
Performance Management and Quantitative

Modeling of IT Service Processes Using Mashup

Patterns

Carlos Raniery P. dos Santos,

Lisandro Zambenedetti Granville

Institute of Informatics - UFRGS

Porto Alegre, RS, Brazil

Email: {crpsantos, granville}@inf.ufrgs.br

Winnie Cheng, David Loewenstern,

Larisa Shwartz, Nikos Anerousis

IBM Watson Research

Hawthorne, NY 10532, USA

Email: {wcheng, davidloe, lshwart, nikos}@us.ibm.com

Abstract—IT Service Management (ITSM) encompasses the
practices for managing information technology systems. ITSM
processes can be laden with segments where the human becomes a
bottleneck and slows down the entire process. These inefficiencies
are usually caused by insufficient design of the process itself, or
defects in the tools being used. Our work provides a systematic
framework for analyzing inefficiencies through a combined model
to guide the use and estimate the value of improving orchestration
of the process using mashup design patterns.

I. INTRODUCTION

IT Service Management (ITSM) encompasses the practices

for managing information technology systems. A significant

body of work in this field addresses the issue of quality, i.e., the

frameworks, processes and metrics that measure effectiveness

from the point of view of the receiver of such services. In this

paper we study the service provider’s perspective, particularly

aspects of performance that have direct implications on the

efficiency and cost of the operation from the provider’s point

of view.

In ITSM, a very large percentage of the work is performed

by humans, rather than machines. Due to its unpredictable

nature, human behavior and performance are much harder to

model, and consequently, to optimize. Consider the example

of a modern data network that receives packets at an entry

point and needs to transfer them to a destination. The data

packet in its path will be processed by a variety of system

elements, each programmed to perform a specific task with

a high amount of accuracy and predictability. The number

of events (exceptions) that can interrupt a normal processing

path can be large, but are always finite, and in many cases

can be accounted for in the design itself through redundancy

and error handling programs. By contrast, consider a service

management operation organized according to the Informa-

tion Technology Infrastructure Library (ITIL) standards. The

presence of humans in the critical path for performing work

introduces significant variability in the final outcome. Even

if the nature of work is exactly the same, a human operator

may execute it in a different way each time: she may use a

different process; or different tools; or a different sequence of

steps; or be interrupted a number of times by external factors

such as a telephone call or email. Enforcing and obtaining

tight performance bounds in a human-staffed organization is

far more difficult than in a process executed by a machine.

The competitive nature of IT service provider organizations

calls for a continuous improvement process: IT operators need

to find ways to increase performance in terms of effectiveness,

productivity and quality. We focus on productivity and define

it as units of work performed per unit of time; but even with

rigorous definitions, performance can be evaluated in many

ways and at different levels of granularity. In this paper, we

attempt to provide a comprehensive model for evaluating and

optimizing productivity in human-centered ITSM processes.

In our analysis we do not address exogenous events, such

as answering telephone calls or other interruptions. Rather,

we focus on individual steps in the process that can be

measured through instrumentation or observation, and can be

improved through design and automation. In particular, we

study the request fulfillment process, one of the operational

service management processes defined by ITIL. The analysis

covers the steps that a human follows to execute the process,

and identifies the areas where productivity improvement is

possible. As we will see in the next section, ITSM processes

can be laden with segments of the process where the human

becomes a bottleneck and slows down the entire process.

These inefficiencies are usually caused by insufficient design

of the process itself, or defects in the tools being used.

Our work provides a systematic framework for analyzing

inefficiencies, and addressing them through a set of design

patterns that ultimately provide a significantly improved or-

chestration of the process. Again, our framework does not

address the rather unpredictable and chaotic nature of external

events that affect human behavior. After all, we cannot control

when humans decide to interrupt or slow down the process

– but we can measure and control the environment where

productivity is limited due to lack of tools or inefficient

orchestration.

The paper is organized as follows: in Section II, we discuss

the technical background related to this paper. Section III

defines inefficiencies in the ITSM context and proposes a

model for measuring them. Section IV introduces the concept

of mashup patterns as an effective approach for eliminating

inefficiencies in an ITSM process. Section V demonstrates

the application of the proposed methodology on the request

fulfillment process and presents results of our case study. The

paper concludes in Section VI with a brief summary of our

findings and an outline of future work.

II. BACKGROUND

A. Mashups

Mashups are Web applications created through the compo-

sition of pre-existing Web resources (e.g., interactive maps,

Web services, traditional HTML pages, or even Flash presen-

tations) [1]. A key difference between mashups and traditional

composition technologies like BPEL [2] and WSCI [3] is that

mashups have the explicit goal of enabling users with limited

or no programming skills to create their own tailored Web

applications; traditional technologies, in turn, usually demand

from developers a significant knowledge of programming

languages, communication methods, and service description.

Because mashups can be quickly created, they present the ad-

ditional benefit of being appropriate for composing situational

applications, i.e., applications that tackle very particular, short-

lived problems and so would be otherwise expensive to be

coded by specialized personnel.

Mashups are composed through the use of basic operators.

These operators hide from mashup end users how the original

Web resources are orchestrated, so that users are exposed to the

resulting mashup without being aware of the internal details

of the composition. The coupling of such mashup operators

can be guided in several ways [4]. Using metadata available in

the operator’s definition, the mashup system engine can select

default bindings between the operators that are being used

during the composition step. Compatibility rules and quality

criteria can be used to suggest the most appropriate operators

for a given one. In [5], we have defined the architectural

components employed in this paper, and presented different

categories of mashup basic operators, listed below.

• Visual operators deal with the visual presentation of

relevant information through, for example, tables, graphs,

and maps;

• Control operators relate to basic programming logics

including loops and conditions;

• Transform operators manipulate data employing, for

example, sorting and filtering;

• Adaptation operators translate original data from Web

resources into formats more easily handled inside

mashups;

• Input operators allow end users to feed mashups with

their particular information, for example, through text

fields in Web forms or by uploading files;

• Execute operators trigger the asynchronous background

execution of actions without the explicit request of the

end user, which is typical in background monitoring

systems and similar applications;

• Reuse operators allow users to extend the available

mashups to build more sophisticated compositions.

By using mashup basic operators, a user is able to specify

mashups for a variety of different purposes. Where several

problems share similar structure, however, it is often conve-

nient to consider the employment of mashup patterns [6],

where mashups with similar logic can be instantiated even

more quickly from the same common pattern. In addition, be-

cause patterns enable previously proven mashups to be reused

in new scenarios, mashups patterns provide an additional level

of stability. Considering these benefits, in Section IV a set of

patterns will be defined to tackle the inefficiencies discussed

in Section III. In Section IV, we also present a quantitative

evaluation of the potential impact of employing such patterns

in ITSM using a combined model created based on the further-

coming ones.

B. Quantitative Modeling for Performance Assessment

Despite its importance, by design ITIL only provides high-

level generic guidelines to IT organizations, without propos-

ing, for example, concrete models and methods for capturing

metrics and evaluating the quality of IT processes. Such

evaluation is important for the IT service providers to quantify,

measure, and most importantly to predict the deployment

impact of IT solutions. The scientific community has worked

to propose models, methodologies, and metrics to fill this

gap. We present two of such models bellow, and then, in the

next section, we propose a combined model to account for

inefficiencies throughout the IT process.

1) Keystroke-Level Model: The Keystroke-Level Model

(KLM) was proposed to predict the time an expert user takes

to perform a given task on a given computer system [7] [8].

It is based on the sequence of keystroke-level actions the user

must perform to accomplish a task. This sequence is taken

from a set of gestures, presented in Table I, where the total

task execution time is the sum of the time for each of the

gestures in the sequence. The model also provides the average

time for each gesture as presented below.

TABLE I
KEYSTROKE-LEVEL MODEL

Gesture Time

K Keying 0.2 sec

B Holding/Releasing key 0.1 sec

P Pointing 1.1 sec

H Homing 0.4 sec

M Mentally Preparing 1.35 sec

As an example of the use of KLM to predict interaction

time, we can consider the following scenario: a file deletion

by a human operator. In this simple case, we consider that the

procedure is to drag the file icon to the trash can icon. For

this, the action sequence can be represented as follows:

1) Initiate the deletion (decide to do the task) M

2) Point to file icon P

3) Press and hold mouse button B

4) Drag file icon to trash can icon P

5) Release mouse button B

Ttotal = 2P+2B+M = 2∗1.1+2∗0.1+1.35 = 3.75 sec (1)

2) Complexity Model: Brown and Hellerstein [9] intro-

duced a methodology for quantitative benchmarking of con-

figuration complexity of initial system setup, which has been

extended in subsequent works. Brown et al. [10] proposed

a model of configuration activity based on three concepts:

configuration goals, procedures and actions. This model, along

with the earlier methodology, allows an analyst to measure

the complexity of different systems through proposed metrics

classified into: execution, parameter, and memory complex-

ities. Further, Diao et al. [11] extend these techniques to

propose new complexity metrics and measure business-level

performance indicators (e.g., labor cost, productivity, quality).

Finally, Diao and Keller [12] extended the metrics proposed

in [10] to quantify the complexity of overall IT processes.

The approach used by Diao et al. can be summarized in

three steps: assessing the complexity and timing a baseline sce-

nario, construction of the regression model and evaluation of

the model quality, and finally employing the model to predict

labor costs, such as time. The relationship between time and

complexity metrics are investigated using the multiple linear

regression technique, with equation presented below:

y = β0 + β1x1 + β2x2 + ... + βnxn (2)

In this equation, the xirepresent the IT management com-

plexity metrics, and the least squares approach is employed to

discover the βi value. Further explanation of this methodology

is beyond the scope of this paper and can be found in [11].

A simpler version of this model is presented in [13]. In this

version, the complexity metrics are grouped by subtask, and

the coefficients of Equation 2 are assumed to be proportional

to the time spent on each subtask and equally weighted among

metrics associated with the same subtask. This simplifies the

model to the point that it can be applied with nearly the same

ease and generality as the KLM model of the previous section,

but addressing a much larger array of metrics. This work also

extended the model to cover more complex processes which

include forks, merges, and joins.

III. IDENTIFYING INEFFICIENCIES IN SERVICE

MANAGEMENT PROCESSES

Inefficiencies are portions of a service management pro-

cess characterized by suboptimal execution of activities. In

this paper, we concentrate on inefficiencies characterized as

segments of the process where suboptimal human productivity

reduces overall throughput for the process. Inefficiencies can

appear at fundamentally different levels of analysis. For the

purpose of analyzing inefficiencies within ITSM we focus on

two levels: higher level inefficiencies due to the complexity

of the activity itself, and lower level inefficiencies due to the

mechanical execution involved in performing the activity. As

an example of a potential complexity inefficiency, in a process

with many decision points, the operator needs to spend time

determining the correct choice. In ITSM the lower level takes

into consideration the interaction of human operators with

the available software tools. For example, a web application

created with poor usability can impose a significant amount of

wasted time for the operator due to added mouse-clicks and

keystrokes required to retrieve, create or update information.

In order to discover common inefficiencies, we initially

collected descriptions of the tasks performed by a group of

operators involved in a common activity, as will be discussed

in more detail in Section V. Based on such descriptions, we

recreated their processes in a form of sequence of tasks (i.e.,

workflows), which were later validated by the operators. We

then drilled down on these workflows to subtasks representing

individual actions performed by the operators when interacting

with the systems. With this detailed process, we could analyze

both levels of inefficiencies. The non-exhaustive list below

represents several types of inefficiencies we have found during

our investigations:

Basic Inefficiencies

• Context-Switching: the operator needs to switch to

different application from the one he/she is currently

working on;

• Locating Data: after reaching the place where the infor-

mation is available, the operator needs to search for the

specific data across the screen;

• Entering Data: the operator has to input data manually

in the screen he/she is working on;

Information Management Inefficiencies

• Copy/Paste: manual copying of data from one system to

another;

• Consistency checks: the operator needs to guarantee that

information is consistent in different places;

• Information Lookups: navigate between multiple

screens to assemble information;

Skill-dependent Inefficiencies

• Retaining Information: remembering information for a

subsequent step;

• Combining Information: all the data is in one screen

and the operator needs to extract their meaning;

• Data transformation: the data require some simple

manual processing (e.g., reformatting dates to a local

format) when transferring from one screen to another.

Synchronization Inefficiencies

• Contacting a Person: the operator needs to talk to

someone by e-mail, instant messenger or in person;

• Becoming aware: the operator needs to access a tool

repetitively to be aware of new service requests;

We classify the inefficiencies into four categories: basic, in-

formation management, skill-dependent, and synchronization.

The first refers to the most simple and low-level inefficien-

cies, occurring independently from the others. Information-

management inefficiencies are formed by the combination

of several basic inefficiencies. Skill-dependent inefficiencies

relate to the reasoning capabilities or training of the human

operator. Finally, synchronization inefficiencies are those in-

curring delays due to factors such as waiting for an external

input.

The identified inefficiencies can be mitigated by the use of

a new generation of human-centric software tools aimed at

decreasing both the actions required to complete a task and

also the complexity encountered in carrying out the tasks.

A. Combined Model

We combine the models of Section II-B to take advantage

of their relative merits. The KLM model is more widely used,

is well corroborated by experiment (see for example [14])

and provides a wealth of detail at the lower level of human-

computer interactions, while the Complexity model addresses

both levels of inefficiencies. Thus, the presented models are

the current best starting points for creating a new model to

better evaluate the performance of IT processes from a time

productivity perspective. To avoid double-counting, we discard

all the complexity metrics except the memory and decision

metrics, which capture higher level potential inefficiencies not

addressed by KLM.

An analyst constructs the combined model in the following

stages:

1) The analyst works with a domain expert to determine

the tasks and subtasks of the process.

2) The analyst works with a domain expert to determine

the complexity metrics for the Complexity model.

3) The analyst determines the KLM model through obser-

vation of user interactions.

4) The analyst measures the time to perform each subtask.

5) The analyst derives the Complexity model coefficients

from the time measurements using the method of [13].

6) Since β0 of Equation 2 represents the expected time for

all factors not explained by the complexity model, the

time predicted by the KLM model can be subtracted

from it.

The value of the combined model is in allowing us to

predict the expected change in time due to modifications in

the process. If we create a standardized set of modification

templates, we have the potential to search through these

templates to find an optimally modified process, along with

the expected time savings. We have identified a particular set

of modification templates that apply specifically to subtasks

involving interactions with a user interface in processing

information. These mashup patterns form the building blocks

for quantitatively motivated process improvement in human-

computer interactions within ITSM.

IV. MASHUP PATTERNS FOR ITSM INEFFICIENCIES

As previously discussed, IT processes can present inef-

ficiencies at various levels of analysis. Some of these in-

efficiencies are related to the interaction of users with the

available tools, while other issues involve the complexity of

performing a particular activity or providing mechanisms to

decrease the failure risk of a specific action. We argue that

these inefficiencies can be tackled by the adoption of mashups

and, more specifically, by using mashup patterns. The mashup

patterns described below are context-independent and can be

used to address different ITSM scenarios. For each proposed

mashup pattern, we discuss a relevant ITSM problem and the

associated solution that employs that pattern.

Alerter pattern

Problem – In ITSM, it is common to find scenarios where a

user needs to be aware of events in the managed environment.

The simplest method to support this involves periodically

accessing the management system to manually look for new

events. For example, in the service dispatching scenario,

service tickets are created at no specific time, and a dispatcher

responsible for assigning those tickets needs to constantly

access the ticketing system to check for new requests. That

can become a problem if the dispatcher does not access the

system sufficiently often, or if the time spent in unnecessary

repeated accesses degrades the dispatcher’s productivity. It can

be even worse when the amount of monitored information is

very large, or when the dispatcher needs to promptly react to

time-sensitive events.

Solution – Mashups are not restricted to constantly inter-

acting with users to perform some action. A mashup alerter

pattern periodically monitors a system of interest on behalf

of the user and, based on previously established conditions,

sends notifications only when events of interest take place.

For example, alerts can take the form of visual elements on

the user’s console, e-mail messages, or SMS (text) messages.

Another advantage of using an alerter mashup pattern relates

to situations where multiple systems must be monitored at the

same time, eventually overloading the human operator with

too much information. In that case, correlated events from

different systems can be summarized to decrease the number

of notifications. Figure 1-A presents how an alerter pattern can

be created through the combination of mashup basic operators.

External

Resource
Adapter Executer Control Visual(A)

External

Resource A
Adapter Control Adapter

External

System B(B)

External

Resource A
Adapter Control Adapter

External

System B

Transform(C)

External

Resource
Adapter Control Transform Visual(D)

Fig. 1. Examples of mashup patterns. (A) Alerter. (B) Importer. (C)
Transform. (D) Displayer.

Importer pattern

Problem – In ITSM, it is not uncommon to find scenarios

where customers and service providers require the use of

common data, although they use their own, particular database

systems. To maintain data consistency across such systems,

diverse methods can be used. For example, data adapters

can grant one party access to the system of another’s. When

adapters are not available, screen scrapers can be used to

access the Web interface of the remote system and retrieve the

common data. Finally, users can access one another’s system

and manually copy and paste the common data into their

own system’s interface. In all these cases, maintaining data

consistency is not transparent for the users because they need

to consciously switch the integration method when accessing

multiple systems.

Solution – If external resources natively expose an ap-

plication programming interface (API), then leveraging their

information is just a matter of basic software programming.

However, it is often the case that the most valuable content is

locked away in closed or proprietary formats. In these cases,

an importer mashup pattern abstracts the different methods

used to access the external data so that data consistency

maintenance becomes transparent to the user. Figure 1-B

presents how such an importer pattern can be implemented.

Transform pattern

Problem – While interacting with different systems, it is

common to find cases where data needs to undergo some

simple processing while being transferred from one screen

to another. For example, while copying a field, a user needs

to apply rules to filter out confidential information, or the

data needs to be reformatted before it could be used by

a different system (e.g., US and UK date formats). These

data transformations are usually manually performed because

ITSM systems are often created without having integration in

mind.

Solution – During the process of importing data, transform

operators can be inserted into the mashup logic to enable

the processing of certain types of data and thus both ma-

terializing the compatibility between systems and satisfying

the requirements of the IT process. It is thus possible to

reduce the number of manual interventions performed by the

human through the automation of these adaptations. Figure 1-

C highlights some elements to show that they are not required

when transforming external data.

Displayer pattern

Problem – In order to make better decisions, humans

involved in ITSM activities use information from multiple

systems. This information is often memorized or recorded for

future use during the decision making process. For example,

the configuration database process can automatically generate

a port number that needs to be remembered when installing

another application. If the port number is forgotten or misre-

membered, errors in the process may occur.

Solution – By definition, mashups combine data from mul-

tiple sources and present the results of this combination in a

Web page. However, this integration tends to occur only at the

presentation level; it rarely occurs at the data level. This means

that information from multiple systems can be presented

alone in the same Web page as independent widgets. The

employment of many displayer patterns in one page enforces

the concept of a “single pane of glass”. This concept reduces

the risks of having a poorly executed process, which would

generate errors and impose costs to the company. Figure 1-D

presents the operators composing the displayer pattern.

A. Quantitative Perspective

The methodology presented in Section III-A allows us to

estimate time savings for our mashup patterns. By doing this,

we aim to help users to predict the performance improvements

quantitatively before deploying mashups over their current

ITSM processes. We will use the scenario described in the

alerter pattern as an example.

The scenario described in the alerter pattern is a task

composed of several subtasks. The first subtask is for the

operator to notice that it is time to check for new events.

We will label the time spent “becoming aware” of the need to

start the task Ta. Once the operator decides to look for new

requests, the next subtask is to interact with tools to examine

the new events. We will label the time spent on this subtask

Tk. This second subtask can be modeled by KLM, while the

first subtask demands investigation beyond the scope of this

paper. It is important to observe that this scenario does not

include a subtask associated with memory complexity. This

is because the human operator does not need to retain any

information to look for new requests. We consider all requests

to be processed independently of the others. The alerter pattern

can decrease time spent on the task by reducing the awareness

time Ta to zero. Once the requests arise, notifications are

sent to the human operator automatically. In addition, a well-

designed implementation of the alerter pattern could reduce

Tk, for example by allowing the dispatcher to access the ticket

associated with an alert with just one mouse click.

The scenarios where the importer and transformer patterns

can be applied present both kinds of time inefficiencies we

focus on this paper: mechanical execution (Tk) and task

complexity (Tc). Since both operations can be completely

automated by employing mashup patterns, the time reduction

in those scenarios is 100%. The same applies to the displayer

pattern. Since the necessary information to process a request is

provided in one single screen to the human operator, the time

spent looking for the information is decreased to zero and

the time associated with complexity is significantly decreased

due to eliminating the need to remember one specific piece of

information. Table II summarizes the time reduction estimation

for each of the presented patterns.

TABLE II
TIME SAVINGS

Pattern Current New

Alerter Ta + Tk T
′

k
Importer Nfields.(Tk + Tc) 0 sec

Transformer Tk + Tc 0 sec

Displayer Tk + Tc T
′

c

The next section will provide a case study of the application

of the quantitative methodology presented here to an existing

ITSM activity.

V. CASE STUDY

Amalgamation of multiple systems in a single pane of glass

is critical in the area of IT Service Management, in particular

in the area of IT Operations. Our case study considers the

Request Fulfillment process, which is one of the operational

processes in IT Management. Request Fulfillment is the pro-

cess that deals with service requests, and it is defined in ITIL

terminology as “management of customer or user requests that

are not generated as an incident from an unexpected service

delay or disruption.” [15].

Request Fulfillment interfaces primarily with Service Desk

and Incident Management, and supports two functions: it pro-

vides a point of communication for users and serves as a point

of coordination between several groups and activities. In our

study we focus on the latter function of Request Fulfillment.

The process for this case study breaks coordination into two

main activities: support the requests made by the customers,

and solve those requests. Requests are solved by system ad-

ministrators (SAs) with technical knowledge to resolve specific

requests. Requests are supported by human operators, called

dispatchers, with responsibilities that include: monitoring for

new requests, dispatching the requests to the appropriate SA,

and monitoring compliance with Service Level Agreements

(SLAs).

A. Dispatch Process for Service Management

We study the case where the dispatcher has knowledge of

standard fulfillment procedures and responsibility for gener-

ating requests and assigning them to a system administrator

(SA). The Service Desk receives requests and creates a ticket,

which may be any of the following types: incidents, problems

and changes. Tickets are routed to a dispatcher, who is

responsible for analyzing the request and determining the

appropriate SA to assign it to for a resolution. The SA has the

required skills and knowledge to solve specific requests and is

responsible for taking the appropriate actions and closing the

ticket.

Usually, each dispatcher is responsible for a team of system

administrators in a specialized technical background. This

setting has some advantages, providing high-quality and agile

support, and allowing system administrators to work more

efficiently.

Customers create new requests (i.e., tickets) in Service Desk

systems, and include all information used by system adminis-

trators to solve the request. Once the dispatcher receives the

ticket and determines that his team can resolve the ticket, he

would use his knowledge of his team’s schedules and work-

loads as well as the expertise of each system administrator to

finally make the assignment. Figure 2 presents the elements

of this scenario.

Several time-consuming issues can arise in the dispatching

process, making it infeasible to resolve tickets within the

times established in SLAs and therefore resulting in financial

loss to service providers. For example, it is common for

customers and service providers to use their own ticketing

systems, making it necessary to import data and maintain

consistency between the systems. Dispatchers need to deal

with data consistency and redundancy without violating any

customer policies, such as data compliance for dealing with

confidential information. In addition, the dispatcher and his

team of SAs may be responsible for multiple customers, where

each customer has a different ticketing system. This adds

additional overhead in switching between multiple systems.

Finally, information required for finding the most appropriate

SA for one specific ticket could reside in various locations and

require different tools to access it. For example, schedules

tend to be managed by calendar-based systems, while the

SA’s actual workloads would be most accurately represented

in Request Fulfillment systems and finally it is common to

have SA skills associated with their user profile in the service

provider’s directory.

Problem

Ticket

Incident

Ticket

Change

Ticket

Incoming
demand

Segmentation by
complexity

Work group structure based
on ticket complexity

Low-level group

(Simple tickets)

High-level group

(Higher complexity

tickets)

Mid-level

group

(Root

Cause

Analysis,

complex

problems,

etc.)

Dispatcher

Fig. 2. E-Ticketing system to Service Desk

Automated dispatching solutions may be complex due to the

variability of the environment and therefore it is not always

feasible or the best alternative for this scenario. For example,

in some situations a dispatcher may want to train a new

administrator, and so may intentionally assign a request to a

less skilled SA than is available. In this context, mashups are

an interesting technology allowing the creation of dispatching

systems to focus on the process of each dispatcher and helping

him improve the efficiency of the assignment.

B. Performance Footprint

In order to discover bottlenecks in the dispatch process,

we performed a series of time measurements among four

dispatchers in a service delivery center. This information also

allowed us to predict improvements obtained by the usage

of mashups in the existing process. Using a stopwatch, we

took 10 measurements for each assignment process and its

individual tasks. This process is represented in Figure 3 as a

workflow, which was obtained following the methodology in

Section III-A.

The results of the measurements showed a significant

time variation according to the ticket’s complexity and the

dispatcher’s familiarity with the reported issue. For simple

tickets (TS), usually repetitive tasks that the dispatcher is

accustomed to assigning, the time average was 159 seconds

(90% confidence level, 23.65 standard deviation), while for

high complexity tickets (TC) this time was 357 seconds (90%

confidence interval, 41.58 standard deviation). This difference

can be justified by the need to spend more time reasoning

about all the information related to the ticket, and also by the

need to gather and provide detailed information to the system

administrators.

1) Open Ticket

(ETS)

2) Analyses if the

ticket was misrouted

(ETS)

3) Is the ticket

correct?

5) Analyses the skill

level to solve the

ticket

(ETS)

6) Have

enough

resources?

8) Import the ticket

(ETS, ITS)

4) Forwards to other

team

(ETS)

7) Request for more

resources

(e-mail)

9) Searches for the

SA with the right

skills and availability

(ITS)

10) Talk with the SA

(in person)

11) Makes the

assignment

(ETS, ITS)

name, description, severity

workload, skills

Fig. 3. Workflow of activities performed by dispatchers in Service Desk

Looking at the individual tasks, 35 (TS) and 58 (TC)

seconds of the time was spend analyzing if the ticket was

misrouted or not. To accomplish this task, dispatchers need

to look for the right information (e.g., keywords on tickets

description) and decide if their teams have the right knowledge

(e.g., database, Unix) to solve the ticket. We also observed that

most of the time was spend importing manually the tickets.

This task consumed 41% and 50% of time respectively for

simple and complex tickets. Finally, 58 (TS) and 94 (TC)

seconds of the time were spent making the assignment, activity

which involves updating the SA assignment information in

both internal (ITS) and external ticketing systems (ETS).

C. Applying Mashup Patterns

All the proposed patterns can be used to create a mashup-

based solution for the above-mentioned dispatching scenario.

By using them, we aim to improve dispatchers assignment

performance by automating some tasks, and by implementing

the single pane of glass concept. This concept states that all the

necessary information a human operator may need to achieve

a goal should be presented in a single screen with the data

already filtered and transformed.

Figure 4 shows how the proposed patterns relate with

the dispatching tasks. Considering that name, description,

and severity are the basic information from a ticket that a

dispatcher uses most frequently to make the assignments,

the displayer pattern can be used to show all the needed

information in a single screen. This pattern can also be used to

display the system administrator’s workload and skills. With

this pattern, it is possible to eliminate both information lookup,

and retaining information inefficiencies of this task.

Since the dispatchers need to constantly monitor for new

tickets, the alerter pattern can be used to notify them about

new tickets as soon as they are created, and eliminate the

becoming aware inefficiency. The importer pattern can be

used to automate the task of importing tickets to the internal

database, and the transformer pattern can be applied when the

dispatchers need to modify (e.g., augment, exclude) some in-

formation, for example, filtering confidential data (e.g., phone

numbers) on the ticket’s description.

1) Look up for tickets

(ETS)

2) Analyses if the

ticket was misrouted

(ETS)

3) Is the ticket

correct?

5) Analyses the skill

level to solve the

ticket

(ETS)

6) Have

enough

resources?

8) Import the ticket

(ETS, ITS)

4) Forwards to other

team

(ETS)

7) Request for more

resources

(e-mail)

9) Searches for the

SA with the right

skills and availability

(ITS, Spreadsheet)

10) Talk with the SA

(in person)

11) Makes the

assignment

(ETS, ITS)

Alerter Pattern

{New Ticket}

Importer

Pattern

Displayer Pattern

{name, description}

Displayer Pattern

{severity}

Transformer

Pattern

Displayer

Pattern {workload,

skills}

Input operator

{System

administrator}

Fig. 4. Relating mashup patterns with dispatching tasks

The final Graphical User Interface (GUI) for the dispatching

mashup, constructed based on mashup patterns, is presented

in Figure 5. It is important to observe that to create complete

solutions, the patterns need to be composed of basic operators.

As presented, the input operator was used to allow the

dispatcher to specify the system administrator who will be

responsible for solving the ticket.

Dispatching Mashup

Description

Ticket Information

Name

Severity High

Ticket #16091982

Update all Unix servers with the last security patch

Team Information

Mary AnnSystem Administrator Assign

Name

5 tickets

Skills

High

Unix server

Jonh Doe Windows server

LowMary Ann 2 tickets

Workload Expertise

Options

Fig. 5. Graphical User Interface (GUI) of the mashup for the dispatching
scenario

D. Predictions on Mashups Usage

Analyzing the tasks of the dispatching scenario and using

the methodology described in Section 3.C, we estimated the

times presented in Figure 6. The bars indicate the labor cost

(i.e., time) for each task of the dispatching process. The

different colors indicate the obtained and estimated (with and

without mashups) times for the process. As can be observed,

the real measurements and the predicted times present a close

fit, with a R2 error of 0.82, which means the model can explain

82% of the variability in the time data, and a Root Mean

Square Error (RMSE) of 13.34. This shows the accuracy of

our model.

!

"!

#"!

$"!

%"!

&"!

'""!

'#"!

'$"!

'%"!

'&"!

#""!

'! #! (!)! %! &! *! ''!

!
"#
$
%&
'
$
(
)
*
+
'
,%

!-'.%/0#1$2%

+,-.!/,-012,3,450!

62,7895,7!:85;<15!10-=,!<>!3-0;1?0!

62,7895,7!:85;!3-0;1?0!!

Fig. 6. Quantitative model validation with predictions of mashup cost

We do not present tasks 4 and 7 in Figure 6 because in

our scenario, the tickets were not misrouted to the wrong

dispatcher and we also considered that he/she always had

enough resources (i.e., System Administrators) to solve them.

Task 10 is not showed because it was not observed during our

evaluations. It is important to observe that this graph does not

represent the awareness time since the KLM or the Complexity

Model cannot predict it.

The obtained results show the significant time reduction of

64.42%, which mostly was due the automation of step 8 by

using the importer pattern. The displayer pattern allows the

reduction of the tasks 9 and 11, since the dispatcher does not

need to look up any information in a different system, thus

eliminating all the possible keystrokes, and also does not need

to remember any information from a previous task, helping to

decrease the memory complexity.

VI. CONCLUSIONS AND FUTURE WORK

We believe that this paper represents a significant contri-

bution: the use of a combined model to guide the use and

estimate the value of improving IT processes using mashup

design patterns. We have introduced a methodology for an-

alyzing activities performed by human operators involved

in IT Service Management. This methodology combines the

Keystroke-Level and Complexity models to account for ineffi-

ciencies through the IT process. The combined model allowed

us to tackle lower level inefficiencies of human-computer

interactions, and higher level inefficiencies of performing IT

tasks and subtasks, both from a quantitative perspective. As

a solution for these inefficiencies, we have considered the

employment of mashups and mashup patterns. The use of

mashup patterns enabled us to make quantitative predictions

of performance improvements due to the use of mashups. The

improvements in productivity, usability and agility provided

by the application of mashups demonstrate the viability of

mashup technology as a means for improving IT Service

Management.

Analyzis of the tasks performed by a group of human

operators allowed us to find a set of common inefficiencies in

their implementation of the ITIL Request Fulfillment process.

Since these inefficiencies can be found in many different

ITSM scenarios, mashup patterns can be applied as proven

and reusable solutions. The analysis of one mashup developed

from mashup patterns for a case study allowed us to observe a

good fit between the times predicted by our combined model

with real measurements. This indicates the feasibility of our

methodology in predicting quantitatively labor costs savings

due to the use of mashup technology. Finally, this paper

demonstrates the significant improvement of 64.42% in the

performance of the dispatching process in the case study.

As future research, we will expand our exploration of

models of mental activities in business processes. By doing

this, we hope to enhance the scope and accuracy of our model

in predicting labor costs in the ITSM process. We also plan to

extend the analysis of the ITSM process beyond inefficiencies,

considering other aspects such as reliability. In this context, a

plan to resolve failures in problematic tasks could be identified

and instantiated for the final mashup solution. Finally, we

will explore the automation of mashup development through

the use of the combined model to guide selection of mashup

patterns.

REFERENCES

[1] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding mashup
development,” IEEE Internet Computing, vol. 12, no. 5, pp. 44–52, 2008.

[2] OASIS, “Business process execution language, version 2.0,”
Organization for the Advancement of Structured Information Standards,
May 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/

[3] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard,
S. Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and
S. Zimek, “Web service choreography interface (WSCI) 1.0,” World
Wide Web Consortium, Note NOTE-wsci10-20020808, Aug. 2002.

[4] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and
C. Francalanci, “Dashmash: A mashup environment for end user devel-
opment,” in ICWE, ser. Lecture Notes in Computer Science, vol. 6757.
Springer, 2011, pp. 152–166.

[5] C. R. P. dos Santos, R. S. Bezerra, J. a. M. Ceron, L. Z. Granville, and
L. M. R. Tarouco, “On using mashups for composing network man-
agement applications,” Comm. Mag., vol. 48, pp. 112–122, December
2010.

[6] M. Ogrinz, Mashup Patterns: Designs and Examples for the Modern

Enterprise, 1st ed. Addison-Wesley Professional, 2009.

[7] S. K. Card, A. Newell, and T. P. Moran, The Psychology of Human-

Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates
Inc., 2000.

[8] D. Kieras, “Using the keystroke-level model to estimate execution
times,” University of Michigan, 2001.

[9] A. B. Brown and J. L. Hellerstein, “An approach to benchmarking
configuration complexity,” in In Proceedings of the 11th ACM SIGOPS

European Workshop, 2004.

[10] A. B. Brown, A. Keller, and J. L. Hellerstein, “A model of configuration
complexity and its application to a change management system,” in In

Proceedings of the 9th IFIP/IEEE Symposium on Integrated Manage-

ment, 2005, pp. 631–644.

[11] Y. Diao, A. Keller, S. S. Parekh, and V. V. Marinov, “Predicting labor
cost through it management complexity metrics,” in In Proceedings of

the 10th IFIP/IEEE Symposium on Integrated Management, 2007, pp.
274–283.

[12] Y. Diao and A. Keller, “Quantifying the complexity of it service
management processes,” in DSOM, 2006, pp. 61–73.

[13] L. Shwartz, Y. Diao, and G. Grabarnik, “Multi-tenant solution for it
service management: A quantitative study of benefits,” in Integrated

Network Management, 2009, pp. 721–731.
[14] W. D. Gray, B. E. John, and M. E. Atwood, “Project ernestine:

Validating a goms analysis for predicting and explaining real-world task
performance,” in Human-Computer Interaction, 1993.

[15] OGC, “Information technology infrastructure library v3 (itil v3),”
Office of Government Commerce, May 2008. [Online]. Available:
http://www.itil-officialsite.com/

