
Increasing Data Center Network Visibility
with Cisco NetFlow-Lite

Luca Deri
ntop, IIT-CNR

Pisa, Italy
deri@ntop.org

Ellie Chou, Zach Cherian, Kedar Karmarkar
Cisco Systems

San Jose, CA, USA
{wjchou, zcherian, kedark}@cisco.com

Mike Patterson
Plixer Inc

Sanford, ME, USA
mike@plixer.com

Abstract— NetFlow is the de-facto protocol used to collect IP
traffic information by categorizing packets in flows and obtain
important flow information, such as IP address, TCP/UDP ports,
byte counts. With information obtained from NetFlow, IT
managers can gain insights into the activities in the network.
NetFlow has become a key tool for network troubleshooting,
capacity planning, and anomaly detection. Due to its nature to
examine every packet, NetFlow is often implemented on
expensive custom ASIC or else suffer major performance hit
for packet forwarding, thus limit the adoption. NetFlow-Lite
bridges the gap as a lower-cost solution, providing the network
visibility similar to those delivered by NetFlow.

This paper describes the architecture and implementation of
NetFlow-Lite, and how it integrates with nProbe to provide a
scalable and easy-to-adopt solution. The validation phase carried
on Catalyst 4948E switches has demonstrated that NetFlow-Lite
can efficiently monitor high-speed networks and deliver results
similar to those provided by NetFlow with satisfactory accuracy.

Keywords-component; Passive traffic monitoring, NetFlow-
Lite.

I. INTRODUCTION AND MOTIVATION

NetFlow [1] and IPFIX are two popular traffic monitoring
protocols that allow to classify traffic in flows. Within this
context, a flow is defined [2] as a set of IP packets passing
through an observation point during a certain time interval.
Packets belonging to a flow have a set of common header
properties including IP/port source/destination, VLAN,
application protocol and TOS (Type of Service). In both
NetFlow and IPFIX the flow probe, responsible for
aggregating packets into flows, is usually embedded into the
networks device where flows the traffic to be analyzed.
When traffic analysis capabilities are missing from the
network devices, it is also possible to export packets (e.g.
using a span port or a network tap) from the network device to
a PC and run let them be analyzed by a software probe
running on PCs [4] [5].

When flows are expired, either due to timeout or maximum
duration, they are exported out of the device to a flow
collector via UDP/SCTP formatted in NetFlow/IPFIX format.
The flow collector usually runs on a PC, and it often dumps
flows on a database after flow filtering and aggregation.
Unlike SNMP [3], NetFlow/IPFIX are based on the push

paradigm where the probe sends flows to the collector, without
allowing the collector to periodically read flows from the
probe.

As flows are computed on IP packets, thus limiting NetFlow/
IPFIX visibility to the IP protocol. Although flow-based
analysis is quite accurate, it is relatively heavy for the probe as
every packet need to be decoded and also because the number
of active flows increases with the traffic rate. In order to cope
with high-speed traffic analysis while preventing NetFlow/
IPFIX to take over all the available resources on the
monitoring device, often sampling techniques are used [10].
Sampling can both happen at packet [6] and flow [7] level. In
the former case reducing the amount of traffic to be analyzed
also reduces the load on the probe, but often not the number of
flows being computed; in the latter case, reducing the number
of exported flows decreases the load on the collector with little
relief on the probe side. Unfortunately the use of sampling
leads to inaccuracy [8] [9], and thus network operators prefer
to avoid it if possible.

Although on layer-three routers the use of sampling is not
desirable, monitoring high-speed switches without sampling is
not really feasible. This is because the total aggregate port
traffic can very well exceed 100 Gbit (if not 1 Tbit), thus
either monitoring is restricted to a limited set of ports or some
packet sampling techniques have to be used. Furthermore it is
a common misconception that sampling reduces accuracy of
measurements [11].

Motivation

In today’s complex network environment, applications with
diverse purposes converge on common network infrastructure,
users from different geographic locations connect to the same
physical network through different methods. As a result of
that, having the visibility into the network activities and
application traffic is critical to many IT managers.

For years people have been using NetFlow to gain insight into
the network traffic. However, NetFlow is not always an
available option. In some places in network, the networking
gear is often not equipped with such capability due to the
architecture design and cost structure to fit into that specific
market, for example data center ToR switches.

Flexible NetFlow is an evolution of NetFlow. It utilizes the
extensible format of NetFlow version 9 or IPFIX and has the

ability to export not only the key fields seen in traditional
NetFlow, but also the new fields such as packet section.
Flexible NetFlow also introduces the concept of immediate
cache which allows immediate export of flow information
without hosting a local cache. NetFlow-lite [13] is built upon
the flexibility of Flexible NetFlow, with the combination of
packet sampling, to offer the visibility similar to those
delivered by NetFlow at a lower price point, without the use of
expensive customer ASIC while maintaining the packet
forwarding performance.

Due to the pervasiveness of NetFlow in many parts of the
network, the solution also needs to be designed to integrate
easily with existing infrastructure that is already monitoring
through NetFlow. In addition, the solution needs to be scalable
in order to accommodate the rapid growth of today’s network,
especially in mega-scale data centers (MSDCs), where
thousands of servers are connected to provide the application
services to scale to the business needs. One challenge that
arises when monitoring networking devices with a centralized
collector/analyzer is the extra amount of traffic it generates
and traverses through the network. Not only does valuable
bandwidth being taken up, but also the centralized collector
might not be able to scale up to meet the demands.

This is where the NetFlow-lite converter, such as nProbe, fits
in. It bridges the world between NetFlow-lite and NetFlow. It
parses the packet section exported through NetFlow version 9
or IPFIX format, extracts key information such as src/dst IP
address, TCP/UDP port, packet length, etc., it constructs
temporary flow cache, extrapolate flow statistics by
correlating sampling rate w/ sampled packets, exports
aggregated and extrapolated data to NetFlow collectors in
standard IPFIX or NetFlow v5/v9 format. With this solution,
the valuable forwarding bandwidth is conserved by
aggregating NetFlow-lite data to more bandwidth efficient
NetFlow export

In a nutshell, NetFlow-Lite is a technology that provides
visibility in the data center as it enables network
administrators to:

• Know what applications are consuming bandwidth,
who is using them, when they are being used, what
activities are prevalent.

• Have visibility and control of the network.
• Gather data for network and capacity planning.
• Troubleshoot issues.
• Implement network forensics.

The rest of the paper is organized as follows. Section two
describes the NetFlow-Lite architecture and flow format.
Section three covers NetFlow-Lite implementation both on the
switch and collector side. Section four describes how the
implementation has been validated against real traffic. Finally
open issues and future work are described on section five.

II. NETFLOW-LITE

In essence, the NetFlow-lite solution consists of three
elements:

• The switches that supports NetFlow-lite functionality
and churn out NetFlow-lite data.

• The converter that aggregates the data into format
understandable by NetFlow collectors in today’s
market place

• The NetFlow collector that collects and analyzes not
only information originated through NetFlow-lite, but
also NetFlow data gathered from different parts of the
network, all through standard IPFIX format (or
NetFlow version 9).

The converter implements the flow cache by populating it
using the sample packets stored on the received flows, and not
doing a simple 1:1 flow format conversion. It then exports the
flows in standard NetFlow V5/V9/IPFIX to a standard
NetFlow collector. In a nutshell, the NetFlow-Lite converter
acts as a flow collector with respect to the switch as it collects
NetFlow-Lite flows, and as a probe for the flow collector.

NetFlow-Lite -> NetFlow/IPFIX
Converter

Standard NetFlow/IPFIX Collector

NetFlow-Lite Switch

IPFIX/V9 NetFlow-Lite

IPFIX/V9 /V5

Figure 1. NetFlow-Lite Architecture

In order to preserve bandwidth usage for links on the path
between the switches and the converter, an option is being
provided to specify the number of bytes in the raw packet
section that will be included in the export packet. In addition,
it is preferable that the converter is located near the switch in
order to avoid taking up extra forwarding bandwidth.

Netflow-Lite
Converter

Any NetFlow
Collector

NetFlow v9 or
 IPFIX ExportNetflow-Lite 1:N

Packet Sampling

Figure 2. NetFlow-Lite Enabled Data Center Architecture

The figure above shows a NetFlow-lite enabled data center
architecture, where NetFlow-lite samples incoming traffic on
the TOR (top of rack) switches. The converter sits between
NetFlow-lite capable switches and NetFlow collectors,

extracting the information from the raw packet section, such
as IP address, TCP/UDP ports, etc. and aggregate them into a
local flow cache. The flow cache can be exported to any
existing NetFlow collector for analysis and correlating.

With larger data center, a zonal design is recommended. In
that case, a converter is placed per “zone” to be responsible
for aggregating and converting NetFlow-lite packets within
the zone. Converters from different zones can be feeding the
aggregated NetFlow data into a centralized NetFlow collector
in order to achieve a data center-wide network visibility.

Flow Format
A switch with Netflow-lite functionality observes ingress
traffic and sample packets at 1-in-N rate at the monitoring
point, for example, an interface on the switch. The sampled
packets are exported in standard NetFlow version 9 or IPFIX
format. IPFIX and NetFlow version 9 differs from previous
version in that it is template-based. Template allows the design
of extensible record format.

It consists of:
• Template FlowSet: a collection of one or more

template records that have been grouped together in an
export packet.

• Template record used to define the format of
subsequent data records that may be received in
current or future export packets. It is important to note
that a template record within an export packet does not
necessarily indicate the format of data records within
that same packet. A collector application must cache
any template records received, and then parse any data
records it encounters by locating the appropriate
template record within the cache.

• Data FlowSet: a collection of one or more data records
that have been grouped together in an export packet.

• Data record: it provides information about an IP flow
that exists on the device that produced an export
packet. Each group of data records (that is, each data
FlowSet) references a previously transmitted template
ID, which can be used to parse the data contained
within the records.

• Options template: a special type of template record
used to communicate the format of data related to the
NetFlow process.

• Options data record: a special type of data record
(based on an options template) with a reserved
template ID that provides information about the
NetFlow process itself.

One of the capabilities of this extensible design is to allow the
export of raw packet sections in the Data Record, which
facilitates the export of NetFlow-lite sampled packets.

NetFlow-Lite enabled switches exports three different
templates that contain:

• Data template that describes the structure of sampled
packet export by the switch.

• Options template that describes the structure of
sampler configuration data.

• Options template that describes the structure of
interface index mapping data.

The options template describing the sampler configuration
essentially exports the structure of the following pieces of
information:

• An identifier for a given sampler configuration.
• The type of packet sampling algorithm that is

employed (currently 1-in-N packet sampling).
• The length of the packet section extracted from the

input sampled packet.
• The offset in the input sampled packet from where the

packet section is extracted.

Templates are exported by default every 30 minutes, and they
can be packed into a single export packet for reducing the
number of transmitted packets.

L2 Header L3 Header UDP Header Sampled Flow Datagram

42 Bytes (IPv4) / 62 Bytes (IPv6) 84 Bytes + Truncated Sample

Figure 3. NetFlow-Lite Sampled Flow Datagram

From the flow format point of view, NetFlow-Lite flows are
standard V9/IPFIX flows defined using a template. they
contain packet section and other sampling parameters, but not
the traditional fields such as source/destination IP address. In
order to bridge between NetFlow-lite and NetFlow, and
integrate NetFlow-lite into existing NetFlow solution, a
converter is necessary in order to convert the information
contained inside packet section, such as source/destination IP,
TCP port, etc., into format understandable by the NetFlow
collector on the market today.

NetFlow-Lite switches can adapt the sampling rate according
to the switch port. This means that network managers can
provide precise monitoring of selected switch ports by
disabling sampling (i.e. 1-to-1 sampling rate), while using a
higher sampling rate for all remaining ports. The use of the
standard V9/IPFIX format prevents NetFlow-Lite converters
to support a custom export protocol, while allowing them to
be deployed anywhere in the network as long as they are
reachable via IP. Another advantage is that future changes and
extensions to the flow format, do not require changes on the
collector as new fields can be accommodated into the exported
flows simply my defining them into the exported template.

Flow conversion is transparent to existing NetFlow/IPFIX
collectors and back-end tools. The use of sampling allows
NetFlow-Lite to scale both in terms of number of ports and
packets being monitored. Sampling rate can be adapted
according to various parameters such as the total number of
packets that are collected by a converter and also the number
of switch exporters per converter.

III. IMPLEMENTATION

Due to its probe/converter architecture, supporting NetFlow-
Lite has required both to enhance the switch and create the
converter. No changes have been necessary on the collector
side, as the converter emits standard flows in v5, v9 and
IPFIX format.

Switch Implementation
On Cisco Catalyst 4948E switch, the sampling rate at which
input packets are sampled is based on user configuration. The
switch supports extremely (low) good sampling rate which
allows for high quality of traffic monitoring. The sampling
and export are both done in hardware, which does not put
heavy load on control plane. Each sampled packet is exported
as a separate NetFlow data record in NetFlow v9 or IPFIX
format.

The switch implements a relatively inexpensive and not so
stateful way of doing packet sampling and netflow export in
hardware. The switch makes copies of the packets coming in
and being forwarded through the switch, using appropriate
rules in the classification engine that identify packets coming
from monitored interfaces. The original packet undergoes
normal forwarding and switching treatment through the
device. The copies undergo a two-level sampling process.

At the first level, the copies of packets from various monitored
interfaces are generated and sent to a transmit queue where a
credit rate limiting scheme is applied. This credit rate
mechanism is called DBL (Dynamic Buffer Limiting) and is
proprietary to the Cisco Catalyst switches. DBL is used as an
active queue management mechanism normally on the switch
but in this case it is ingeniously being used for first level
selection of sampled packets.

DBL credits are applied to a monitor and refreshed in a time
based fashion that allows enqueue of packets to the transmit
queue such that there are enough packets from a monitored
interface to match the user configured sampling rate.
Whenever a packet from a monitor is enqueued to the transmit
queue, the credits for that monitor get decremented. The credit
lookup is done through a hashing scheme that can take as
input various packet fields and input port. This effectively
provides the ability to sample packets as if on the input before
packets from various monitors aggregate into the transmit
queue.

The DBL credits and refresh frequency take into account the
average packet size observed at a given monitor. Users may
override the observed average packet size at a monitor and
configure an average packet size for a monitor via CLI. The
system will then use that average packet size in computing
credits for traffic seen by that monitor.

Traffic flows from each monitor are isolated from traffic on
other monitors because the DBL hash key masks are based
only on the incoming interface or VLAN ID for port and vlan
monitors respectively.

From the transmit queue the sampled packets are fed to a
FPGA which does final sampling for packets from each
monitor to eliminate extra samples. They are then exported in
NetFlow version 9 or IPFIX format, assisted by the FPGA.

The combination of high sampling rate and user-configurable
options provide a highly accurate sampling for NetFlow-lite.
The hardware-assisted sampling and export offer a scalable
solution with minimal impact to the control plane.

NetFlow-Lite Converter Implementation
The NetFlow-Lite converter has been implemented as an
extension to nProbe [4], an open-source NetFlow/IPFIX
probe/collector developed by one of the authors available for
both Unix and Windows systems. As stated before, the flows
emitted by the switch to the exporter are following the v9/
IPFIX guidelines thus from the flow format point of view no
changes have been necessary. The main changes in nProbe
have been:

• Ability to interpret the received NetFlow-lite flows.
• Extract the packet samples.
• Use samples to populate the flow cache.

In addition to packet samples, the flows emitted by the switch
contain additional information that is necessary to properly
support NetFlow-Lite, including:

• The sampler named and id (configured into the
switch)that has sampled the packet.

• The sampling algorithm and size of the sampling pool,
used by the sampler.

• The original packet length before cutting it to the
specified snaplen.

• The packet offset of the received sample, as the switch
can be configured to emit sampled packet starting from
a specific offset (the default is 0) after the ethernet
header.

• The switch interface on which the packet has been
sampled.

Switch samplers are responsible to select packet to sample. A
switch can define many samplers, and thus each switch port
can potentially have a specific sampler. This allows for
instance to have a per-port sampling rate, but it requires the
converter to store this information as the received samples
need to be scaled based on the sampler that has emitted them.

In order to enhance the exporter performance, it is possible to
configure the switch to send flows to a pool of UDP ports and
not to a single one. The switch sends the flow templates to the
first port of the pool, and flow samples to the remaining port.
Currently the destination ports are selected in round-robin in
order to balance the load on the collector side.

NetFlow-Lite Switch

NetFlow-Lite
Converter

UDP Ports

1 / 10 Gbit

Figure 4. NetFlow-Lite Collection

This has been an important change as it has allowed the
converter to boost its performance. In fact, NetFlow collectors
usually are designed to handle a limited number of flows per
second [14] that are often dumped to persistent storage after
filtering and aggregation. In the case of the NetFlow-Lite
converter the number of received flows can be very high and
exceeds the rate of 1 million flows/sec, whereas a high-end
NetFlow collector can very seldom handle sustain rate of a
couple of hundred flows/sec. The number of collected flows
can be quite high if the switch is configured with a 1:1
sampler on a high-traffic port. Unfortunately as all the
templates are send to a single UDP port, it is not possible to
spawn multiple independent converters, one per UDP port, so
that they could each analyze a portion of the traffic.
Furthermore as the switch is selecting destination ports in
round robin, it can happen that two sampled packets belonging
to the same flow are sent to different UDP ports. The use of 16
multiple collection ports has allowed nProbe to successfully
collect and convert up ~500K flows/sec per switch with a
single threaded instance. Unfortunately this performance has
been enough and thus a different solution had to be developed.

Leveraging on the experience of the PF_RING project [15], in
order to further boost converter performance, we decided to
exploit multi-core computer architectures by developing a
kernel module for expedite operations. The idea is to perform
in-kernel NetFlow-Lite collection driven by the user-space
nProbe converter.

nProbe

RSS (Resource Side Scaling)
[Hardware per-flow Balancing]

10 Gbit NIC (Intel 82599)

Userland

Kernel

PF
_R

IN
G

-a
w

ar
e

D
riv

er PF_RING

RX
Queue

RX
Queue

RX
Queue

RX
Queue NetFlow-Lite

PF_RING
Plugin

Figure 5. NetFlow-Lite PF_RING Plugin

nProbe sets a PF_RING kernel filter for the IPv4/v6 UDP
ports on which flows will be received, that instructs PF_RING
to divert such packets to the kernel plugin without letting them
continue its journey to user-space. The PF_RING kernel
plugin implements flow collection by maintaining information
about the received templates in kernel memory. Sampled
packets are extracted from flows and sent to nProbe via a
PF_RING socket. Along with the packet header and
timestamp, PF_RING adds some metadata such as sampling
information and interface Id, that have been extracted from
received flows. Modern multi-queue adapters such as Intel
82599 allow cards to be partitioned into several RX queues,
one per processor core. PF_RING exploits this feature and

capitalizes on it by allowing each queue to work
independently, and poll packet concurrently one per core. By
means of a PF_RING-aware driver that pushes packets to
PF_RING without using Linux kernel queueing mechanisms,
packets are copied from the NIC buffers directly to the
NetFlow-Lite plugin. As there is a single plugin instance,
kernel locking has been carefully avoided when possible, thus
each queue extracts sampled packets without interference from
other queues. The only lock present on the plugin is used
when templates are received and need to be copied in memory.
As this information is shared across all queues, it is necessary
to use a lock in order to avoid that a poller is using a template
while it is updated. Nevertheless as templates are received
very seldom (by default every half an hour) we can assume
that no locking happens. An advantage of this solution, beside
the increased processing speed, is that every PF_RING-aware
network application can use the converted packet samples to
implement monitoring. For instance by means of libpcap-over-
PF_RING, applications such as tcpdump and wireshark can
analyze received packets as if they were captured from a
network interface, this without being aware of having been
received encapsulated in NetFlow-lite flows.

The use of an external server-based converter can be detected
by a flow collector as flows are sent by nProbe and not by the
switch. In order to make NetFlow-Lite totally transparent to
applications, nProbe has implemented automatic packet
spoofing based on the source IP:port on which sampled flows
have been received. Thus converted flows are not sent with the
IP address of the server on which nProbe runs, but with the
original IP:port of the switch that has sent the NetFlow-Lite
flows. This information is propagated by the PF_RING kernel
module to nProbe as part of the metadata information
associated with each packet.

Collector Implementation

The collector receives and stores the NetFlow-Lite datagrams
from the converter. Data is massaged and formatted then made
available to the reporting front end. The reports are in turn
used to optimize network performance. As previously stated,
no change has been necessary to support NetFlow-Lite on the
collector side with respect to standard NetFlow collection.

IV. VALIDATION

In order test and validate the implementation of NetFlow-Lite,
several tests have been performed both in lab and also on real
networks.

Figure 6. NetFlow-Lite Test Lab

Traffic Generator

4948E Switch

nProbe
Converter

NetFlow-Lite Flows

48 x 1 Gbit

Scrutinizer
Collector

10 Gbit

v5/v9 NetFlow
IPFIX1 Gbit

In order to evaluate the switch implementation and the
converter performance, a high-end IXIA traffic generator has
flooded the switch sending traffic at wire-rate with minimum
packet size on all 48 switch ports. The switch has been
configured to send NetFlow-Lite flows to a 8-core Xeon
server running various Linux versions including 64 bit Ubuntu
10.10 and RedHat ES6. On the server the nProbe 6.4.3
exporter was sitting on top of PF_RING 4.6.4 and the
NetFlow-Lite kernel module. The switch has been connected
to the converter on a 10 Gbit Intel 82599-based ethernet
interface. A 10 Gbit interface has been used to both test the
performance of the exporter when sending flows from
multiple switches, and to flood the collector with flows. The
Plixer Scrutinizer 8.5 flow collector has been installed on
another server connected to the network with a 1 Gbit
interface.

The test has confirmed that the sustained conversion rate
sustained per nProbe converter instance has been 500K flows/
sec when receiving flows over UDP, and 1M flows/sec using
the PF_RING kernel module. Converted flows have been sent
to Scrutinizer on various formats including NetFlow v5/v9 and
IPFIX. Various test sessions have confirmed that collector
users are unaware of the NetFlow-Lite to NetFlow/IPFIX
conversion. Please note that on Windows platform nProbe also
features NetFlow-Lite conversion but just over UDP.

A nice feature of the implementation on 4948E is the ability to
specify different sampling rates based on switch ports. This is
useful as network administrators can decide to disable
sampling for those ports where there are critical services, and
increase sampling rate on ports where no accurate monitoring
is needed. In fact the use of sampling prevents nProbe from
being able to report application protocol information including
application and network delay (computed on the 3-way-
handshake packets), and HTTP/VoIP traffic monitoring.

V. OPEN ISSUES AND FUTURE WORK
Although the converter performance is enough for many users,
a future work activity is definitively related to how to improve
this conversion. Currently the switch sends flow to all
configured UDP ports in round-robin. The ethernet interface
hashes flow packets using RSS [16], thus distributing them
based on the destination UDP port and not based on the
sampled packet contained in the received flow. This is not
ideal as in order to keep the NetFlow cache consistent, it is not
possible to enhance the converter performance by spawning
one nProbe instance per RX-queue. This is because RSS does
not guarantees that packet samples belonging to the same flow
will be sent to the same RX queue.

In order to address this issue that limits the converter
performance, we are currently enhancing the PF_RING
NetFlow-Lite plugin so that received samples will be re-
hashed based on the sampled packet and not on RSS. This will
allow one nProbe instance per RX queue to be spawn thus
maximizing performance. Please note that the kernel plugin
keeps track of received templates and thus guarantees flow
conversion consistency also across multiple switches all
sending flows to the same converter server. This performance
enhancement is also compatible whenever configured switch

samplers have a packet offset greater than 0 (i.e. when the
offset is zero the sampled packet contains the whole ethernet
header) but not larger than 14 bytes (i.e. the length of the
ethernet header). This is because the plugin does not hash
samples based on the ethernet header but rather on the IP
header that is also used as flow key inside the converter cache.

VI. FINAL REMARKS
This paper has described the design and implementation of
NetFlow-Lite. By means of it, network administrator can
provide network visibility similar to NetFlow/IPFIX while
maintaining switching performance. The validation phase has
confirmed that the use of a NetFlow-Lite to NetFlow/IPFIX
converter is seamless for the end-user of the flow collector and
that the converter performance is high enough to allow
network administrators to reduce sampling (if any) on switch
ports where critical services are running. The flexibility of
NetFlow-Lite combined with the lack of changes on the
collector side, smooth its adoption and makes it a good
candidate for providing visibility on switched environments.

VII. ACKNOWLEDGMENTS
The authors would like to thank the NetFlow-Lite team and in
particular Manikandan Arumugam for his help and support
throughout the project and testing phase.

[1] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC
3954, October 2004.

[2] B. Claise, Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information, RFC 5101,
January 2008.

[3] J. Case et al, A Simple Network Management Protocol (SNMP), RFC
1157, 1990.

[4] L. Deri, nProbe: an Open Source NetFlow Probe for Gigabit Networks,
Proc. of Terena Network Conference, 2003.

[5] P. Lucente, pmacct: Steps Forward Interface Counters, Technical Report,
2008.

[6] T. Zseby and others, Sampling and Filtering Techniques for IP Packet
Selection, RFC 5475, March 2009.

[7] N. Duffield, Flow Sampling Under Hard Resource Constraints, Proc. of
SIGMETRICS ’04, 2004.

[8] B. Choi and S. Bhattacharyya, On the Accuracy and Overhead of Cisco
Sampled NetFlow, Proc. of ACM SIGMETRICS ’05, 2005.

[9] R. Sommer and A. Feldman. NetFlow: Information Loss or Win, Proc.
of ACM SIGCOMM Internet Measurement Workshop, 2002.

[10] J. Clearly et al., Design Principles for Accurate Passive Measurement,
Proc. of PAM Conference, 2000.

[11] J. Jedwab et al., Traffic Estimation for the Largest Sources on a Network
Using Packet Sampling with Limited Storage, HP Labs, 1992.

[12] K. McCloghrie and M. Rose, Management Information Base for
Network Management of TCP/IP-based internets: MIB-II, RFC 1213,
1991.

[13] Cisco Systems, Configuring NetFlow-Lite Software Configuration
Guide, Release 15.0, May 2011.

[14] Y. Fragiadakis et al., User and Test Report of the NetFlow Collector,
Geant II Project, 2009.

[15] L. Deri, Improving Passive Packet Capture: Beyond Device Polling,
Proc. of SANE ’04, 2004.

[16] Microsoft, Scalable Networking: Eliminating the Receive Processing
Bottleneck — Introducing RSS, WinHEC (Windows Hardware
Engineering Conference) 2004.

