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Abstract— Node failures may be frequent in MANETs, but there 

can be many different causes for those failures. Nodes may lose 

power, crash, or simply move out of range of other nodes in the 

network. Identifying the root cause is complicated by a lack of 

fixed monitoring and analysis infrastructure. Past research has 

focused on monitoring using either ping, heartbeat, or gossip-

based approaches, which can incur significant network wide 

overhead. This paper proposes a novel k-hop cluster based data 

dissemination scheme that can piggyback on routing messages for 

more efficient detection of failures including node disconnection. 

In this scheme, nodes forward their neighbour-hood observations 

to a per-cluster failure detector based on the observed spanning 

tree. Simulations show that detecting disconnected nodes using a 

cross-layer implementation of the data dissemination scheme is 

more efficient while an application layer implementation is faster. 

This effect is more pronounced in sparse networks. 

Keywords- cross-layer, data dissemination, network efficiency, 

failure detection, MANET 

I. INTRODUCTION 

A mobile ad hoc network (MANET) is an autonomous 

system of mobile nodes connected by wireless links. Wireless 

links provide lower bandwidth and higher error rates 

compared with fixed networks.   These nodes may be resource 

constrained, have limited battery power, and because of 

mobility must continuously monitor and react to changes in 

their transmission neighbourhood. 

The combination of self-organization and resource 

constraints suggests the need for self-management and 

adaptation. One aspect of this is recognising and being able to 

react to system behaviour that deviates from the desired 

behaviour.  This is referred to as a failure or symptom. The 

cause of a failure is a fault or a root cause. A symptom by 

itself should not necessarily be used to determine a corrective 

action since a symptom may be explained by more than one 

fault. Fault localization is the process of taking a set of 

observations of system state and using these observations to 

determine a fault.  

 

 

 

 

 

Fault localization in MANETs is complicated by its dynamic 

topology. At a given point of time t, the topology of the 

MANET can be described as a directed graph Gt = (Vt,Et) 

where Vt is the set of nodes and Et is the set of links at time t.  

For any two nodes u,v  Vt,  (u,v) Et, if the transmitter of u 

can reach v. The nodes u and v are said to be one hop 

neighbours. MANET topologies may change for a variety of 

reasons other than node mobility: a node’s battery may be 

down, a node’s radio transmitter may fail, a node may be 

shutdown, etc.  

Previous research in failure detection in MANETs typically 

used either a unicast heartbeat-based data dissemination 

approach, which has high network-wide bandwidth overhead, 

or more recently a gossip-based dissemination approach with 

increased delay [4]. Previous work in this area has provided 

only limited analysis of the impact of mobility on data 

dissemination for the detection of faults.   

This paper proposes a novel protocol for data dissemination 

within a cluster such that all observations are received at the 

cluster head with minimal overhead. The detector acts as a 

cluster head for a cluster where no node is more than k-hops 

away (k-cluster). By building a spanning tree rooted at the 

detector, changes in connectivity detected by any node can be 

quickly and efficiently collected for further analysis at the 

detector using a data gathering protocol. This allows decision-

making to be carried out by the cluster head since it has the 

information to build models that provide a global perspective 

of system behaviour.  We have simulated two related 

approaches to this scheme. The first is a standalone 

implementation which produces its own messaging. The 

second uses extensions to Ad hoc On Demand Distance Vector 

(AODV) routing protocol. By adding a detection extension 

header to existing routing messages, the protocol can operate 

with even lower overhead.  

The remainder of the paper is organized as follows. We 

continue in Section II with an overview of the related work on 

data dissemination schemes for failure detection in MANETs. 

Section III provides a description of our proposed data 

dissemination scheme. Section IV introduces a case study 

based on detecting nodes that lose connection to the rest of the 



network. In Section V we describe the Qualnet-based 

simulation of this case study and evaluate the two approaches 

of our proposed scheme.  The paper ends in Section VI with a 

summary and a discussion of future work. 

II. RELATED WORK 

There is considerable previous work on failure detection in 

MANETs. The following is a discussion of work focusing on 

information collection and dissemination techniques. 

A) Ping- and Heartbeat-Based Approaches  

Ping-based architectures for network fault detection use 

detector nodes to send “are you alive?” messages to which 

receiving nodes must reply within a certain amount of time or 

be considered as failed. The selection of detector and receiver 

nodes can be fixed in advance, dynamically assigned [9], or 

randomised [1].  These solutions are easy to implement but 

have the disadvantage of having both a ping and reply per 

monitored node that must traverse limited bandwidth and 

error-prone links.    

Fault detection can be achieved with half the transmission 

overhead using a heartbeat architecture where receiver nodes 

send unsolicited “I’m alive” messages to detector nodes. A 

detector that does not receive a heartbeat after a certain 

timeout considers the sender to have failed. In MANETs 

heartbeat based architectures often have multiple detectors that 

collaborate in an overlay [8], where detectors with a defined 

set of nodes to monitor periodically sense each other’s 

heartbeat messages as well, or in a fully distributed manner 

[13], where each receiver sends heartbeat messages towards 

the sender, recruiting other nodes on the path to localise where 

a failure occurs.  

If we take the example network on the left in Figure 2, a 

ping-based architecture would require that the cluster head 

(node A) send a ping message to nodes B, C, D, E, F, and G 

and then a reply is sent back from each node to A.  A 

heartbeat-based approach would require all other nodes to 

periodically send updates directly to A. Our approach reduces 

the number of heartbeat messages needed by using a spanning 

tree to aggregate information from each node as probes are 

forwarded towards the detector. This increased message 

efficiency comes at the cost of potentially increased detection 

delay. 

B) Cluster-Based Approaches 

A method for detector nodes to collaborate and reduce 

messaging overhead is to divide the network into dynamic 

clusters such that each detector is close to the monitored 

nodes.  For example, in the scheme described in [16], all nodes 

first broadcast a heartbeat message and then a digest message 

summarising each nodes view of who was heard in the first 

phase. This is followed by a health status update from the 

cluster head identifying the failed nodes based on the analysis 

of the digest messages. Since messages are confined to the 

local cluster, this provides more efficient messaging. This 

solution assumes static single-hop cluster membership (no 

mobility). Our approach explicitly considers the case of both 

multi-hop clusters and node mobility. This allows us to 

determine if a node has failed as opposed to becoming 

disconnected from the MANET (see case study).  

The data collection module in [5] uses a cluster head election 

approach to identify a single detector node. It builds a tree for 

collecting information from normal nodes and aggregating 

before sending it towards the detector in a similar fashion to 

our work. The difference in this case is that this work focuses 

on intrusion detection while we are focusing on node failures. 

C) Gossip-Based Approaches 

Yet another method for multiple detectors to collaborate is to 

use the gossip (epidemic) protocol to globally distribute and 

evaluate heartbeat messages. Gossip protocols typically 

broadcast information from the local node and from any gossip 

from other nodes it has heard about within its one-hop 

neighbourhood.  Failure detection work that uses some form of 

gossip protocols MANETS includes [2], [3], [5], and [15]. 

Most related work in this area assumes a static topology (no 

mobility) allowing the global network information to converge 

in a reasonable amount of time.  However, the work in [2] 

takes a broadcast-based approach that can deal with limited 

mobility. Using a 1-hop reliable broadcast, this method is able 

to detect both hard and soft faults in MANETs. By comparing 

the outcomes to proscribed test tasks returned by different 

units (neighbouring nodes), faults in those units can be 

detected. While this method works well for detecting errors in 

individual nodes, it does not scale up to network wide failures 

and is not appropriate for detecting node disconnection 

III. DATA DISSEMINATION SCHEME 

This section describes our approach for data dissemination 

by the cluster head. The approach is based on the construction 

of a spanning tree for the nodes in a cluster. Topological and 

other failure related information is gathered using this tree. 

The approach is briefly described in this section.  

 The decision on how to respond to a failure is based on the 

type of fault. This analysis is assigned to specific nodes, which 

collect regional or global information for informed analysis. 

We will refer to this node as a detector and we will assume 

that each detector is associated with a set of nodes. Since the 

detector makes the decisions on how to respond to failures, all 

observations should be sent at least to the detector node and 

not necessarily all other nodes.  

A) Construction of the Spanning Tree 

The spanning tree construction algorithm is presented in 

Figure 1. Each node executes this algorithm. Line 1 indicates 

that the node is waiting for an event, which in this case is  

message arrival. The spanning tree construction is initiated 

when the cluster head sends a HELLO message to its one hop 

neighbours. Each node has variables that represent the node’s 

parent and the node’s children. When a node, u, receives a 

HELLO message from its neighbour (line 3:), it checks to see 

if it has a parent. If a node receiving the HELLO message has 

no parent it designates the sender of the HELLO message as 

its parent and sends its parent an OK message (line 6:). A 

node’s parent is the node that it receives its first HELLO 

message from. When a node receives an OK message (line 



11:) it adds that node to its child set. A node knows it is a leaf 

node if it does not receive any OK messages within a pre-

defined interval time in response to the HELLO messages it 

sent.  We refer to this pre-defined interval as the OK timeout. 

 

Algorithm 1 Spanning Tree Construction Algorithm 

SpanningTreeConstruction(event) 

Input: event 

1:  Switch (event)  

2:   //node v sends a HELLO message 

3:   CASE: HELLO message 

4:    if (parent(u) == nil) { 

5:    parent(u) = v; 

6:    Send OK message to node v; 

7:     Send HELLO message one-hop  

   to neighbours (except parent) 

8:    } 

9:    N(u)t = N(u)t  v 

10:   //node u received an OK message from v 

11:   CASE: OK message 

12:    Child(u) = Child(u)  v  
  

Figure 1: Spanning Tree Construction 

 

Figure 2 shows a network with seven nodes: A, B, C, D, E, 

F, G. The left hand side of the figure shows the links between 

nodes in the network. All links represent one hop neighbours. 

Assume that node A is the cluster head. The cluster head 

initiates the construction of the spanning tree by sending a 

HELLO message to its one hop neighbours which are nodes B 

and C. Nodes B and C send back an OK message and set their 

parent variable to node A. All subsequent HELLO messages 

received by node B and node C are discarded. Thus both node 

B and node C have as its parent the node A and the children of 

node A are nodes B and C. This is seen in the right hand side 

of Figure 2. Nodes B and C both send a HELLO message 

since the HELLO message from node A is the first HELLO 

message received. Node C sends a HELLO message to its one 

hop neighbours nodes: D, E and F. Node B sends a HELLO 

message to its one hop neighbour nodes: D and G. Assume 

that node C’s HELLO message arrives before B’s HELLO 

message at node D. Node D sets its parent variable to node C 

and sends an OK message to node C. Node D discards node 

B’s HELLO message. Assume that node C’s HELLO message 

arrives first at nodes E and F. Both nodes set their parent 

variables to node C and send OK messages back to node C. 

All other HELLO messages received by nodes E and F will be 

discarded. If node D’s HELLO message arrives at node G 

before node B’s HELLO message then node B’s HELLO 

message is discarded and  node G sets its parent attribute to 

node D and node G sends an OK message to node D.  

 

 
Figure 2: Network and Spanning Tree 

 

It is possible for an alternative spanning tree to be 

determined. For example if node B’s HELLO message is 

received by node G before node D’s HELLO message then 

node G will set its parent to node B and send an OK message 

to node B. Graphically the right hand side of Figure 2 would 

have a link from node B to node G instead of there being a 

link between node D and node G. Thus the spanning tree 

depends on the order of arrival of HELLO messages.  

B)  Data Gathering 

In this section we describe the algorithm for data gathering. 

This is presented in Figure 3. At the end of construction of the 

spanning tree each node determines if it is a leaf node or not.  

After a pre-defined period of time a leaf node sends its 

neighbourhood information to its parent using a REPORT 

message. The REPORT message consists of the one-hop 

neighbours of the sending node. For a leaf node, u, the 

neighbourhood information is in the form of (u, N(u)t).  

 

Algorithm 2 Data Gathering Algorithm 

DataGathering(event) 

Input: event 

1:  T = ; 

2:  Switch (event)  

3:   //node u receives a REPORT message (m) from v 

4:   CASE: REPORT MESSAGE  

5:    if (parent(u) != nil) { 

6:    T = T  extractNeighbourhoodSets(m); 

7:    Child(u) = Child(u)\v; 

8:    if (Child(u) == nil)  
9:     Send REPORT message with  

   T  (u, N(u)t) to parent(u); 

10:    } 
 

Figure 3: Data Gathering Algorithm 

 

When a node receives a REPORT message from one of its 

children it extracts the neighbourhood information using the 

extractNeigbhourhoodSets function (line 6:). When a node 

receives REPORT messages from all its children it sends a 

REPORT message with its neighbourhood set as well as all the 

neighbourhood sets received from its children preprocessed to 

reduce the information sent (lines 7: to 10:).  

This process ends with the cluster head that determines the 

topology from the neighbourhood sets it has received. We note 

that for each v  N(u)t information that characterizes the link 
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(u,v) can also be sent e.g., the number of incoming and 

outgoing packets.  

As an example, consider the network and spanning tree 

presented in Figure 2. The leaf nodes are B, G, E, F whose 

neighbourhood sets are represented as (B, {A, D, G}), (G, {B, 

D}), (E, {C, D, F}) and (F, {C, E}), respectively. When node 

D receives the neighbourhood set from node G it sends {(D, 

{B, C, E, G}), (G, {B, D}). When C receives all the 

neighbourhood sets from each of its children (nodes D, E, F) it 

sends {(C, {A, D, E, F}), (D, {B, C, E, G}), (G, {B, D}), (E, 

{C, D, F}), (F, {C, E})} to node A. 

C) Topology Construction 

The cluster head can construct the cluster’s topology from 

the neighbourhood sets. We note that it is possible that for two 

nodes u and v, that u  N(t)t but v  N(u)t. The reason for this 

is that messages may be lost. We assume that in constructing 

the topology that a link is said to exist between u and v if and 

only if u  Nv(t)t and v  Nu(t)t. 

IV. CASE STUDY 

In this section we describe how the data dissemination 

protocol was used to detect that a node has either moved out of 

range or has gone down. Further cross-layer work will be 

required to distinguish between these two cases. We start with 

a discussion of how nodes no longer visible within a cluster 

can be detected. Assume that the cluster head node maintains 

Gt = (Vt,Et) for different values of t. Dt+i = Vt\Vt+i (where i > 0) 

is the set of nodes in Gt but not in Gt+i. A simple definition of 

loss of visibility of a node u is if it is in Dt+1. However, it is a 

possible that a message is lost since UDP is the typical 

transport protocol used in MANETS. If an OK message is lost 

and there is only one node within transmission range then the 

node would be considered to no longer visible. In the next 

construction of the spanning tree the node may be visible. A 

node, u, is considered not visible if u  Dt+j  for each value of j 

between 1 and n.  We refer to each construction of the 

spanning tree as an iteration. The value of n represents the 

number of iterations before a node is considered not visible. 

For example, assume that in the network presented in Figure 

2 that node G moves. Node G may temporarily not be visible 

due to lost OK messages e.g., node G may be visible at Dt but 

not at Dt+1 due to a loss of OK messages. Node G may become 

visible again at t+2 and hence will not be in Dt+2. 

Note that sometimes the reported neighbourhood set of 

nodes is not completely accurate since nodes move. It is 

possible that a node will report an incorrect neighbourhood 

set. The topology may need multiple iterations to determine 

the correct topology.  

V. SIMULATION AND MEASUREMENTS 

In this section, we analyse the performance of the data 

dispersion protocol based on a Qualnet simulation of the two 

implementations. The parameters used in these simulations are 

presented in Table 1.  

 

 

Parameter Value(s) 

Antenna Type Omni directional 

Channel Frequency  2.4 GHz 

Pathloss Model  Two ray 

Maximum Propagation Range 400m 

Radio Type 802.11b  

Data Rate 2mbps 

Routing Protocol AODV 

AODV Hello Message Interval 1 second 

Scenario Area 1500 x 1500m 

Node Count 10, 30, 50 

Number of runs 15 

Percentage of Nodes Moving  10% 

Table 1: Simulation Parameters 

 

Simulations ran with 10, 30 and 50 node networks. 10% of 

the nodes in each case are mobile (random waypoint model) 

which is typically found in tactical MANETs. The results 

should apply to higher rates of mobility. Nodes were placed 

within close proximity for the 30 node scenario and more 

dispersed for the 10 and 50 node scenarios. Each experiment 

was repeated 15 times and the average outcome is given in the 

results. The spanning tree constructed five times in each 

scenario.     

A) Implementation 

For simulation, we have developed two versions of the data 

dissemination protocol. First, the cross-layer implementation 

makes use of the HELLO messages found in the AODV 

routing protocol to construct the spanning tree. We chose to 

start with AODV since it is best suited for resource 

constrained environments.  AODV periodically sends HELLO 

messages to determine link connectivity as part of its route 

maintenance process. There are two issues that had to be 

addressed in this implementation. First, it may be desirable to 

construct the spanning tree only for every N AODV HELLO 

messages. This is a configurable parameter in our 

implementation. The second issue is that not all AODV 

HELLO messages get an OK message in response. To deal 

with this we added a reply flag bit to the AODV HELLO 

message. If the bit is one then this indicates that an OK 

message should be returned. The frequency of setting this bit 

to one is also a configurable parameter. 

Second, an application layer based implementation 

independent of any lower level network protocols was used for 

comparison. All HELLO, OK and REPORT messages are 

produced independently.  

B) Performance Results 

The metric that we used to evaluate efficiency is the number of 

messages generated during the simulation.  These are protocol-

specific.  The results for the application-layer implementation 

do not include any lower-layer packets.  The results for the 

cross-layer protocol does not include the packets generated for 

the HELLO messages of the AODV routing protocol since 

these messages are already being generated for routing 



purposes. It does include the OK messages and the REPORT 

messages since these are not part of the AODV protocol. 

Figure 4 shows that the total number of packets generated 

for 10, 30 and 50 node scenarios. For 10 and 30 nodes, the 

timeout for the OK message was 10 seconds. When this 

timeout was used in the 50 node case the spanning tree could 

not be fully constructed and the information the cluster head 

received was incomplete. Increasing the timeout to 20 seconds 

eliminated this problem. Doubling the simulation time allowed 

five spanning trees to be constructed as in the previous cases.   

 

 
Figure 4: Total number of Generated Packets - 

Application-Layer  

  

At any point in time the number of packets received is 

cumulative since the start of the simulation. The x-axis 

represents time while the y-axis represents packets generated. 

As can be seen in the graph the number of generated packets 

increases in a step-wise fashion.  Note that although the graph 

trends are similar for each case the number of packets 

generated and received is smaller for the 50 node case 

compared to the 30 node case. The reason is that the cluster 

was less dense and thus the average number of edges per node 

was higher for the 30 nodes case.  The average number of one 

hop neighbours for the 10 node scenario was 2, for the 30 node 

scenario 15, and for the 50 node scenario 8. 

It should be noted that each scenario shows a sharp increase 

in packets generated at the start of the simulation. This 

represents packets generated in the initialization of the 

protocol simulation, and not in the discovery protocol. 

While the results in Figure 4 are for the application-level 

implementation, Figure 5 shows results for the cross-layer 

implementation.   The cross-layer implementation exhibits a 

similar trend, but with a lower overhead.  Again, note the 

closeness of the lines for the 30 node and 50 node cases. This 

is again due to the low node density of the 50 node case 

requiring fewer messages. 

 

 
Figure 5: Total packets generated – Cross-Layer 

 

Another view of overhead is seen with a comparison of the 

average number of packets received by each node.  This is 

presented in Table 2. 

 

Scenario 10 nodes 30 nodes 50 nodes 

Cross-Layer 

Implementation 
24 36 32 

Application 

Implementation  
36 101 52 

Table 2: Packets Received per Node  

 

As can be seen, the cross-layer implementation produces 

fewer packets than the application-layer implementation both 

globally and per-node. The reason is that the application-layer 

and the cross-layer implementations both generate packets for 

the routing protocol HELLO messages. However, the 

application-layer protocol generates separate HELLO 

messages for the spanning tree construction and thus increases 

the total number of packets generated. The only additional 

messages needed for the cross-layer implementation are the 

OK messages.  A comparison of the average time taken to 

construct the spanning tree is presented in Table 3. 

 

Scenario 10 nodes 30 nodes 50 nodes 

Cross-Layer 

Implementation 
2.59 4.12 8.03 

Application 

Implementation  
0.83 3.69 4.98 

Table 3: Spanning Tree Construction Times (seconds) 

 

As we can see in the table, for the 30 node scenario the 

spanning tree construction time is similar for both 

implementations. The reason is that for a very dense graph 

both implementations of the spanning tree construction take 



about same amount of time. However, if the graph is less 

dense, as in the 50 node scenario, the cross-layer approach is 

two times slower. For a sparser graph, e.g. 10 nodes, the cross-

layer approach is three times slower.  This suggests that if the 

graph is very dense, the cross-layer may become more 

responsive.  A dense graph implies that a node has many 

edges.  Since the 50 node scenario had fewer edges it 

generated fewer messages.   

Node density also explains the results seen in Figure 5. The 

reason is that the cross-layer implementation uses the HELLO 

messages of the AODV protocol.  When a node receives an 

AODV HELLO message it must wait until the routing 

protocol is ready to send out its AODV HELLO message.  In 

the application-layer protocol the application-layer sends out 

its HELLO messages immediately after receiving HELLO 

message.   

The reason why density helps is that the network diameter is 

typically smaller which means that the length of paths is 

smaller. If the network is dense then the diameter of the graph 

is small so spanning tree construction takes less time for the 

AODV implementation than if the nodes were more sparse. 

C) Detection of Single Node Movement 

The next part of our analysis focuses on the number of 

iterations used to detect a node becoming not visible. One of 

the reasons that a node may not be briefly visible is because of 

a lost message. Thus, it may not be feasible to consider a node 

down unless it is not visible for multiple iterations.  The 

experiments show that on average the number of iterations 

needed to detect that a node is not visible is one iteration for 

10 nodes, two iterations for 30 nodes and three iterations for 

50 nodes. This is to be expected since a larger number of 

nodes imply a larger number of packet losses. The average 

number of iterations needed to determine node movement 

(assuming that 10% of nodes have moved) was one iteration 

for 10 nodes and 30 nodes and two iterations for 50 nodes.  

This may suggest that node movement within a cluster 

requires fewer iterations to determine (and hence less time).  A 

node u that moves within a cluster may move out of range of 

one node but within the range of another node.  Thus u is still 

visible although the actual topology calculated by the cluster 

head may be incorrect. Note that the results for the application 

layer and cross-layer implementation were the same.     

D) Detection Correctness - Topology 

 In the case of ten nodes one node was allowed to move. 

This node moved within the first two iterations before moving 

out of transmission range of all nodes of the network. The 

node moved for the first two iterations. For the ten node 

scenario all node movement was correctly detected in all 

fifteen runs of the simulation in the third iteration without 

knowledge of a correct initial topology. Each node’s 

movement was detected in the next iteration of the algorithm.  

In the case of thirty nodes three nodes were allowed to 

move. Among these three nodes, one node moved out of range 

and the other two nodes moved to other parts of the network. 

Nodes moved for the first two iterations. Among the fifteen 

runs we were able to detect the movements in 11 cases without 

correct initial topology. With correct initial topology we 

detected the movement correctly 14 out of 15 cases. We failed 

to detect the movement correctly in one case that is due to the 

limited five iterations used. We present a summary in Table 4. 

   

 Detected Failed to Detect 

Correct Initial 

Topology 
14 1 

Incorrect Initial 

Topology 
11 4 

Table 4: Detection Rate 

 

We determined the movement in the next iteration in 73% of 

the runs. We detected the movement in the second next 

iteration in 18% of the runs and in the third next iteration in 

9% of the simulation runs. 

VI. CONCLUSIONS AND FUTURE WORK 

 In this paper we have proposed a novel cross-layer protocol 

for data dissemination within a cluster such that observations 

are received at the cluster head with minimal overhead. This 

protocol is used to collect cluster-wide topology information at 

a detector node that acts as a virtual cluster head where the k-

cluster is a sub-network of nodes of interest for failure 

monitoring.   

Simulations show that by building a spanning tree rooted at 

the detector, changes in topology detected by any node can be 

more efficiently collected for further analysis using a cross-

layered implementation. An application layer implementation, 

which produces its own messaging, was found to have higher 

overhead but was faster and more accurate at detecting nodes 

that have moved out of range of the k-cluster. These effects 

were magnified in networks with lower node density.  

The work presented in this paper considers only a single k-

cluster.  However, the results suggest that having multiple 

clusters may be feasible for larger networks.  For future work 

we will be investigating inter-cluster head communication of 

topological information.   While this will increase the network 

side detection overhead, we expect it to remain an 

improvement over centralised detection schemes. Another 

alternative we are planning to investigate is the use of a 

localised broadcast to track down potentially disconnected 

nodes such as the scheme presented in [6]. We will also 

incorporate the splitting of large clusters as needed based on 

the work presented in [14]. 

We are also investigating the use of other protocols such as 

OLSR and NHDP as a substitute for AODV. Finally, we are 

investigating how this scheme can be used to detect and 

respond to and distinguish between different types of failure 

([7], [11])) using cross-layer information (e.g., SNR values 

[12]) and policy-based response. 
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