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The IP network configurator (IPNC) is an extensible, scalable infrastructure for IP network and services 
provisioning. It provides necessary components to support high-level management applications. The most 
important goal of the IPNC is to enable network wide management of the IP networks while encapsulating the 
details about different network element vendors, different command line interface (CLI)/SNMP versions, 
different access methods etc. This provides high level APIs to applications shielding most of the element 
specific details. The IP network configurator tool currently supports CLI and SNMP to manage the IP 
networks transparently. It analyzes the issues related to configuration of the network of routers to consistently 
provision associated IP services with a minimal user input. Our architecture is applicable to all IP services 
and we specifically describe our implementation of the provisioning of the OSPF routing protocol. 
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1. Introduction 
 

1.1. Problem 
Dominance of IP networks has created significant need for faster network and service 

management tools. One of the important problems in IP network and services management is the 
lack of a scalable provisioning infrastructure that can be extended as new applications and network 
equipment vendors emerge. These applications can be traditional network management 
applications or emerging applications in service domain. Significant advances in configuration 
management domain can help address some of these problems. One of the critical tasks for 
provisioning of network-based services is configuration management.  

One of the biggest challenges in configuration management is that configuration information is 
replicated at all or several network elements that are part of the network. For example, DNS server 
information is configured at all the routers. For OSPF, the OSPF area related configuration is 
replicated over to all the routers in that area. Thus validation and consistency of the configuration 
information about same entity across multiple network devices becomes a critical task for 
configuration.  
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The configuration information of the networks in IP network is stored, in the form of configuration 
files, in the routers. Since the router acts as a repository for the configuration information, the 
configuration of the network requires configuration of multiple routers. The configuration 
management of routers is very much vendor dependent. Some vendors prefer change of configuration 
information through the router specific command line interface (CLI) or loading of configuration file 
via tftp. Others prefer SNMP or TL1. Some others also support JAVA RMI, CORBA or HTTP 
interface for their EMS. As a result there is a no uniform way to configure routers from multiple 
vendors. The lack of uniform way to configure routers poses a real problem for configuration of 
network or network services as a whole because any change may require changing configuration of 
multiple routers from different vendors. Currently most routers support CLI and SNMP protocols for 
accessing information from routers and configuring the routers. The CLI interfaces are used to 
modify the configuration file and the messages are sent through a telnet session. The CLI commands 
are used to configure various components of routers by adding, deleting or modifying the components 
from the configuration files. The SNMP protocol is primarily used for monitoring and analysis of the 
network behavior though it can be used for configuration also in principle.  

The state of the art in configuration management of router is manual modification of the 
configuration files of the routers. Although there exits several tools for device level configuration 
management (e.g. EMS supplied by the NE vendors), there are very few tools that provide on-line 
interactive provisioning of IP networks and supported services. Part of the reason is that IP networks 
span over heterogeneous network elements from different vendors and part of the reason is that 
SNMP protocol is used only for monitoring purposes. Difficulties involved in generic modeling of 
services exacerbate the problem. Currently, most network administrators log into multiple network 
elements (routers, switches etc.) and provision the network or services by issuing a set of commands 
using the element specific command line interface. Unfortunately these commands are vendor 
specific and as such it is very difficult to build generic tools.  

Although we can use SNMP to configure the IP protocols and services, the reality is that many 
cases the MIBs are not fully implemented (e.g. row creation/deletion is not allowed), SNMP SET is 
disabled through configuration because of security risk or device level MIBS are not really modeled 
for network level configuration. The device level standardized MIBs only acts as repository of data 
but does not really model the IP services that need to be configured. CLI tend to have more 
configuration capabilities than other management protocols. This makes it very important to support 
CLI in a management tool. However, proprietary syntax of CLI is a big problem while dealing with a 
multi-vendor networks. 

 

1.2. Our Solution 
From previous discussion it is imperative that there is a need for an infrastructure capable of 

shielding the heterogeneity of network elements. The heterogeneity could be due to different 
equipment vendors, different device access protocols e.g. telnet, tftp, SNMP etc. or due to different 
configuration methods e.g. CLI, SNMP, TL1 etc. It is also necessary to provide high-level APIs 
through sophisticated network and services models. IP Network configurator (IPNC) provides this 
infrastructure. It has a sophisticated model of IP Network. Currently IPNC provides APIs for OSPF, 
RIP and BGP1. Almost entire code is written in Java and it provides Java Swing based application as 
well as applet as front end GUI to IPNC server. Some of the features of IPNC are listed here. 

Technical Features:  
• Network wide configuration 
• Support for multi-vendor network elements 
• Transparent access to router using SNMP or CLI over telnet, modem, tftp  
• Java based framework for adding support for new protocols 
• Configuration sequencing 
• Protocol specific logical network views  
• Consistency checking of network wide configuration and elimination 

                                                           
1 RIP and BGP APIs are not fully supported currently. 



IP Network Configurator 
 

• Router configuration file version management and disaster recovery  
• Topology discovery 
• Bulk configuration updates 

Section 2.3 gives details about network wide configuration. Section 4 describes how IPNC support 
for multi-vendor network elements and transparent access. When configuring an IP network, changes 
may need to be made to several devices, as part of one configuration operation. Given an in-band 
access to the devices, it becomes imperative to sequence the changes intelligently to retain 
connectivity to the devices that need to be updated. The IPNC addresses this issue by implementing 
sequencing algorithms. The IP network configurator currently presents three views of the network: IP 
network view, OSPF view and Device View. Section 2.3.1 describes IPNC views. As more and more 
protocol and services are added to the tool, a new view will be added to each protocol/service. The 
various network views present protocol specific topological view the network in a hierarchical form. 
The hierarchy for each view is derived from the information structure of protocol or service being 
managed in that view. We shall not describe other features in more detail in this paper [1]. 

 

1.3. Related Work 
While many of the OSSs used in telephony world have embraced this idea of network wide 

provisioning, it is not a normal practice in IP world. The IPNC provides a unique platform for 
network wide IP provisioning. Several companies are trying to pave their way in service provisioning 
tools e.g. Astracon[5], Orchestream[8], Syndesis[9], Vertel[10] etc. It is unclear however, how 
modular, scalable and open some of these platforms are. Netsys [6] from Cisco helps detect 
inconsistencies in the network. Few companies tried to mimic GUI for CLI but this is not really a 
network wide provisioning. 

 

1.4. Organization of the Paper 
We describe software architecture of IPNC in section 2. Section 2 also compares IPNC 

architecture to TMN’s layered management architecture. Section 3 describes IPNC implementation 
architecture. Section 4 describes information model of the router agent components. Finally, we 
present our conclusions in section 5. 

2. Software Architecture 
The architecture of the IPNC is based on a layered architecture as shown in Figure 1. Although the 

layering of the IPNC can be viewed as an implementation of the TMN’s layered management 
architecture, in our approach we have adopted multiple messaging protocols instead of one normally 
prescribed by the TMN. Our approach is also slightly different than the TMN layered approach. 
Unlike TMN, IPNC layers export API for the higher layer instead of implementing complete 
applications at these layers. Also, our implementation is tailored for the configuration management, 
though our architecture can be extended to support other management activities easily. 

 

2.1. Network Element Layer 
At the bottom of the IPNC layered architecture is the network element layers that represents the 

network elements, such as routers, that are to be configured. The entities in the higher layer represent 
the entities in the network element layer. Current implementation of IPNC only supports the Routers. 

 

2.2. Network Element Model Layer 
On top of the network element layer is the element management layer. The element management 
layer consists of three sub-layers: device access protocol layer, device access protocol mediation 
Layer and device model layer.  
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2.2.1. Device Access Protocol Layer 

The device access protocol layer provides an abstraction of multiple protocols that can be used to 
communicate with the network elements. A particular network element can be reached through 
different access protocols depending on its capabilities. We assume that most of the network elements 
can be reached through telnet and some by modem and/or SNMP. The device access layer also 
provides access to specific network elements through indirect telnet – a telnet session through one of 
the neighboring network elements instead of direct session from management station. Indirect telnet 
can be very powerful technique especially when one needs to connect to a router to fix the very 
problem that prevents one to connect to that router at the first place. 
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Figure 1. Layered Architecture of the IP Network Configurator
ce Access Mediation Layer 
evice access protocol layer supports multiple protocols to communicate with the 

ents, we need mediation service that can translate an implementation specific 
of the network information to the multiple message formats supported by device 
l layer. The device access mediation layer provides a service for mapping information 
odel layer to the specific message protocol in the device access layer.  In IPNC this 

 vendor neutral Java RMI based APIs to higher layer and converts generic requests to 
pecific format internally. This involves support for different vendor CLIs, SNMP etc. 

ce Model Layer 
 Model layer represents the partial software image of the managed networks elements 
e of the IPNC tool. The entities in the device model layer correspond to the entities of 
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the network element layer. The entities in the device model layer not only represent the hardware 
elements but also the software protocol entities that are also running in those hardware elements. 
Specifically for our case, device layer entities represent the routers, its link interfaces, configured IP 
interfaces on Link interfaces, software protocol entities that represents various IP services, such as 
routing protocols (OSPF, BGP, RIP etc.), management protocols (SNMP) and others. The entities in 
the device model layer represents the information needed to configure the network elements in 
network wide way. Currently, IPNC supports configuration and status. The IPNC can be easily 
extended to support statistics.  

The device model layer also provides a set of services: Inventory, Device factory and Mediator 
factory. We use the inventory service to store the name, access information and some additional 
information about the routers within the scope of the IPNC tool as a persistent storage in a file. The 
inventory service also interacts with the element discovery tool to discover routers with the scope of 
the IPNC tool. The factory services provide mechanism for creating the device entities in a 
distributed way. The mediator factory provides mechanism to find vendor and device dependent 
mediation and access protocol entities for a specific device. The access to the mediator factory is only 
available to device factory. The device model layer abstracts the differences in the heterogeneous 
routers from multiple vendors and provides vendor, version and access independent model to the 
network layer.  

 
2.3. Network Model Layer 

The network Model layer maintains the relationship between the network elements, i.e. the routers 
(for our case), in a set of the network entities. The network entities are abstract entity that represents 
the connectivity between the network elements and also the hierarchy of the network elements. 
Network model maintain multiple graph (relationships between network entities), one for each 
protocol or service the routers support. For example, the network model maintains one graph for all 
the routers that are running IP protocol, one graph for all the routers that are running only the OSPF 
protocols. Based on the protocol specific information, we try to build hierarchy of the network. For 
example, in case of IP we maintain the hierarchy of the autonomous system (AS) and the IP subnets. 
The IPNC tool, the network is configured by changing the relationship between the hierarchy of 
network, the relationship between the routers and the network level parameters. The network 
elements that are part of the network get automatically configured as a part of the network 
configuration. Although we support configuration of devices explicitly, we do not recommend it 
because there is potential that the device configuration may not be consistent with the network wide 
configuration. For example setting OSPF hello interval on an interface to a value that is different 
form other interfaces on the same subnet will result in communication failure at OSPF layer. This can 
be avoided if that value is changed from OSPF subnet view, which results in setting the same value in 
all interfaces in that subnet. The network elements are configured based on specific protocol that they 
are running. Each configuration is only provided based on the relationship between network elements 
with respect to a specific network protocol. At a basic level, the IP network relationship is maintained 
based on the relationship between AS, IP subnets and IP interfaces of routers. The IP network entities 
at the network layer are defined to be distributed entities. Similarly for OSPF if a parameter value is 
required to be same across all routers in a particular area, then IPNC will present this parameter at 
area level. Modifying it at area level will make sure that all routers in that OSPF area are updated. 
This prevents inconsistencies caused by today’s device centric configuration management. 

 

2.3.1. Network Views  
As mentioned earlier, the IPNC currently present three views of the network: IP network view, 

OSPF view and Device View. 
2.3.1.1. IP Network View  

The Figure 2.describes a hierarchical of view of the IP network. At the highest level of the 
hierarchy is the global IP network which is collection of AS. Each AS contains a set of subnets and 
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connected by a set of routers. Each subnet contains a set of network interfaces of the associated 
routers that are in that subnet. Although, the routers are not strictly contained within the subnets, we 
show them just to associate the network interface to a router. Since a router may have interfaces in 
the multiple subnets, the same router may be shown multiple times.  
 

2.3.1.2. OSPF Network View  
 The Figure 3 describes the OSPF network view. It shows only the network that is currently in 

OSPF domain. As a result it only includes routers that are OSPF enabled. In addition, this view also 
imposes the OSPF hierarchy, which is key to enforce valid and consistent configuration updates in 
OSPF domain. User can view particular node of the tree and update corresponding entity. For 
example user can go to a particular area and modify authentication type used in the area. This will 
ensure that all routers in the area are updated with new configuration. 

Figure 3. The OSPF Network View 

Figure 2. The IP Network View 
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2.3.1.3. Device View  
The Figure 4 describes the device view. The device view is a typical way the network elements 
are managed in commercial network management platform. In the device view no network 
level aggregation is shown. However, we do provide mechanism by which user can filter the 
content of the view. All the routers are aggregated at the AS level. For each router, the link 
interfaces and protocols are aggregated in two separate groups. For each link interface, all the 
IP network interfaces are shown. For each protocol that the router supports an entry is 
displayed under the protocols group. 

2.3.1.4. View Browsers  
As a convenience for the programmer, we provide a set of view browsers for each of the view. The 

view browser filters out the routers and sub network that do not fit the specific view from the generic 
IP network view. The view browsers are registered with the RMI registry with a well-defined URL 
such that they can be found globally using the URL.  

 

2.4. Configuration Service Layer 
The configuration service layer defines one distributed entity for each of the IP protocol or service 

need to be configured, in addition to a set of common services required by the configurator. The 
configuration service layer provides the “business logic” for the configuration of the IP protocols and 
services. The entities for each of the configuration service are defined to be distributed entities. The 
configuration specific services are located using a service finder mechanism. The current IPNC tool 

Figure 4. The Device View 
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defines following configuration services: OSPF configuration, versioning of router configuration. We 
also have partial support for RIP and BGP. The actual configuration related application is 
implemented at this layer and it provides an API for GUI based application or any other applications 
to invoke the service.  

 

2.5. Configurator GUI  
Finally, the configurator applications are defined as a set of web enabled workflow applications. 

These workflow applications are designed based on the configuration of the specific protocols. The 
front-end for these applications are a set of HTML pages containing applets. These HTML pages are 
downloaded from the WEB server, which is co-located with the IPNC server. The applets use RMI to 
communicate with objects in the IPNC server. The GUI provides capabilities like protocol specific 
views of the network to provision protocol specific tasks, front end for configuration consistency 
checking of the network, front end for topology discovery, front end for 
versioning/backup/restoration of the router configuration files etc. 

3. IPNC Implementation Architecture 
In Figure 5 the implementation architecture of the IPNC is described. Almost entire 

implementation of the IPNC architecture is based on the Java technology. Entities in various layers 
communicate with each other using Java RMI. The Device, Network and Configuration service layer  

 

Figure 5. Implementation Architecture of the IPNC 
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entities are implemented in a single server framework, i.e., all the entities run in a single server or 
process though we use multi threading inside.  

The RouterAgent object implements the entities in the DeviceAccess and the Device Mediation 
layers. The InventoryManager object along with the Topology Discovery Inventory Database 
implements the Inventory service of the Device Model layer. The DeviceFactory and NetworkFactory 
map to the DeviceFactory and NetworkFactory objects respectively. The entities of the Device and 
Network Model are implemented as remote Java objects.  

When server starts-up, the NetworkConfigurator object is initialized which in turn initializes the 
InventoryManager, DeviceFactory, NetworkFactory objects. The NetworkConfigurator object then 
uses the NetworkFactory to initializes the server information based on the names of the router in the 
inventory. The Network Factory uses the Inventory Manager to read its inventory database. For each 
router in the inventory database, the NetworkFactory then creates and initializes an instance of a 
router using the DeviceFactory. Before each instance of the router is created, the network creates an 
instance of the network entities for each the network (As, subnet, area etc.) to which the router 
belongs. As the routers are initialized, a graph of the IP and OSPF network is incrementally built 
based on the information available in the routers.  
The network view browser objects provide complete navigability to all of the objects using any of the 
following supported views: IP, OSPF, Device. The application logic for the OSPF, RIP and BGP 
configurator objects is implemented in the network and device entity directly and as such there are no 
specific configurator objects. 

4. Information Model of the Router Agent Components  
The architecture of the Router agent as shown in Figure 6 consists of four layers. Vendor 

independent Java API for accessing the router, an access method selection layer, protocol adapters 
and message mediators. The access method selection layer provides a mechanism to select a specific  
mediator (CLI, SNMP etc.) and protocol adapter (telnet, indirect telnet, tftp, SNMP, RMI, CORBA 
etc.). The message mediator maps java API calls to device specific message format. Specific protocol 
adapters are dependent on the protocol interface provided by the actual routers. Currently most 
routers provide Telnet and SNMP. Few vendors provide Java VM and ORB. The IPNC can be easily 
extended to support these vendors. 

 
 

 

          Figure  6. The Architecture of the Router Agent 
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The Figure 7 shows the various components of the router agent and their relationship. The 
RouterAgentFactory creates a RouterAgent object for specific router vendor. The 
RouterAgentFactory uses the vendor id of the router in the RouterInvEntry to select a specific type of 
router agent. The RouterAgent is comprised of following entities: RouterInvEntry, RouterInfoAgent, 
one or more mediator, one or more protocol adapters for each type of mediator, and 
RouterConfigAgent objects for configuration of the router.       

                  
 

The RouterAgentFactory creates an instance of the RouterAgent object and pass the 
RouterInvEntry reference to the RouterAgent. The RouterAgent then instantiates its other components 
based on the information in the RouterInvEntry object. It creates one instance of specific type (telnet, 
indirect telnet, SNMP, etc.) of protocol adapter. It also creates instance of each type of message 
mediator (CLI, SNMP etc.) and then associates message mediator to the corresponding protocol 
adapter. The RouterInfoAgent object represents the cached information of the remote Router. The 
references to the RouterConfigAgent are obtained by invoking get<Protocol>RouterAgent() method. 
The RouterConfigAgent provides both buffered and unbuffered write access to the remote Router. 
Figure 8 describes a specific instance of RouterAgent and its components. 

 
 

4.1. Inheritance Hierarchy of the Router Agent Components  
Figure 9 describes the protocol/vendor specific extension of MessageMediator objects. The 

MessageMediator objects convert router information in Java format to the protocol specific message 
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format and vice versa. The MessageMediator is first extended for each type of message format, e.g. 
CLI and SNMP. Then it is extended for each vendor’s product. A vendor may have one or more 
CLIMediator extensions depending on how many different types of CLI does a vendor support. This 
extensibility is very useful in today’s dynamic environment where acquisition of a company brings a 
product with different management interface or format.  SNMPMediators can also be extended to 
support version specific behaviors. It is also possible to use different types of mediator for same 
device e.g. SNMPMediator for gets and CLIMediator for sets. The CLIMediators essentially converts 
Java name value pair list to vendor dependent CLI commands and vice versa e.g. 
ospfIf.setOspfHelloInterval(“10”) Java RMI call is translated to 
CiscoCLIMediator.setRouterIf(Properties nvp) where nvp is a name value pair list 
containing SNMP equivalent name ospfIfHelloInterval and value 10. This in turn executes 
“ip ospf hello-interval 10” CLI command on a router in appropriate configuration 
context. Similarly SNMPMediator converts SNMPMediator. setRouterIf (Properties
nvp) to same command. 
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between the RouterAgent and the remote Router. The flexibility to separate management data and 
access mechanism allows IPNC to try different access method if one fails e.g. if direct telnet to router 
fails then IPNC tries to reach router through indirect telnet or modem. This fail over scheme is 
transperant to user. 

Figure 11 illustrates the inheritance hierarchy of the vendor specific RouterAgent. The 
implementation of the vendor specific router agent transparently assigns appropriate 
MessageMediator. The RouterAgent creates an instance of specific protocol adapter based on the 
access information in the RouterInvEntry.  

5. Conclusion  
We believe that with the rapid emergence of new services and new vendors it is very important to 

build a network and service-provisioning infrastructure that can allow incremental support for these 
new requirements. The infrastructure has to be scalable, extendible and based on standard 
technologies. The IPNC provides this software infrastructure and it can meet the challenges of 
tomorrow. One of the important issue that IPNC addresses is access and mediation for different 
devices in a transparent manner. It is also very easy to extend IPNC to support different vendors and 
new services. Since IPNC is based on Java it can support several platforms without any change in 
implementation. We believe that availability of standard based service models in future can make this 
type of infrastructure even more versatile. 
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