
A 100Gig Network Processor platform for Openflow

Omar El Ferkouss∗, Ilyas Snaiki∗, Omar Mounaouar∗, Hamza Dahmouni‡,

Racha Ben Ali†, Yves Lemieux†,Cherkaoui Omar∗

∗Université du Québec à Montréal (UQAM)

{elferkouss.omar, ilyas.snaiki, mounaouar, cherkaoui.omar}@netvirt.ca
‡Institut national des postes et télécommunication (INPT)

{dahmouni}@inpt.ac.ma
†Ericsson Research Canada

{racha.ben.ali, yves.lemieux}@ericsson.com

Abstract—Openflow splits the control plane from the data
plane and move it to a centralized remote controller that
dictates the forwarding behaviour to multiple Openflow switches.
OpenFlow 1.1, introduces pipeline processing of the flow tables.
This helps to improve flexibility and performance. This paper
presents an implementation of the version 1.1 of OpenFlow
capable to achieve a good performance. Knowing that OpenFlow
is a rule-based approach, we can have several levels of flexibility
of the switch by only updating the flow entries on-the-fly. We will
show also that we can achieve a good performance using RFC
(Recursive Flow Classification) that uses SRAM and TCAM side
by side to enhance classification performance for the Openflow 1.1
Switch. Using this approach helps ameliorating the parallelism
of the classification process and better exploiting of the hardware
resources since most hardware platforms (such as Network
processors) contain both TCAM and SRAM to store the lookup
structures.

I. INTRODUCTION

Openflow [1] is a new practical approach in networking

that is gaining popularity among researchers both in academia

and industry. This is due partly to its flexibility in quickly

deploying innovative networking applications, inline with the

software defined network vision, without going through the

painful and slow standardization process of new protocols.

This Openflow approach splits the control plane from the

data plane and move it to a logically centralized remote

controller. This controller maintains all the networking logic

in different software applications that push forwarding and

packet processing rules to the data plane either proactively

or reactively. The genericity of Openflow is achieved by

omitting the separation between layers and performing packet

processing on arbitrary packet header fields in any combination

of layers simultaneously. 14 tuples are considered for the latest

version 1.1 of Openflow protocol. However performing packet

header lookups on up to 14 tuples at once is considered among

the biggest challenges of Openflow that prevent it from scaling

to networks larger than campus networks and data center

networks.

Some of the interesting research in the literature, such as

DIFANE [2], has already tackled this data plane scalability

issue of Openflow by partitioning the rule space into different

classes of rules depending on their level of granularity or speci-

ficity. Then different roles are assigned to different switches

depending on the classes of rules that each one maintains. With

this DIFANE approach the lookup is distributed and balanced

between these switches without leaving the data plane, i.e

without the need to invoke the centralized controller for the

first packet of each new unmatched flow.

In our proposed network processor based approach, pushing

Openflow classifier wildcard rules in TCAM hardware mem-

ory accelerates the lookup on multiple fields within a few

number of clock cycles. However, the TCAM is a scarce, ex-

pensive and energy-consuming memory with a limited number

of entries compared to the number of possible 14-tuples rules

that an application may want to push. Therefore, Openflow

classifier specific rules and 14-tuples exact match rules have

to be pushed into other large-capacity memories such as

SRAMs. SRAMs can be external to network processors to

allow much more larger memory capacity. However, external

large-capacity memories usually have an access time worse

than internal small-capacity memories, and may therefore

affect the Openflow packet lookup performance. Furthermore,

search structures in these memories such as tries for wildcard

rules and hashes (allowing collisions) for exact match rules

usually have a slower lookup than TCAM memory.

In order to reduce the use of the TCAM without invoking

the centralized controller for each new 14-tuples micro flow,

the DevoFlow approach in [3] automatically clones a matched

general wildcard rule in the TCAM by adding a specific exact

match rule in the SRAM. Therefore, the exact match 14 tuples

flow granularity of Openflow is maintained, which is required

for per micro flow specific QoS actions for instance, without

leaving the data plane, i.e. the fast path.

In order to accelerate the general packet processing, Open-

flow 1.1 introduces multiple lookup tables to allow a pipeline

processing. Therefore, in our paper, we identified different

implementation designs of Openflow 1.1 multiple tables over

network processors that we are currently evaluating. These

multiple tables are mapped to different types of memories

depending on network application requirements on hardware

performance vs. behavior change flexibility.

II. OPENFLOW CLASSIFICATION CHALLENGES

In an OpenFlow network, traffic is classified based on the

flow descriptor built from L2, L3 and L4 fields of each

packet, called match fields. The classification processing time



increases as the match fields length increase, which means in

an OpenFlow 1.1 network that uses 14 tuples as match fields,

the classification process requires more time to retrieve the

decision. This time requirement reduces significantly the per-

formance of an OpenFlow switch. By looking to the available

classification techniques [4], we find that the RFC (Recursive

Flow Classification) algorithm may be the appropriate one to

be used since the classification process in the OpenFlow 1.1

context is a multi-dimensional problem. It can help to increase

the lookup time performance since it can perform parallel

lookups through pipelined stages. Later in this paper, we

propose a new approach based on the RFC algorithm, called

Extended RFC, that can help us enhancing the performance

of the OpenFlow 1.1 switch by using both TCAM and SRAM

simultaneously.

III. OPENFLOW SWITCH OVER NETWORK PROCESSOR

The architecture of our implementation of OpenFlow 1.1

[5] over a Pizza Box has 2 main parts: the data plane and

control plane part. On the data plane the packets are processed

by the Network Processor which merely enforces the actions

added on the control plane. The control plane on other hand

has basically the OpenFlow Preprocessor Engine. It receives

the configurations from the NOX [6] OpenFlow controller and

transforms them in entries for the tables that are accessed by

the network processor.

���

����

��	
��



���

����

���
��������

���
�������


���

���

������
���

��	
�

���

���	
�

���

��
����

����

���

��

� !"
�

#��$

����
�

����

!��%

�!����

!��



����
�!����

!��



#��$

� &�
�

����

Fig. 1. Architecture of the OPE

The OPE (OpenFlow Preprocessor Engine) is responsible

for managing the Network Processor (NP) and for interme-

diating the communication between the NP and NOX. It is

responsible for pushing the entries and policies received from

NOX into the NP. Its architecture is shown in figure 1.

The EZchip NP4 [7] is a Network Processor with mixed

pipeline and parallel architecture (figure 2) capable of achiev-

ing speeds of 100Gbps. The EZchip NP4 has 4 different

Task Optimized Processors. They are organized in a pipeline

fashion: when a packet is being processed by the second TOP,

another packet is already being processed by the first. This,

combined with the parallelism, can make the processor achieve

high network throughput.

Fig. 2. EZchip pipeline

IV. IMPLEMENTATION

A. Design issues

The challenges behind an OpenFlow switch is to provide

the flexibility and performance of an OpenFlow switch with

different level of granularities. Indeed, the issues involved here

are:

Flexibility: one of the main requirements of the system

is the ability to easily change the NP programming without

having to reload any new code, but just with changes in the

flow tables. This is the flexibility in terms of flow entries. The

OpenFlow table pipeline introduced with the 1.1 version seems

suitable to model this interaction. The flexibility is evaluated

by the time required by the software to change the hardware

behaviour. It is the time to push the entries in the flow tables.

A smaller time of update of the flow tables ensures the best

flexibility of the system. We have also the flexibility in terms

of applications. It means the ability to add a new application

or change the application behaviour on-the-fly.

Performance: to take full advantage of the OpenFlow table

pipeline aforementioned, the implementation should match the

OpenFlow pipeline with the NP pipeline, in order to efficiently

use the processing power offered by the NP – or more

specifically its task-optimized processors (TOPs). Performance

is a key paradigm because we want to be able to scale while

being flexible.

Resource management: the implementation is also re-

quired to manage well the available resources, looking into

minimizing expensive operations (e.g. the lookups) and also

to use scarce resources (e.g. the TCAM) in an efficient way,

especially because the TCAM will be used to dictate the router

behavior.

B. Different Implementations

This sections explains several design choices that we made

to implement the version 1.1 of OpenFlow over EZchip NP-

4. The first design, which is I0 is shown in figure 3(a) and

already presented in the latest GENI Conference [8], uses a

TCAM and a hash table in the first level. The match fields are

in the TCAM while the first hash table is used to store the

TCAM indexes. In the second level, we can have several group

tables stored in EZchip hash tables to contain the actions of

each application.



The second design, the implementation I1 shown in figure

3(b), is an extension of I0 that uses two level of TCAM in

order to distribute the match fields. It means that if we have

more than one field used for the matching, it would be better

to distribute them in several tables. Thus, the I1 uses one stage

of TCAM and hash table more than the implementation I0.

���� ����	
����


��

(a) I0 implementation

���� ����	
����


��
���� ����	

(b) I1 implementation

���� ����	


 ��
��

���

����
� ��

�����

��

(c) I2 implementation

(d) I3 implementation

Fig. 3. Different implementations

The third implementation, which is shown in figure 3(c),

is a generalization of I2 that can use more than 2 levels of

TCAM. It can be very useful when we use more than 2 fields

to match the packet. Note that the number of iterations N must

be chosen so that the performance of the switch will not be

affected.

All the implementations above use the TCAM to match

the used fields and wildcard the other OpenFlow fields. We

propose also the design shown in figure 3(d). The idea is that

the parsing of the packet will be by stages instead of parsing

the whole packet header at the beginning. Thus, the result of

each step indicates the next field(s) and the tables that will be

used for lookup.

C. Extended Recurcive Flow Classification

The recursive flow classification [9] is an SRAM-based

algorithm. Since a classifier contains usually both wildcarded

and exact value bits, we try to propose a new way to combine

SRAM and TCAM in the classification process in order to

get better performance. This approach tends to reorder the

classifier and distribute it over the TCAM and the SRAM to

benefit from the strength of each one, which is the wildcard

match in TCAM and the exact match in the SRAM. Also,

most of hardware platforms, such as Network Processors and

NetFPGA [10], contain both SRAM and TCAM memories.

This approach can be a good way to better exploit the hardware

resources. In the following, we describe the pre-processing and

the processing of our extended RFC approach.

a) Pre-processing: The ExRFC (Extended RFC) pre-

processing consists of preparing the data structure to be used

for the classification process. It is done over three phases:

Interleaving, Splitting and RFC pre-processing.

The first phase, i.e. Interleaving, consists of reordering the

original classifier columns, each one is a 1-bit width, in order

to give the best group of wildcarded bits and exact bits. The

interleaving order of columns has to be maintained to be

applied on the manipulated header used for the classification.

In the second phase, i.e. Splitting, the interleaved classifier

is divided into two parts. The first part is SRAM-based. The

second part is TCAM-based. In the last phase, i.e. RFC pre-

processing, the data structure is built in accordance with the

splitting. The SRAM-based part will be pre-processed using

the classic RFC algorithm. As for the TCAM-based part, it

will be kept as it is, after eliminating redundancies.

b) Processing: When a packet arrives, the relevant fields

are extracted to build the header used for the classification.

This header is interleaved using the order applied on the

original classifier and split into two chunks. The first chunk

will be used to be processed using the TCAM. The second

chunk is split again into chunks to be used by the RFC

processing. The processing is either done through a parallel

architecture, as shown in figure 4(a), which may offer better

performance , or a pipeline architecture, as shown in figure

4(b), which may offer better flexibility.

(a) Parallel Architecture

(b) Pipeline Architecture

Fig. 4. Parallel vs Pipeline architecture

V. RESULTS

A. Flexibility

Table I shows some numerical results: the time to update

an entry on the TCAM and the Hash Table (which need to

be updated every time you add an entry) and the total time to

add a flow entry for the implementation I0, I1 and I2.

Concerning the flexibility in term of adding a new applica-

tion, or changing the application behaviour, the implementa-

tion I3 is the best one. Indeed, for example for the routing

application, the used match fields are the destination MAC



address and the IP destination address . So, using I0, the

TCAM entry uses two fields and therefore we have to take

into account all possible combinations. On the other hand,

using I2 or I3 we can use two TCAM tables and save

memory space. Table II shows some numerical results for the

routing application that uses 16 destination MAC addresses,

400 prefixes and 200 next hops. Note that if we have more

than 3 match fields, I3 is the best implementation in term of

the flexibility for adding or changing application behaviour.

Table III present a comparison between the different design

choices. As show in the table, I0 is the most flexible imple-

mentation in term of adding entries for a single flow since

it required just 3 entries. But for applications, I0 might not

be a good idea especially if the application uses several match

fields. In this case, I3 shown in figure 3(d) is the best one since

we can reserve a stage for application. Indeed, the first stage

indicates the types of the application (we can have several

applications running in the same switch) while the following

stages are for the processing of each application. Also, since

we do not parse the whole packet to extract the OpenFlow 1.1

14 tuples, I3 can achieve a good performance comparing to

the other implementations.

B. Performance

Table IV shows performance results (i.e packet processing

time in EZchip clock cycles) of the Openflow 1.1 Switch Im-

plementations I0 and I1 assuming that there is no bottleneck

in the lookup level or memory access problems. The best case

measurement is based on unresolved packets, and the worst

case is calculated based on packets that requires VLAN and

IPv4 routing processing. Note that the EZchip NP-4 system

clock is 400MHz and therefore each clock cycle takes 2.5ns.

Take also into account that the EZchip NP-4 embed 32 parallel

engines at each TOP level.

Memory Type Update Time (1 entry)

TCAM 450us
Hash Table 875us
Total:I0 2.2ms
Total:I1 3.5ms
Total:I2 6.17ms

TABLE I
TIME FOR ADDING ENTRIES

Implementation Update Time

I0 8 655ms
I1 726.2ms
I2 (N=2) 726.2ms

TABLE II
TIME FOR ADDING ENTRIES FOR ROUTING APPLICATION

VI. CONCLUSION

In this short paper, we present our working version of

Openflow 1.1 multiple tables pipelining over 100Gbps hybrid

I0 I1 I2 I3

Entries flexibility 1 2 3 1-3
Add new applications 3-4 3 2 1
Change Applications Behavior 1-3 2-4 3 1
Memory complexity 3 2 1 1-2
Lookup performance 1-2 2-3 3-4 1
Memory consumption 4-5 4 3 1
Memory adjustment 3 2 1 1

TABLE III
COMPARING DESIGN CHOICES (1:GOOD, ..., 5:BAD)

I0 I1

Clock cycles in best case 224 291
Clock cycles in worst case 378 399

TABLE IV
IMPLEMENTATION I0 AND I1 PERFORMANCES

network processors. We describe several designs of chaining

these pipelined lookup tables and mapping them to different

types of memories, essentially TCAMs and SRAMs.

Depending on network application requirements in terms

of lookup performance vs. update flexibility tradeoff, a de-

sign can be more suitable than the other. Therefore, the

identified designs are qualitatively compared based on these

requirements. We also present preliminary results regarding

the update time as a flexiblity measure and the micro-codes

clock cycles as a processing performance measure. As a future

work, we planned exhaustive performance evaluation of our

implementations at line rate speeds using IXIA hardware

traffic generator.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] M. Yu, J. Rexford, M. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” in Proceedings of the ACM SIGCOMM 2010

conference on SIGCOMM. ACM, 2010, pp. 351–362.
[3] J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. Curtis, and

S. Banerjee, “Devoflow: Cost-effective flow management for high per-
formance enterprise networks,” 2010.

[4] P. Gupta and N. McKeown, “Algorithms for packet classification,”
Network, IEEE, vol. 15, no. 2, pp. 24–32, 2001.

[5] “Openflow switch specification version 1.1.0 - draft 4,” Feb 2011.
[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: towards an operating system for networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[7] E. Technologies, “NP-4 100-Gigabit Network Processor for Carrier
Ethernet Applications Product Brief,” Tech. Rep., 2011.

[8] O. El Ferkouss, R. Matela, S. Correia, B. Boughzala, Y. Lemieux,
R. Ben Ali, M. Tatipamula, M. Lemay, O. Cherkaoui, “A 100
Gbps Openflow 1.1 Switch,” Tech. Rep., 2011. [Online]. Available:
http://groups.geni.net/geni/attachment/wiki/GEC10DemoSummary/UQAM-
Openflow-Genidemo-Poster V 1.0.pdf

[9] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
in Proceedings of the conference on Applications, technologies, archi-

tectures, and protocols for computer communication. ACM, 1999, pp.
147–160.

[10] G. Watson, N. McKeown, and M. Casado, “Netfpga: A tool for network
research and education,” in Workshop on Architecture Research using

FPGA Platforms. Citeseer, 2006.


