
Policy-Assisted Planning and Deployment of Virtual
Networks

Steven Davy∗†, Joan Serrat†, Antonio Astorga† , Brendan Jennings∗, Javier Rubio-Loyola‡
∗ NMG, Universitat Politènica de Catalunya,

Barcelona, Spain
† TSSG, Waterford Institute of Technology,

Waterford, Ireland
‡ CINVESTAV Tamaulipas, Mexico

Abstract—We present an approach for deploying and subse-
quently managing a virtual network overlay, which is tailored to
an end-user’s request. Our approach combines a binary integer
optimisation process to decide on the number and placement of
virtual routers, and an autonomic network management system
that subsequently manages the configuration of the running
virtual network. High-level optimisation policies are used to guide
the optimisation process to identify a virtual network that favours
lower hosting costs or higher network quality (we use mean
delays as a quality metric). Low-level deployment policies are
generated and used to govern the deployment and management
of the virtual networks. Our results indicate that the binary
integer optimisation process produces a virtual network that has
lower cost as compared to creating a network based on combined
shortest paths.

I. INTRODUCTION

Future end user services in the Internet will require a varied
set of supporting network functionality. Network topology and
functions will need to change in a few seconds, requiring
the capacity to bring up or down functional entities to adapt
the network to service requirements. To this end virtualisation
appears as a technique to configure multiple network entities
(network nodes) in a single physical machine that behave
differently, but independently of each other. These entities are
termed “Virtual Machines (VMs),” where a virtual machine
is defined as a software implementation of a computer that
executes programs like a real computer. The computational
and communications resources provided by a physical machine
are partitioned or shared between the VMs, which are fully
isolated runtime environments. When the VMs are performing
networking functions (store, route and forward functions) we
term them virtual nodes and virtual links and hence we talk
about "Virtual Networks (VNs)."

As in a conventional physical network, a virtual network
has to be pre-provisioned or provisioned on demand to satisfy
service user needs. To describe the process we present a
generic scenario where a service customer is issuing a service
request to a "Virtual Network Provider (VNP)." This request
will specify end user service access points to be connected,
for instance, to one or more servers for IPTV content delivery.
In addition, the customer’s request may also specify service
quality parameters like maximum available bandwidths or
delays. The role of the VNP is to allocate network resources

to that user to fulfil his/her needs. This entails identifying
the topology and the capacity of the virtual network that is
needed for the new service, but without compromising other
services currently offered to other users. An intrinsic aspect of
this problem is to decide which physical nodes and physical
links will be selected to support the virtual network. Note
that the options the VNP has to fulfil the customer request
are typically uncountable. Therefore, it is necessary to make
use of algorithms that help find the solution that best fits
not only the customer demands, but also the VNP’s own
business objectives. In addition, the VNP shall interact with an
"Infrastructure Provider (InP)," or many of them if necessary,
each owning a physical network. Finally, depending on the
agreements between the VNP and the InPs, the former or the
latter will be entrusted to deploy and activate the VN.

The problem of creating VNs and assigning virtual to
physical resources in particular has attracted considerable
attention in recent years. The problem is particularly chal-
lenging because it usually yields a NP-Hard problem where
the solution can not be obtained by deterministic means and
so heuristics must usually be invoked. Hence, different efforts
have been undertaken to adopt different heuristics keeping into
consideration different problem constraints; we discuss some
of these efforts in §II below.

Our approach assumes that requests arrive to the VNP
that specify one source and many sinks to be connected
by bidirectional links, together with a set of user-related
constraints. The VNP considers that request to be fulfilled
according its high level policies, also called "Optimisation
Policies (OPs)." These policies will favour a solution more
or less biased to different VNP business objectives like cost
minimisation, loyalty retention or others. Weighting factors
of a cost function are derived from these OPs so that its
minimisation comes out with the least cost spanning tree that
constitutes an initial draft of the VN topology. A refinement
process of that topology is then run to determine which of the
initially identified physical nodes should host a virtual router.
The criteria adopted here is simple because a virtual router will
be initiated only in case a routing decision has to be made.
Otherwise a simple tunnel is created to bypass the node. Last
but not least, the final VPN topology is properly converted
into a set of deployment policies (DPs) that will be directly

enforced to create the virtual nodes and the virtual links;
this step makes use of the AutoI management framework, as
described in [1].

The structure of the paper is as follows. After this introduc-
tion, §II presents the related work. §III provides an overview
of the virtual network management framework proposed by
the AutoI project, upon which our solution is built. In §IV we
present a detailed description of our approach. §V summarises
the main results obtained so far, whereas we present a discus-
sion or our approach and future challenges in §VI. Finally,
section §VII contains our conclusions.

II. RELATED WORK

Current efforts researching into the use of virtual infrastruc-
tures are doing so de to their ability to abstract the complexity
and heterogeneity of physical communication networks. Also
value added features such as expandable resources, dynamic
deployment and resource migration have seen virtual networks
seen as the natural solution to many current ICT problems.
The FP7 project GEYSERS are investigating the use of
network virtualisation as a means to interconnect virtualised
infrastructures that are delivering end users services, where a
virtual network is used to abstract the location of the service
[2]. The FP7 project SAIL are investigating the concept of
Cloud Networking (CloNe) [3] where there vision is to

"To provide cloud network services compliant with applica-
tion requirements in a dynamic and automated way connecting
customers to an operator cloud".

Both of these projects are defining the terms of Virtual
Networks and the relationships between virtual network op-
erators and physical network operators. One of the aspects of
virtual network deployment that attracted most attention in the
last decade has been the assignment of physical resources to
given virtual network topologies subject to given constraints.
The problem statement and the challenges of its solution are
clearly elucidated in works such as [4, 5, 6, 7, 8]. In summary,
given a number of VN requests (the request specifies the
VN’s topology) that can be known in advance or appearing
randomly in time, the target is to assign physical resources
(nodes and links) of a given substrate net- work topology
to satisfy the VNs requirements and at the same time fulfil
some goals or constraints. Such goals refer either to the virtual
or to the physical network and in earlier works consisted
of, for instance, the number of virtual nodes assigned to
a physical node, the number of virtual links assigned to
a physical link [4], node CPU usage[6], or virtual links
capacity [5]. In these works the problem is treated analytically
transforming the goals to be achieved into a minimisation of
a cost function subject to constraints. But this generally leads
to a NP-Hard problem that can only be addressed by applying
heuristics. More recently, other papers have appeared tackling
the same type of problem with complementary points of view
and approaches. Mentioning a few of them: Chowdhury and
Boutaba [9] proposes algorithms for VN embedding that differ
from other algorithms by introducing coordination between
node and link mapping phases. The work of Cai et al. [10]

Figure 1. Autonomic Internet Framework.

considers the evolution of the physical network topology (non-
static physical network topology). In Razzaq and Rathore [11]
virtual nodes are mapped as close as possible thus ensuring
that the paths found for the edge mapping are the shortest in
length. Finally, service resilience is also used as one of the
constraints by Chen et al. [12].

Our paper deals with a different but highly complementary
problem. We do not start from a pre-existing VN topology,
but from a one-to-many connectivity request that has to be
solved by means of a virtual network topology. We address
how to plan such a virtual network, taking into consideration
the physical network topology and other constraints. Hence,
we also output with a VN topology mapped to a physical
network, but derived from a different perspective that makes it
closer to the real problem faced by VNPs. In our approach we
also formulate an optimization problem, related to the Steiner
Tree Problem [13], which is known to be NP-Hard. This
problem is mostly studied for its application to designing the
layout of communication channels on large computer circuits.
Beasley et al. [13] presented a simplified linear programming
model of the Steiner Tree problem which they solve using
the branch and bound algorithm. The model presented in this
paper is loosely based on their model, but it is simplified
for connecting a single source to multiple targets. The more
complex version of Steiner Tree is a Steiner Network problem
[14] which aims to solve the problem where there are multiple
source and multiple target nodes.

III. FRAMEWORK

Our solution is built upon the framework developed in
the FP7 Autonomic Internet (AutoI) project as depicted in
Figure 1. We now present an overview of this framework and
focus specifically on the aspects that are of interest to this
paper. The AutoI project specified an autonomic management
architectural model that incorporates a number of distributed
management systems in the network. The model can be
described with the help of the abstractions and distributed sys-
tems organised as OSKMV (Orchestration, Service Enablers,
Knowledge, Management and Virtualisation) planes.

The Orchestration Plane encapsulates the instruments that
controls the behaviour of the management systems in the
network. Its primary role is to govern, negotiate and fed-
erate multiple Autonomic Management Systems. The Ser-
vice Enablers plane encapsulates functions for the automatic
(re)deployment of new services, protocols, resource-facing and
end-user facing services. This includes the enablers to allow
code to be executed on the network entities and also the service
could be activated on demand. The Knowledge Plane encapsu-
lates models and ontologies to provide analysis and inference
capabilities; its purpose is to provide knowledge and expertise
to enable the network to be self-monitoring, self-analysing,
self-diagnosing, and self-maintaining or self-improving. The
Management Plane encapsulates the Autonomic Management
Systems (AMSs), which are designed to realise autonomic
control loops governed via the Orchestration Plane. AMSs are
designed to be network embedded, network and service aware,
self-adaptive and extensible. These properties make the AMS
a highly flexible solution for the management of both physical
and virtual networks.

Most relevant to our work is the Virtualisation Plane.
It encapsulates software artefacts to facilitate treatment of
selected physical resources as a programmable pool of virtual
resources that can be organised by the Orchestration and
Management Planes into appropriate sets of virtual resources
to form components (e.g., increased storage or memory),
devices (e.g., a switch with more ports), or even networks.
The organisation is done in order to realise a certain business
goal or service requirement. The Virtualisation Plane is used
by the Orchestration plane to govern virtual resources, and
to construct virtual services and networks that meet stated
business goals and having specified service requirements. The
AMSs of the Management Plane manage, through the Virtu-
alisation Plane, the physical resources, and the construction
of virtual resources from physical resources. In AutoI the
separation between the virtualisation plane and other planes
relieves the other planes from dealing directly with physical
resources. Only virtualised resources are manageable via the
virtualisation interfaces and also monitoring information about
the physical and virtual resources can be requested from the
virtualisation interfaces. This separation enables a system-wide
management of virtual resources by other planes, while the
management of physical resources is done by the virtualisation
plane.

In support of the AMS, is the Model-Based Translator
(MBT) which takes configuration files compliant with the
AutoI Information Model XML Schema and translates them to
device specific commands with the aim to eliminate the need to
update management software when managing heterogeneous
networked entities whose data models may change regularly.
The MBT can be used to communicate the configuration
of a single device, or an entire network based on a single
interaction with the AMS. It is effectively a management
abstraction layer that is highly configurable and extensible for
new target data models and management protocols. A Policy-
based system supports context-aware, policy-driven decisions

Figure 2. Autonomic Internet Framework Interaction.

for management and orchestration activities; it is used as the
basis for policy management in the AMS. Finally, the Vir-
tual Component Programming Interface (vCPI) is a modular
and scalable system for monitoring and configuring virtual
resources. It operates locally—for each node of a physical
network there is an embedded vCPI.

IV. POLICY AUTHORING AND OPTIMISATION

When a end user requests a virtual network to connect
many physically distributed sites together, there may be a
variety of potential virtual networks that can be established
to meet the end user’s demands. The requestor may favour
a low virtual router count, or a low hop count between end
sites. Other requestors may be interested in low delay across
the physical network, or indeed inexpensive hosting of virtual
machines. In any case, there is always a trade-off between
some of the end-users requirements during the creation of
the virtual network. This section describes a policy authoring
process that can define the policies that need to be deployed to
ensure that end-user requirements are captured and enforced
in the virtual network planning process. These policies are
defined in light of an optimisation process that also ensures
the optimal configuration of virtual resources are deployed and
situated correctly across an (AutoI-enabled) physical network.
The optimisation process is policy enabled, meaning that the
resulting decision can be directed towards favouring virtual
networks with different characteristics based on a service
request. The interaction with the AutoI framework is depicted
in Figure 2

A. Policy Authoring Process

The process for authoring policies is designed to aid an
individual or machine in the definition of policies that are
conflict free and reflect the requirements of the organisation.
We deal with two levels of policies in this scenario. Policies
that are defined to guide the formulation of the optimisation
problem are henceforth referred to as "Optimisation Policies
(OPs)," whilst policies that are defined to enforce the resulting

optimal virtual network topology are referred to as "Deploy-
ment Policies (DPs)." Deployment policies are particularly
difficult to describe by a human operator, even for those with
extensive knowledge of the target system. For example, a
human operator may not know the current configuration or
context of the physical communications network, and may not
be able to consider all options for the deployment of virtual
routers to support an end user request for a network. For this
reason, the authoring of policies are aided by an authoring
process that can auto-generate parts of the deployment policies
(DPs). The primary steps of the policy authoring process are
outlined here and described in more detail below:

1) Define the Optimisation Policies (e.g., “Prefer network
quality;” or “Prefer network cost;”);

2) Identify Virtual Topology based on optimisation process;
3) Reduce resulting Virtual Topology in terms of virtual

routers and virtual links;
4) Generate appropriate Deployment Policies to realise

virtual routers and virtual links.
The OPs are initially described by the human operator to
offer guidelines to the optimisation process for building the
virtual network. The OPs can be defined to ensure that the
optimisation process favours a high quality connected network
with low delay, or favour a low cost of running virtual network
when network quality of not a major concern. The request
from the end-user will clearly state its preferences for network
characteristics. The end-user can also specify if they would
prefer a balance between the cost of operating the network
versus a network with low delay. The end-user indicates this
preference by including a SetPreferenceIndicator variable in
their policies. The SetPreferenceIndicator value is mapped
to a specific variable that is used during the optimisation
process known as α. As an example, an OP could be stated
as follows:

1) IF Prefer_Reduced_Network_Cost THEN
SetPreferenceIndicator = LOWCOST

2) IF Prefer_Low_Network_Delay THEN
SetPreferenceIndicator = LOWDELAY

The identification of the virtual network topology is the
output of the optimisation process. The optimisation problem,
described in detail in §IV-B, takes as input the topology of
the physically connected network, the link costs, the cost
of hosting virtual machines in different physical locations, a
single source site and multiple target sites that will make up
the virtual network. The links will be bi-directional and so
the sites will be able to communicate in both directions. The
output of the optimisation process is a least cost spanning
tree that originates at the source and only spans to the target
sites. The tree also includes edges that connect to intermediate
nodes. These will be potential sites for virtual routers. Our
algorithm considers the case where there is potentially no
feasible solution, in that case, or after a specified amount
of time, a negative response can be returned stating that
no feasible virtual topology can be generated for the given
request.

The reduction of the virtual topology is there to optimise
the number of virtual routers in the final network. When a
node in the virtual topology is not a site nor a target, then
it is a hub node. Hub nodes are used to connect the source
node to the target nodes and other hub nodes. However, a
virtual router should only be situated at these points if actual
routing is required. That is, if a virtual machine at this location
must make a decision between edges as to where a packet or
flow should be sent. If there is only one edge out and one
edge in, then a tunnelling protocol can be used to bypass this
node which may originate from an upstream node to the next
downstream node. This reduction of nodes is carried out on
the virtual topology where ideal placement of virtual routers
that connect targets to the source remain.

From the amended list of virtual routers and virtual links,
deployment policies (DPs) are generated. These DPs are
pushed to the AutoI policy system where that can be used
to instruct the vCPI to build the virtual network. The DPs
are also instructed to start critical routing services and any
other network or customer services that are required before
the virtual network can be used.

B. Virtual Topology Optimisation

Consider a graph G = (V, E), where V represents the set
of physical nodes in the network that can support hosting a
virtual router, and E is the set of connections between the
nodes of V. E is represented by an ordered pair (i, j) ∈V. In
our model of virtual topology optimisation, there is a single
source node s that seeks to be connected to a set of target
nodes t ∈ T ⊂ V . We seek to find a least cost spanning tree
originating at the source (s) and terminating at all the elements
of T . All other nodes are hub nodes that can support routing,
or leaf nodes that are not involved in the virtual network. The
problem is to find the least cost spanning tree between s to all
the elements of T. The problem can be formulated following
the form of a generalised set packing problem. We introduce
binary decision variables xij for every element in E indicating
whether (xij = 1) or not (xij = 0) that edge is included in
the solution. Therefore, we can now describe the optimisation
problem as follows.

OBJECTIVE:

minimise
∑
ij∈E

kijxij (1)

CONSTRAINTS:
• Binary Variables:

xij ∈ {1, 0} ∀ij ∈ E (2)

• Source Constraints:
−
∑
j∈E

xji ≤ −1, i = s (3)

• Target Constraints:∑
j∈E

xij −
∑
j∈E

xji ≤ −1, ∀i ∈ T (4)

• Hub Constraints:

xij −
∑
j∈E

xji ≤ 0, ∀i ∈ T (5)

xji −
∑
i∈E

xij ≤ 0, ∀i ∈ T (6)

Note, all constraints are normalised to represent linear
optimisation constraints where the RHS is larger then the LHS
and where kij is the weight associated to a particular edge.
In (1) we try to minimise the total sum of the weights when
decision variables are set. In (2) we insist that the decision
variables are 1 or 0. In (3) we describe that the sum of decision
variables representing out edges (negative) is less then -1, this
is to ensure that the decision variable representing the source
out edge is always selected. In (4), the opposite is the case. We
want to ensure that one of the in edges is selected, therefore
the sum of in edges (negative) is less then -1. This constraint is
repeated for each target in the network. If a node is designated
as a hub, then it can have a higher degree out then degree in,
but only if at least one in edge is selected (5). Conversely the
opposite is also true, only if and an in edge is selected should
an out edge be selected (6). This will eliminate phantom edges
being asserted which originate at hubs. For each in edge; the
sum of the in edge (ij) plus all out edges (-ji) has to be less
then 0. This will insist that the hubs perform like routers and
can split a path out to several destinations towards reaching
the optimal topology.

The weights of the graph are calculated based on the policies
of the virtual network operator and the end user request. To
compute the weight along an edge in the network we use the
following formula.

kij = (α− 1) dij +

(
ci + cj

2

)
α (7)

Where dij is a scaled metric representing the delay on the
link between the physical hosts, ci is the cost of hosting a
resource at edge i (j respectively). The variable α is a value
between 0 and 1, it is used to indicate a preference between
node cost and link delay. This way the ultimate cost of the
edge can be based on network performance or virtual router
hosting cost. The function ci can be any function that returns a
value between 0 and 1 and represents the pricing model of the
virtual router provider. At α = 1 a precedence is given to the
cost of the virtual router hosting, and at α = 0 a precedence
is given to the network quality.

The result of the optimisation process is a tree structure
traced through the topology of the physical graph. The tree will
have least cost based on the weights defined by the function
k.

C. Virtual Topology Reduction

The virtual topology resulting from the optimisation process
represents a single sourced tree connected to the target sites.
However, in a virtual network not all the physical nodes need
to host a virtual router. A virtual link can be used to connect
two virtual routers and can span many physical hosts. This
can be implemented by using an IP tunnelling protocol, or a

Figure 3. Source (39) tree to 7 Targets

(a) Trimmed Tree (b) Reduced Tree

Figure 4. Trimmed and Reduced Trees with S = 39 and
T={24,28,29,33,34,37,47}

secure VPN connection. The solution reached in the previous
sub-section is a tree structure linking nodes in the underlying
physical topology. However, it is not reasonable to assume that
a virtual router should be placed at each node as indicated in
the tree, whether a physical router exists there or not.

Only essential routing nodes should host a virtual router, and
these can be discovered by counting the degree of the node in
the graph. For example, the tree in Figure 3 is computed from
the optimisation process. It shows a tree spanning from node
39 to nodes 24,28,29,33,34,37 and 47.

Figure 4a shows a trimmed tree from the same graph,
focusing directly on the resulting solution from Figure 3.

Next, Figure 4b highlights the positions of the virtual
routers. There are tunnels established between the ingress and
egress of each of the virtual routers. In this case, there are
5 virtual routers that are established to connect a network of

8 nodes, 1 source and 7 targets. This final reduced topology
is used as a blueprint of the virtual network that should be
deployed. The next step is to derive the deployment policies
that should be used to actually deploy this virtual network.

D. Generation of Deployment Policies

The generation of the deployment policies aids in the
deployment, configuration and management of the virtual
network. As presented in §III, the Model-based Translator
software can take as input a schematic of a virtual network
(in XML) and can generate a set of device specific commands
to realise the virtual network. In our case, the commands that
must be generated are virtual machine management policies
containing the vCPI commands to configure and start specific
virtual machines and their virtual links. The behaviour of the
virtual network is monitored and controlled by the Autonomic
Management Systems or AMS. The generated policies are
placed into the policy management services of the AMS.
Policy templates are defined a-priori to ensure that the state of
the virtual network that is finally realised can be maintained
to a degree of confidence. This is opposed to just generating
commands to bring up the virtual network where no guarantee
of the virtual network is offered. In the case of a virtual
network augmented with management policies, it can be
effectively re-configured should there be a problem in the
physical network.

Take for example the following list that is used at a basis
for the generated policies:

START:
On ReciptOfNetworkConfig

THEN DeriveNetworkConfig
AND DeployNetworkConfig

STABLE:
IF NetworkIsStable

THEN DoNothing
LINKLOST:
IF NetworkLinkLost

THEN ReComputeNetworkGraph
AND WaitFor(ReciptOfNetworkConfig)

ROUTERLOST:
IF NetworkRouterLost

THEN ReComputeNetworkGraph
AND WaitFor(ReciptOfNetworkConfig)

END:
On ReciptOfNetworkDisolve

THEN StopNetwork AND FreeResources
The list of policies describe some template behaviour that
we wish to deploy to the virtual network, so that it can at
least attempt to recover from physical network problem. It
is essentially re-configured and re-deployed with a restored
state. More policies can be readily added or removed to
give the virtual network more elaborate behaviour. In our
implementation, the MBT generates the policies and the virtual
machine management commands. The resulting policies also
interact with the AMS to request for network reconfiguration,

in which case the OPs are used to come up with an optimal
new network topology that favours the end users specific
requirements (e.g. low cost of hosting, vs. low network delay).

V. EXPERIMENTAL ANALYSIS

The traditional approach to virtual networks, or virtual
private networks (VPNs) is to connect all sites via a tunnelling
protocol such as IPSec, PPP or MPLS. In this case, the sites
are all connected to each other via their respective shortest
paths. Our approach establishes a virtual network to connect
sites based on a least cost spanning tree that encompasses
virtual routers inside to route traffic between tunnels (virtual
links). At the location of a virtual router a set of tunnels
or virtual links are routed to target sites. The basis of our
analysis is to show that the generated trees are of a lower cost
then the combined shortest paths among the list of sites that
need to be connected. This approach is a common approach
to approximate the Steiner Tree problem [15].

We compare our approach to that of shortest path union
approach, where the links used to connect a source site to
each individual target site using a shortest path algorithm are
combined together. Each unique link contained in this new
tree is assigned the same cost value as used in our binary
optimisation approach. We then compare the resulting weights
together to capture the difference in cost. We performed a
comparison of the cost (be it delay or virtual machine hosting)
of our approach per established network versus the cost of
establishing multiple shortest path tunnels. Our experiments
are all limited to a single source site per iteration; however,
the weights in the communication network are directional,
therefore the network could have unequal weights in either
direction. For simplicity of describing the results, we assume
a bi-directional network with equal link weights in both
directions. The network we carried out our experiments on is
shown in Figure 3 above. It contains, 32 edge nodes, 20 hub
nodes and 116 unique edges (counting both directions). We
examined typical ISP topologies as presented on the website
of Internet Topology Zoo [16] and have developed a topology
of reasonable size in comparison to what is located there.
The link weights are computed based on the degree of each
node for delay and cost of hosting. For nodes with a higher
degree delay was high, but virtual machine hosting was lower
assuming an economy of scale on larger nodes. Each iteration
of the experiment choses a single source node at random, from
all leaf nodes, and a set of target nodes at random from the
remaining leaf nodes. Iterations of the experiment were carried
out with the following parameters: | S | = 1; | T | = 2 to 16;
Alpha = {1 , 0}. Each iteration was run 1000 times to produce
mean values as statistically representative results.

From Figure 5, we see that our approach produces a lower
cost spanning tree as compared to the union of shortest paths
approach. We see that the difference in cost for the virtual
network as compared to the cost of the shortest paths network
is between 8% to 10% (95% percentile of 1000 data point
per no. of targets). The cost saving begin to decline as the
virtual network grows because most links are now being used

Figure 5. Difference in Link Cost and Alpha = 1

Figure 6. Number of Virtual Routers after Reduction

in both approaches. For smaller virtual networks, with only
few edges used, there is less scope for optimisation. Also for
larger virtual networks, mostly all edges are being used and
so the maximum cost is being reached.

From Figure 6 we see that when the virtual topology
is reduce to only essential virtual routers then there is a
significant reduction in the number of virtual routers required.
These remaining virtual routers are placed at positions of least
weight due to the constraints imposed on the optimisation
process. We can also see that the number of virtual routers
required scales approximately linearly, indicating that there is
good consistent performance.

With respect to the runtime complexity of the optimisation
process, it is based on the order of constraints and not on
the order of how many target nodes must be connected.
The number of constraints required for a particular topology

Figure 7. Constraint Matrix

depends on the number of edges and nodes in the physical
network. We can compute the number of constraints using the
following formula:

1+ | V \H | +
∑
i∈H

degOut (Hi) +
∑
i∈H

degIn (Hi) (8)

where H is the set of hub nodes in the graph. In our experiment
we can calculate the number of constraints to be 1 + 31 +
84 + 84 = 200. These constraints are depicted graphically in
Figure 7. Each new edge node added will cause at lease 3
new constraints to cater for it as a leaf, and the new edges in
and out of its neighbouring hub node. Also, two new decision
variables will be required. Therefore, the number constraints
and variables grows linearly with the number of edges.

The experiments were conducted in MATLAB 7, where the
final topology was described as a connection matrix. This
connection matrix is used to build the XML description of
the virtual network topology and is then deployed using the
AMS software developed in the AutoI project.

VI. DISCUSSION AND FUTURE WORK

The approach presented here has some limitations. These
limitations will be discussed and highlighted as avenues for
future research challenges. One obvious limitation is that
the request for a virtual topology is limited to that of a
single source node and multiple target nodes, constraining our
solution to produce a tree oriented network topology. Tree
based topologies in virtual networks have potentially different
characteristics then tree based topologies of physical networks.
One of the main differences is that a tree based physical
network is typically viewed as having low reliability due to
lack of redundant links. However, a tree based virtual network

may be supported by a meshed physical network, where there
is underlying redundancy for each virtual router and virtual
link. Therefore, reliability would be a matter of the physical
network provider fulfilling an SLA for each virtual link.

For our optimisation process to receive a request containing
multiple sources, we would have to update the optimisation
problem defined to be more aligned to that of the Steiner
Network problem. This is certainly a potential avenue of future
research, where multiple virtual networks may be created
simultaneously from a single request. One highly desirable
feature that we intend to investigate in the future is that of
calculating a minimal change update to the virtual topology
given a change in VNP objectives or a change in physical
network resources. This would produce a set of migrations or
VN updates that would minimally disturb the virtual networks
operation. We also intend to carry out our experiments on
a larger scale testbed where more realistic scenarios can be
replicated, and more experiments can be performed.

VII. CONCLUSION

The Future Internet requires flexibility from network man-
agement systems to provision services and networks on de-
mand with low overhead and cost. We present an policy au-
thoring process and optimisation approach to virtual network
deployment. The resulting virtual network places the virtual
routers at nodes guided by the policies specified by an end
user. This deployed virtual network is then managed through
the use of policies that are generated from some desired
behaviour. An Autonomic Management System, developed in
the FP7 AutoI Project is used to managed and deploy the
virtual routers in a physical network. The resulting virtual
network is then reduced to eliminate nodes where there is no
functionality required and and are not actually making routing
decisions. A binary integer optimisation problem is defined
and solved in order to build the optimised virtual topology.
Experimental analysis shows that a virtual network is deployed
that has lower cost with respect to network delay and hosting
costs then an equivalent peer-to-peer VPN installation which
is based on multiple shortest path links between the networked
sites.

ACKNOWLEDGMENTS

This work was supported in part by the Irish Research
Council for Science, Engineering and Technology and co-
funded by Marie Curie Actions in FP7. It was also supported in
part by Science Foundation Ireland, via the “FAME” strategic
research cluster (grant no. 08/SRC/I1403) and by project
TEC2009-14598-C02-02 funded by the Spanish MICINN.

REFERENCES

[1] Autonomic Internet. (2010, October) http://www.ist-
autoi.eu/autoi. [Online]. Available: http://www.ist-
autoi.eu/autoi

[2] S. Figuerola, J. A. Garcia-Espin, and N. Ciulli, “An
optical network and it infrastructure virtualisation and

provisioning framework,” in Optical Internet (COIN),
2010. 9th International Conference on., Jeju, South Ko-
rea, 11-14 July 2010.

[3] D. Dudkowski, “Sail cloud networking,” in ASMONIA
Workshop, Heidelberg, Germany, March 2011.

[4] Y. Zhu and M. Ammar, “Algorithms for Assigning Sub-
strate Network Resources to Virtual Network Compo-
nents,” in INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings.
IEEE, 2006, pp. 1–12.

[5] J. Lu and J. Turner, “Efficient mapping of virtual
networks onto a shared substrate,” Technical Report
WUCSE-2006-35, Washington University, 2006.

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking
virtual network embedding: Substrate support for path
splitting and migration,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 17–29, 2008.

[7] I. Houidi, W. Louati, and D. Zeghlache, “A distributed
virtual network mapping algorithm,” in Communications,
2008. ICC’08. IEEE International Conference on. IEEE,
2008, pp. 5634–5640.

[8] T. Anderson, L. Peterson, S. Shenker, and J. Turner,
“Overcoming the Internet impasse through virtualiza-
tion,” Computer, vol. 38, no. 4, pp. 34–41, 2005.

[9] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link map-
ping,” in INFOCOM 2009, IEEE. IEEE, 2009, pp. 783–
791.

[10] Z. Cai, F. Liu, N. Xiao, Q. Liu, and Z. Wang, “Virtual
network embedding for evolving networks,” in GLOBE-
COM, 2010, pp. 1–5.

[11] A. Razzaq and M. Rathore, “An approach towards re-
source efficient virtual network embedding,” in Evolving
Internet (INTERNET), 2010 Second International Con-
ference on, 2010, pp. 68 –73.

[12] Y. Chen, J. Li, T. Wo, C. Hu, and W. Liu, “Resilient
Virtual Network Service Provision in Network Virtual-
ization Environments,” in 2010 IEEE 16th International
Conference on Parallel and Distributed Systems. IEEE,
2010, pp. 51–58.

[13] J. Beasley, “An algorithm for the Steiner problem in
graphs,” Networks, vol. 14, no. 1, pp. 147–159, 1984.

[14] A. Agrawal, P. Klein, and R. Ravi, “When trees collide:
An approximation algorithm for the generalized Steiner
problem on networks,” in Proceedings of the twenty-third
annual ACM symposium on Theory of computing. ACM,
1991, pp. 134–144.

[15] S. Voß, “Steiner tree problems in telecommunications,”
in Handbook of Optimization in Telecommunications,
M. G. C. Resende and P. M. Pardalos, Eds. Springer
US, 2006, pp. 459–492.

[16] Topology Zoo [accessed on 11th April 2011]. [Online].
Available: www.topology-zoo.org

