesthe memoryusageof the lookupserviceaswell asof all clients. As
entriesareattachedto services,they aredownloadedby every client thataccessestheservice.Evenif the
client is not interestedin managementdata,it will receive all the dependency information. Furthermore,
this approachdoesnot completelyfulfill our requirementthatdependency datahasto besupplieddirectly
by thecomponent.To keepthedependency informationup-to-date,dependency datahasto besentto the
lookup service. As pushingthe datato the lookup servicerequiresremotecommunicationandtherefore
takessometime,dependency datamightbeout of syncwith theactualservicebindings.

Becauseof thementioneddrawbacksof storingdependency datain entries,wechoseadifferentmethod.
Themethodis basedonthenormalJini managementpatternandusesdedicatedmanagementobjects.Man-
ageableservicesimplementtheAdministrable interface.Theinterfacecontainsa singlefunctionthat
returnsa dedicatedmanagementobject.Thededicatedmanagementobjectgrantsaccessto thedependen-
cies. In contrastto the first solution, this approachachievesseparationof concerns(betweenthe “real”
serviceandthe managementfunctions)anddoesnot force regular clientsto downloaddependency man-
agementdata. The requirementof dependency databeingdirectly suppliedby the componentis fulfilled
becauseaccessto dependency managementdatais alwayschanneledthroughthemanagementobjectwhich
belongsto theservice.Themaindisadvantageof this schemeis thatdependency datais not availableat a
singlelocation. As eachcomponentis responsiblefor its own dependency data,dependency management
datais distributedoverall participatingcomponents.This achievesscalability, but requiresa largenumber
of componentsto becontactedif acompletepictureof thecurrentdependenciesis needed.Furthermore,as
dependenciesaredirectedrelationships,finding all componentsthatdependon a givenservicerequiresall
componentsto bequeriedfor theirdependencies.

In a Jini federation,usuallyonly servicesare registeredwith the lookup service. Componentswhich
only act in theclient role arenot registered.They just contactthe lookupserviceif they needthehelpof
someservice,i.e., if they dependon someservice.To make our systemwork, all components—including
clients—have to bevisible andthereforeregisteredwith the lookupservice.This makessenseasall com-
ponentsperforma servicenow, even componentsthat usedto be clients: they all offer the dependency
managementservicenow.

Identificationof servicesin Jini is easy. A uniqueidentifier is assignedto eachservicewhenit registers
with a lookupservicefor thefirst time. A Jini serviceis requiredto make this identifierpersistentso that
it keepstheidentifierevenif it wasstoppedandrestarted.Theidentifierevenstaysthesameif theservice
migrated.Theidentifieris thereforelocationindependent.

ManagingDynamicServiceDependencies

public interface Dependency extends java.rmi.Remote {
public Class getType() throws java.rmi.RemoteException;
public AccessPattern getAccessPattern() throws java.rmi.RemoteException;
public ServiceID[] getBindings() throws java.rmi.RemoteException;
public BindingRestriction getRestrictions() throws java.rmi.RemoteException;

}

public interface ManagedDependency extends Dependency {
public void setRestrictions(BindingRestriction limits)

throws IllegalServiceTypeException, SchemeMismatchException,
java.rmi.RemoteException;

public ServiceID[] getAvailable() throws java.rmi.RemoteException;
}

Fig. 4: TheDependency andManagedDependency Interfaces

4.3 Implementation Details

To demonstratethe viability andusability of our dependency managementarchitecture,we implemented
botha manageraswell asnumberof managedcomponents.Thecomponentswerealreadyavailablefrom
previous work [HSV00], but they did not have a dependency managementinterface. We thereforeonly
addeddependency managementinstrumentationto our components.This is especiallyinterestingas it
showshow muchwork is involvedwhen“upgrading”existing components.

Figure4 shows the dependency interfaces. We separatedthe adjustmentfunctionality from the read-
only accessto allow for dumbcomponentsthat do not offer restrictingservicebindings. We discourage
the useof read-onlyaccess,though. Dependency andManagedDependency are interfacesandnot
classesbecausedifferentcomponentsmight want to usedifferentmethodsof determininga dependency’s
attributes.Theinterfacesareremotebecauseobjectsimplementingthe interfacesaremostlikely accessed
remotely. As typeandaccesspatterncannotbechanged,they canonly beread.Actual bindingscanonly
bereadaswell, asthey arethesoleresponsibilityof theservice.Nevertheless,they canbe influencedby
specifyingrestrictionson thepossiblebindings.Theserestrictionscaneitherbeinclusiveor exclusive, i.e.,
they containa list of servicesto beusedor not to beused.As everycomponentcanhaveadifferentview of
thesetof availableservices,theservicesavailableto theadministeredcomponentcanberetrieved.

As mentionedbefore,dependenciescanbeaccessedvia dedicatedmanagementobjects.A management
objectthatis ableto executedependency managementfunctionshasto implementtheDependencyMan-
agement interfacewhich consistsof only a singlefunction to retrieve the service’s dependencies.The
way to getaccessto thedependenciesof aserviceis depictedin Figure5.

man-

agement
�

proxy

getAdmin()

service
�

proxy

getDependencies()

dependency

�dependency

�dependency

�

Fig. 5: GettingAccessto Dependencies

To manageourdependency management-enabledcomponents,weenhancedourservicebrowserwith the
desiredcapabilities.In additionto displayingthecurrentsetof components,we candisplaythecomplete
dependency graph. An exampleis shown in Figure 6. As this “global” view becomescomplex with a
growing numberof services,we developeda hierarchicalpresentation,shown in Figure7. For this view a
singlecomponentis selectedwhichbecomestherootnodeof thedisplayedgraph.Below, all dependencies
of the root componentareshown. This methodgoeson recursively until all dependenciesaredisplayed.
Dependenciescanbefurtherexaminedby clicking on thedependentservice.All servicesof thetypeof the

PeerHasselmeyer

dependency will beshown andtheadministratorcanalterthebindingrestrictions.

Fig. 6: “Global” View of ServiceDependencies

Fig. 7: Dependency View of a ParticularComponent

Enhancingtheexistingcomponentswith dependency managementfacilitieswassurprisinglyeasy. Three
stepswereinvolved: a dedicatedmanagementobjecthadto beaddedto theserviceproxy, theappropriate
dependency objecthadto besetup,andthebindingrestrictionshadto beenforced.While thefirst two steps
arestraightforward,thelaststeprequiresmorework. Ourgoalwasto leavetheexistingcodein its original
stateasmuchaspossible.As thecomponentsuseconvenienceobjectsfor cachingservicereferences,we
simply hadto addtherequiredservicefiltering. This waseasy, astheconvenienceobjectsalreadysupport
filtering which wasnot usedbeforein theclients.

5 Related Work
[KC00] discussesdependency managementin component-baseddistributedsystems.Jini canbeseenasan
instanceof suchsystems.Thepaperdoesnot addressthe topicspresentedin this paper, though. It rather
focuseson softwarepackages,their installation,andtheir interdependence.While software installations
facesomeof thesameproblemsascomponent-basedservices,they areusuallymorerestricted.In particular,
they donothavethepossibilityof beinginstalledor startedwithoutall dependenciessatisfied.Furthermore,

ManagingDynamicServiceDependencies

dependenciesbetweendifferentsoftwarepackagescanusuallynotbechangedwhile thesystemis running.
Therefore,changingdependenciesat runtimeby anadministratoris not anissuehere.

Monitoring the interactionof distributedcomponentsis discussedin [DBZvS00]. The softwaredevel-
opmentaspectof cooperatingdistributedcomponentsis explored. Monitoring communicationbetween
componentsby usingCORBA interceptorsandits applicationto finding faultsis described.We designed
and implementeda similar systemusing the Jini connectiontechnology[HV01]. As theseschemesare
aimedat debuggingdistributedapplications,dependenciescanbemonitored,but not changed.

[KK00] discussesdynamicdependenciesin depth.Althoughtheir work is similar to thework presented
in this paper, their architectureand implementationdiffers in a numberof areas. They are addressing
dependenciesbetweenservicesthatarenot instrumented.They ratherextractdependency informationfrom
configurationfilesandsoftwareinstallationdatabases.As we arguedin thecourseof this paper, up-to-date
dependency informationcanonly besuppliedby therunningserviceitself. Furthermore,it is notclearhow
thedynamismof dependenciesis handledin theirwork.

A numberof standardizationbodiesworkedon relationshipsanddependencies.In thework of theTele-
ManagementForum[Tel00], dependenciesareidentifiedbut not furtherstudied.They includedtherequire-
ment that the dependentobjectmustpublish its dependencies,just aswe did in our work. The General
RelationshipModel (GRM) [IT95] describesan architecturefor arbitrary relationshipsaswell asmeth-
odsto defineandrepresentthemin theTMN framework. Themodeldoesnot specificallyaddressservice
dependencies.Thesecouldbe modeledwith the methodsof the GRM, though. The CIM model[Dis99]
definesdependenciesbetweenservices,but it doesnotcapturethedynamismof servicedependencies.CIM
servicedependenciesareratherrequirementson theexistenceof servicesandtheorderof their execution.
They arenot supposedto changeduringthelifetime of thedependency. As noneof themodelsis aimedat
dynamicservicedependencies,noneof themdetailsdependencieswith accesspatterns.

6 Conclusion
Thispaperanalyzeddynamicdependenciesbetweendistributedsoftwarecomponents.Thepropertiesof the
dependenciesweredescribed.Requirementsfor servicedependency managementschemeswereidentified.
Basedon thedependency analysisandthedescribedrequirements,adependency managementschemewas
designedandimplementedusingan infrastructurefor distributedcooperatingcomponents.Although the
systemfulfills its requirements,somefurtherresearchhasto becarriedout.

As mentionedbefore,our architecturedoescurrentlynot allow a “reverse”dependency treeto bebuilt
easily. All componentshaveto becontactedandall theirdependencieshavetobeanalyzed.Wearetherefore
thinking aboutanadditionalrequirementthat forcesdependentobjectsto registerwith antecedentobjects.
Antecedentobjectswould thereforeknow who is currentlyusingthem. This informationcould be made
publicandusedby managementapplicationsto easilycreatea reversedependency tree.

References
[ADH

�
99] GerdAschemann,SvetlanaDomnitcheva, PeerHasselmeyer, RogerKehr, andAndreasZei-

dler. A Framework for theIntegrationof Legacy Devicesinto a Jini ManagementFederation.
In TenthIFIP/IEEE InternationalWorkshopon DistributedSystems:Operations& Manage-
ment(DSOM’99), October1999.

[CCI92] CCITT. RecommendationX.731(01/92)– Informationtechnology– OpenSystemsIntercon-
nection– Systemsmnagement:Statemanagementfunction. January1992.

[DBZvS00] Nikolay K. Diakov, Harold J. Batteram,HansZandbelt,andMartenJ. van Sinderen.Mon-
itoring of DistributedComponentInteractions. In Workshopon ReflectiveMiddleware (RM
2000), April 2000.

[Dis99] DistributedManagementTaskForce. CommonInformationModel (CIM) Specification,Ver-
sion2.2, June1999.

PeerHasselmeyer

[HSV00] PeerHasselmeyer, MarkusSchumacher, andMarcoVoß. Pay asYou Go – AssociatingCosts
with Jini Leases.In 4th InternationalEnterpriseDistributedObjectComputingConference
(EDOC2000), pages48–57.IEEEPublishing,September2000.

[HV01] PeerHasselmeyer andMarcoVoß. Monitoring ComponentInteractionin Jini Federations.In
To appear:Symposiumon TheConvergenceof InformationTechnologyandCommunications
(ITCom2001), August2001.

[IT95] ITU-T. RecommendationX.725(11/95)– Informationtechnology – OpenSystemsIntercon-
nection– Structureof managementinformation:General relationshipmodel. November1995.

[KC00] F. Kon.andR. H. Campbell.DependenceManagementin Component-BasedDistributedSys-
tems.IEEEConcurrency, 8(1):26–36,January2000.

[KK00] AlexanderKeller andGautamKar. DynamicDependenciesin ApplicationServiceManage-
ment. In 2000InternationalConferenceon Parallel and DistributedProcessingTechniques
andApplications(PDPTA 2000), June2000.

[Sun00] SunMicrosystems,Inc. Jini ArchitectureSpecification– Version1.1, October2000.

[Tel00] TeleManagementForum. GenericRequirementsfor TelecommunicationsManagementBuild-
ing Blocks(GB909Part1), June2000.

