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Abstract—Network anomaly detection is a critical aspect of
network management for instance for QoS, security, etc. The
continuous arising of new anomalies and attacks create a contin-
uous challenge to cope with events that put the network integrity
at risk. Most network anomaly detection systems proposed so
far employ a supervised strategy to accomplish the task, using
either signature-based detection methods or supervised-learning
techniques. However, both approaches present major limitations:
the former fails to detect and characterize unknown anomalies
(letting the network unprotected for long periods) , the latter
requires training and labelled traffic, which is difficult and expen-
sive to produce. Such limitations impose a serious bottleneck to
the previously presented problem. We introduce an unsupervised
approach to detect and characterize network anomalies, without
relying on signatures, statistical training, or labelled traffic, which
represents a significant step towards the autonomy of networks.
Unsupervised detection is accomplished by means of robust data-
clustering techniques, combining Sub-Space clustering with Ev-
idence Accumulation or Inter-Clustering Results Association, to
blindly identify anomalies in traffic flows. Correlating the results
of the unsupervised detection is also performed for improving the
detection robustness. Characterization is achieved by building
efficient filtering rules to describe a detected anomaly. The
detection and characterization performances of the unsupervised
approach are evaluated on real network traffic.

Index Terms—Unsupervised Anomaly Detection & Charac-
terization, Clustering, Clusters Isolation, Outliers Detection,
Filtering Rules, Anomaly Correlation.

I. INTRODUCTION

Network anomaly detection has become a vital compo-

nent of any network in today’s Internet. Ranging from non-

malicious unexpected events such as flash-crowds and failures,

to network attacks such as denials-of-service and network

scans, network traffic anomalies can have serious detrimental

effects on the performance and integrity of the network. The

principal challenge in automatically detecting and character-

izing traffic anomalies is that these are moving targets. It is

difficult to precisely and permanently define the set of possible

anomalies that may arise, especially in the case of network

attacks, because new attacks as well as new variants of already

known attacks are continuously emerging. A general anomaly

detection system should therefore be able to detect a wide

range of anomalies with diverse structures, using the least

amount of previous knowledge and information, ideally none.

The problem of network anomaly detection has been ex-

tensively studied during the last decade. Two different ap-

proaches are by far dominant in current research literature and

commercial detection systems: signature-based detection and

supervised-learning-based detection. Both approaches require

some kind of guidance to work, hence they are generally

referred to as supervised-detection approaches. Signature-

based detection systems are highly effective to detect those

anomalies which are programmed to alert on. When a new

anomaly is discovered, generally after its occurrence, the

associated signature is coded by human experts, which is then

used to detect a new occurrence of the same anomaly. Such a

detection approach is powerful and very easy to understand,

because the operator can directly relate the detected anomaly

to its specific signature. However, these systems cannot defend

the network against new attacks, simply because they cannot

recognize what they do not know. Furthermore, building new

signatures is expensive, as it involves manual inspection by

human experts.

On the other hand, supervised-learning-based detection uses

labelled traffic data to train a baseline model for normal-

operation traffic, detecting anomalies as patterns that devi-

ate from this model. Such methods can detect new kinds

of anomalies and network attacks not seen before, because

they will naturally deviate from the baseline. Neverthe-

less, supervised-learning requires training, which is time-

consuming and depends on the availability of purely anomaly-

free traffic data-sets. Labelling traffic as anomaly-free is ex-

pensive and hard to achieve in practice, since it is difficult to

guarantee that no anomalies are hidden inside the collected

traffic. Additionally, it is not easy to maintain an accurate and

up-to-date model for anomaly-free traffic, particularly when

new services and applications are constantly emerging.

We think that modern anomaly detection systems should

not rely on previously acquired knowledge and be able to

autonomously detect and characterize traffic deviating from

normal-operation one. Autonomous security is a strong re-

quirement in current networks. It is not acceptable to still rely

on a human hand made analysis of anomalies and attacks for

defining suited countermeasures. Such a hand made process

is slow, inefficient, costly and lets the network unprotected

for several days in general. The current business process in

network security is not fulfilling network requirements in

terms of fully efficient security. We therefore proposed a

completely unsupervised method to detect and characterize



network anomalies, without relying on signatures, training, or

labelled traffic of any kind. It adds to network (e.g. routers)

or security components, thanks to unsupervised learning, some

analysis and decision making capabilities for limiting the need

of a human operator. This aims at making decision very fast,

and configure efficiently and autonomously actual security

devices (IDS, firewall, ...) as soon as a new anomaly or attack

is encountered. A first version of the unsupervised anomaly

detection method was initially proposed in [1]. It relies on the

use of sub-space clustering and Evidence Accumulation. This

first proposed approach permits to detect both well-known as

well as completely unknown anomalies, and to automatically

produce easy-to-interpret signatures that characterize them.

In this paper, a new augmented version of this previous

proposal is presented. The global objectives are similar. Nev-

ertheless, it aims at increasing robustness and correctness of

the decision making process by integrating new techniques

as Inter-Clustering Result Association (ICRA) and Anomaly

Correlation. Figure 1 depicts the high-level structure of our

approach and its steps. It depicts both the techniques presented

in previous papers (that will be nevertheless shortly presented

in this one for making the paper self contained and understand-

able without referring to this previous publication) as well as

the new ones recently integrated and which constitutes the

new contribution: ICRA and Anomaly Correlation. Figure 1

serves all along this paper, and will be further described in the

following sections.

The remainder of the paper is organized as follows. Section

II presents a very brief state of the art in the supervised

and unsupervised anomaly detection fields, additionally de-

scribing our main contributions. Section III presents an in-

depth description of the clustering techniques and detection

algorithms that we use. Section IV presents the anomaly cor-

relation technique that improves the anomaly extraction phase.

Section V presents the automatic anomaly characterization

algorithm, which builds easy-to-interpret signatures for the

detected anomalies. Section VI evaluates the computational

time of the unsupervised detection approach, considering

the parallelization of the clustering algorithms. Section VII

presents a simple validation of our proposals, discovering and

characterizing several anomalies in real network traffic from

the MAWI trace repository [2]. Finally, section VIII concludes

this paper.

II. RELATED WORK

The problem of network anomaly detection has been exten-

sively studied during the last decade. Traditional approaches

analyze statistical variations of traffic volume metrics (e.g.,

number of bytes, packets, or flows) and/or other specific

traffic features (e.g. distribution of IP addresses and ports),

using either single-link measurements or network-wide data.

A non-exhaustive list of methods includes the use of signal

processing techniques (e.g., ARIMA, wavelets) on single-link

traffic measurements [3], [4], PCA [5], [6] and Kalman filters

[7] for network-wide anomaly detection, and Sketches applied

to IP-flows [8], [9].
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Fig. 1. High-level description of our approach.

The URCA tool [10] has an hybrid approach which relies on

both signatures and supervised learning. This tool uses as input

the result of any anomaly detection system. It is able to classify

anomalies by associating them with previously manually built

signatures through hierarchical clustering. However, if the

anomaly detection algorithm used detects an anomaly which

is different from every built-in signature, this system is unable

to classify or characterize the considered unknown anomaly.

Our proposal falls within the unsupervised anomaly detec-

tion domain. Most work has been devoted to the Intrusion De-

tection field, focused on the well known KDD’99 data-set. The

vast majority of the unsupervised detection schemes proposed

in the literature are based on clustering and outliers detection,

being [11]–[13] some relevant examples. In [11], authors use

a single-linkage hierarchical clustering method to cluster data

from the KDD’99 data-set, based on the standard Euclidean

distance for inter-pattern similarity. Clusters are considered as

normal-operation activity, and patterns lying outside a cluster

are flagged as anomalies. Based on the same ideas, [12] reports

improved results in the same data-set, using three different

clustering algorithms: Fixed-Width clustering, an optimized

version of k-NN, and one class SVM. Finally, [13] presents a

combined density-grid-based clustering algorithm to improve

computational complexity, obtaining similar detection results.

III. UNSUPERVISED ANOMALY DETECTION

The algorithm runs in three consecutive stages. Firstly,

multi-resolution flow aggregation is applied on the traffic in

order to build several simple metrics such as number of bytes,

packets or flows. Any time series based change detection

algorithm is then applied to the previously built traffic metrics

in order to detect a change. This first step is depicted on the

upper part of figure 1. The unsupervised detection algorithm

is depicted on the lower part of figure 1 and begins in the

second stage, using as input the set of flows captured in

the time slot flagged as anomalous. Sub-Space Clustering

(SSC) [14] and multiple Evidence Accumulation (EA) [15]

are used to blindly extract the suspicious traffic flows that

compose the anomaly. We however show in this paper that EA

actually lacks robustness. We hence propose a new technique

to combine the SSC results called Inter-Clustering Results

Association (ICRA). In order to provide further improvements

in terms of results robustness, we introduce a new method to



correlate anomalies detected in several feature spaces. In the

third stage of the algorithm, the evidence of traffic structure

is further used to produce filtering rules that characterize

the detected anomaly, which are ultimately combined into a

new anomaly signature. This signature provides a simple and

easy-to-interpret description of the problem, easing network

operator tasks.

Our anomaly detection works on single-link packet-level

traffic captured in consecutive time-slots of fixed length ∆T .

The first analysis stage consists in change detection. At

each time-slot, traffic is aggregated in 9 different flow levels

li. These include (from finer to coarser-grained resolution):

source IPs (l1: IPsrc), destination IPs (l2: IPdst), source Net-
work Prefixes (l3,4,5: IPsrc/24, /16, /8), destination Network

Prefixes (l6,7,8: IPdst/24, /16, /8), and traffic per Time Slot

(l9: tpTS). Time series Z li
t are built for basic traffic metrics

such as number of bytes, packets, and IP flows per time

slot, using the 9 flow resolutions l1...9. Any generic anomaly-

detection algorithm F(.) based on time-series analysis [3], [4],

[7], [8], [16] is then used on Z li
t to identify an anomalous slot.

In this case, we use absolute deltoids [16] based on volume

metrics time series (#packets, #bytes and #syn). Time slot

tj is flagged as anomalous if F(Z li
tj ) triggers an alarm for

any of the li flow aggregation levels. Tracking anomalies at

multiple aggregation levels provides additional reliability to

the anomaly detector, and permits to detect both single source-

destination and distributed attacks of very different intensities.

The unsupervised anomaly detection stage takes as input all

the flows in the time slot flagged as anomalous, aggregated

according to one of the different levels used in the first stage.

An anomaly will generally be detected in different aggregation

levels, and there are many ways to select a particular aggrega-

tion to use in the unsupervised stage; for the sake of simplicity,

we shall skip this issue, and use any of the aggregation levels

in which the anomaly was detected. Without loss of generality,

let Y = {y1, ..,yF } be the set of F flows in the flagged time

slot, referred to as patterns in more general terms. Each flow

yf ∈ Y is described by a set of A traffic attributes or features.

In this paper, we use a list traffic attributes widely used in

literature. The list includes A = 9 traffic features: number of

source/destination IP addresses and ports, ratio of number of

sources to number of destinations, packet rate, ratio of packets

to number of destinations, and fraction of ICMP and SYN

packets. According to our previous work on signature-based

anomaly characterization [17], such simple traffic descriptors

permit characterization of general traffic anomalies in easy-to-

interpret terms. The list is therefore by no means exhaustive,

and more features can be easily plugged-in to improve results.

Let xf = (xf (1), .., xf (A)) ∈ R
A be the corresponding vector

of traffic features describing flow yf , and X = (x1; ..;xF ) the
complete matrix of features, referred to as the feature space.

The unsupervised detection algorithm is based on clustering

techniques applied to X. The objective of clustering is to

partition a set of unlabelled patterns into homogeneous groups

of similar characteristics, based on some measure of similarity.

Table I explains the characteristics of each anomaly in terms of

type, distributed nature, aggregation type and netmask used,

and impact on traffic features. On one hand, a SYN DDoS

which targets one machine from a high number of hosts

located in several /24 addresses will constitute a cluster if flows

are aggregated in l3. In fact, each of these /24 addresses will

have traffic attributes values different from the ones of normal

traffic: a high number of packet, a single destination and many

SYN packets. It is the whole set of these flows that will create

a cluster. On the other hand, if flows are aggregated in l6, the
only destination address will be an outlier characterized by

many sources and a high proportion of SYN packets.

Our particular goal is to identify and to isolate the different

flows that compose the anomaly flagged in the first stage, both

in a robust way. Unfortunately, even if hundreds of clustering

algorithms exist [18], it is very difficult to find a single one that

can handle all types of cluster shapes and sizes, or even decide

which algorithm would be the best for our particular problem.

Different clustering algorithms produce different partitions

of data, and even the same clustering algorithm provides

different results when using different initializations and/or

different algorithm parameters. This is in fact one of the major

drawbacks in current cluster analysis techniques: the lack of

robustness.

To avoid such a limitation, we have developed a divide and

conquer clustering approach, using the notions of clustering

ensemble [19] and multiple clusterings combination. A cluster-

ing ensemble P consists of a set of N partitions Pn produced

for the same data with n = 1, .., N . Each of these partitions

provides a different and independent evidence of data struc-

ture, which can be combined to construct a global clustering

result for the whole feature space. There are different ways to

produce a clustering ensemble. We use Sub-Space Clustering

(SSC) [14] to produce multiple data partitions, applying the

same clustering algorithm to N different sub-spaces Un ⊂ X

of the original space.

A. Clustering Ensemble and Sub-Space Clustering

Each of the N sub-spaces Un ⊂ X is obtained by selecting

R features from the complete set of A attributes. The number

of sub-spaces N hence is equal to R-combinations-obtained-

from-A. To set the sub-space dimension R, we take a very

useful property of monotonicity in clustering sets, known as

the downward closure property: “if a collection of points is a

cluster in a d-dimensional space, then it is also part of a cluster

in any (d − 1) projections of this space” [20]. This directly

implies that, if there exists any evidence of density in X, it

will certainly be present in its lowest-dimensional sub-spaces.

Using small values for R provides several advantages: firstly,

doing clustering in low-dimensional spaces is more efficient

and faster than clustering in bigger dimensions. Secondly,

density-based clustering algorithms provide better results in

low-dimensional spaces [20], because high-dimensional spaces

are usually sparse, making it difficult to distinguish between

high and low density regions. We shall therefore use R = 2
in our SSC algorithm, which gives N = CA

R = A(A − 1)/2
partitions.



TABLE I
FEATURE USED FOR THE DETECTION OF DOS, DDOS, NETWORK/PORT SCANS, AND SPREADING WORMS. ANOMALIES OF DISTRIBUTED NATURE 1-TO-N OR N-TO-1 INVOLVE

SEVERAL /24 (SOURCE OR DESTINATIONS) ADDRESSES CONTAINED IN A SINGLE /16 ADDRESS.

Anomaly Distributed nature Aggregation type Clustering result Impact on traffic features

DoS (ICMP ∨ SYN)
1-to-1 IPsrc/∗ Outlier nSrcs = nDsts = 1, nPkts/sec > λ1 , avgPktsSize < λ2 ,

IPdst/∗ Outlier (nICMP/nPkts > λ3 ∨nSYN/nPkts > λ4).

DDoS (ICMP ∨ SYN)
N-to-1

IPsrc/24 (l3) Cluster nDsts = 1, nSrcs > α1, nPkts/sec > α2, avgPktsSize < α3 ,

to several @IP/24
IPsrc/16 (l4) Outlier (nICMP/nPkts > α4 ∨ nSYN/nPkts > α5).

IPdst/∗ Outlier

Port scan 1-to-1
IPsrc/∗ Outlier nSrcs = nDsts = 1, nDstPorts > β1, avgPktsSize < β2,

IPdst/∗ Outlier nSYN/nPkts > β3.

Network scan to
1-to-1

IPsrc/∗ Outlier
nSrcs = 1, nDsts > δ1 , nDstPorts > δ2 , avgPktsSize < δ3,

several @IP/24
IPdst/24 (l6) Cluster

nSYN/nPkts > δ4.IPdst/16 (l7) Outlier

Spreading worms to
1-to-N

IPsrc/∗ Outlier
nSrcs = 1, nDsts > η1 , nDstPorts < η2 , avgPktsSize < η3,

several @IP/24
IPdst/24 (l6) Cluster

nSYN/nPkts > η4.IPdst/16 (l7) Outlier

B. Combining Multiple Partitions

Having produced the N partitions, we now explore different

methods to combine these partitions in order to build a single

partition where anomalous flows are easily distinguishable

from normal-operation traffic: the classical Evidence Accumu-

lation (EA) and the new Inter-Clustering Result Association

(ICRA) method.

1) Combining Multiple Partitions using Evidence Accu-

mulation: A possible answer is provided in [15], where

authors introduced the idea of multiple-clusterings Evidence

Accumulation (EA). By simple definition of what it is, an

anomaly may consist of either outliers or small-size clusters,

depending on the aggregation level of flows in Y (cf table

I). EA then uses the cluster ensemble P to build two inter-

pattern similarity measures between the flows in Y. These

similarity measures are stored in two elements: a similarity

matrix S to detect small clusters and a vector D used to rank

outliers. S(p, q) represents the similarity between flows p and

q. This value increases when the flows p and q are in the

same cluster many times and when the size of this cluster is

small. These two parameters allows the algorithm to target

small clusters. D(o) represents the abnormality of the outlier

o. This value increases when the outlier has been classified

as such several times and when the separation between the

outlier and the normal traffic is important. As we are only

interested in finding the smallest-size clusters and the most

dissimilar outliers, the detection consists in finding the flows

with the biggest similarity in S and the biggest dissimilarity in

D. Any clustering algorithm can then be applied on the matrix

S values to obtain a final partition of X that isolates small-

size clusters of close similarity values. A variable detection

threshold over the values in S is also able to detect small-size

cluster. Concerning dissimilar outliers, they can be isolated

though a threshold applied on the values in D.

2) Combining Multiple Partitions using Inter-Clustering

result Association: However, by reasoning over the similarities

between patterns (here flows), EA introduces several potential

errors. Let us consider two pattern sets Pi and Pj , if the

cardinality of these pattern sets is close and if they are present

in a similar number of sub-spaces, then EA will produce a very

close (potentially the same) similarity value for both flow sets.

They will then likely be falsely considered as belonging to the

same cluster. This possibility is to be considered very seriously

as it can induce a huge error: different anomalies will be

merged together and will then likely be wrongly identified and

characterized. Another source of potential error when using a

clustering algorithm over S values is the algorithm sensitivity

to wrong parameters. Furthermore, the use of a threshold over

S and/or D can decrease the system performance in case of

a wrong value used.

In order to avoid the previously exposed sources of error, we

introduce a new way of combining clustering results obtained

from sub-spaces: Inter-Clustering Results Association. The

idea is to address the problem in terms of cluster of flows and

outlier of flow similarity instead of pattern (or flow) similarity.

Hence, we shift the similarity measure from the patterns to the

clustering results. The problem can then be split in two sub-

problems: correlate clusters through Inter-CLuster Association

(ICLA), and correlate outlier through Inter-Outlier Association

(IOA).

In each case, a graph is used to express similarity between

either clusters or outliers. Each vertex is a cluster/outlier from

any sub-space Un and each edge represents the fact that

two connected vertices are similar. The underlying idea is

straightforward: identify clusters or outliers present in different

sub-spaces that contain the same flows. To do so, we first

define a cluster similarity measure called CS between two

clusters Cr and Cs: CS(Cr , Cs) = card(Cr∩Cs)
max(card(Cr),card(Cs)

,

card being the function that associates a pattern set with its

cardinality, and Cr ∩ Cs the intersection of Cr and Cs. Each

edge in the cluster similarity graph between two Cr and Cs

means CS(Cr , Cs) > 0.9, being this an empirically chosen

value. 1 IOA uses an outlier similarity graph built by linking

every outlier to every other outlier that contains the same

pattern. Once these graphs are built, we need to find cluster

sets where every cluster contains the same flows. In terms of

vertices, we need to find vertex sets where every vertex is

linked to every other vertex. In graph theory, such vertex set

is called a clique. The clique search problem is a NP-hard

problem. Most existing solutions use exhaustive search inside

1The value 0.9 guarantees that the vast majority of patterns are located in
both clusters with a small margin of error.



the vertex set which is too slow for our application. We then

make the hypothesis that a vertex can only be part of a single

clique. A greedy algorithm is then used to build each clique.

Anomalous flow set are finally identified as the intersection of

all the flow sets present in the clusters or outliers within each

clique.

IV. CORRELATING ANOMALIES FROM MULTIPLE

AGGREGATION

At the end of the ICLA/IOA step, many anomalies can

be found. However, it is a priori not possible to assess

an anomaly’s potential danger. A good way to evaluate its

potential impact is to find out whether it is visible in several

aggregation levels li. In fact, if an anomaly appears as such

within several aggregation levels, it means that its flows

are significantly different from the normal traffic in each of

these aggregation levels, and thus, potentially dangerous in

each of them. Therefore, we present a system that correlates

anomalies found in several aggregation levels li in order to

filter anomalies present in one or few aggregation level and

thus that we consider as having a limited impact. The system

will then also able to characterize the anomaly through a

signature for each aggregation level used, thus improving the

characterization reliability.

In order to correlate anomalies from different aggregation

levels, we define two unique characteristics of an anomaly: its

source (source IP address set) and its destination (destination

IP address set). We then define the similarity between two

IP address sets as the ratio between the sets’ intersection

cardinality and the maximum cardinality of each IP address

sets. If the similarities of the two IP address sets (source and

destination) of two different anomalies are over a specific

threshold, it guarantees that these anomalies have a very

similar source and destination IP address sets. In this work, we

chose to only correlate anomalies detected from aggregation

levels source and destination, in order to avoid correlating

anomalies located in same aggregation level type (e.g. l3 and

l4), that would be potentially contained in each other. Finally,

correlated anomalies are then built from each couple of similar

anomalies.

V. AUTOMATIC CHARACTERIZATION OF ANOMALIES

At this stage, the algorithm has identified several correlated

anomalies containing a set of traffic flows in Y far out

the rest of the traffic. The following task is to produce

filtering rules to correctly isolate and characterize each of

these anomalies. Even more, this signature could eventually

be compared against well-known signatures to automatically

classify the anomaly.

In order to produce filtering rules, the algorithm selects

those sub-spacesUn where the separation between the consid-

ered anomalous flows and the rest of the traffic is the biggest.

We define two different classes of filtering rule: absolute rules

FRA(Y) and relative rules FRR(Y). Absolute rules do not

depend on the separation between flows, and correspond to

the presence of dominant features in the considered flows.

An absolute rule for a certain feature j characterizing a

certain flow set Yg has the form FRA(Yg , a) = {∀yf ∈
Yg ⊂ Y : xf (a) == λ}. For example, in the case of an

ICMP flooding attack, the vast majority of the associated

flows use only ICMP packets, hence the absolute filtering

rule {nICMP/nPkts == 1} makes sense. On the contrary,

relative filtering rules depend on the relative separation be-

tween anomalous and normal-operation flows. Basically, if the

anomalous flows are well separated from the normal cluster in

a certain partition Pn, then the features of the corresponding

sub-space Un are good candidates to define a relative filtering

rule. A relative rule has the form FRR(Yg, a) = {∀yf ∈
Yg ⊂ Y : xf (a) < λ ∨ xf (a) > λ}. We shall also define a

covering relation between filtering rules: we say that rule f1
covers rule f2 ⇔ f2(Y) ⊂ f1(Y). If two or more rules overlap

(i.e., they are associated to the same feature), the algorithm

keeps the one that covers the rest.

In order to construct a compact signature of the anomaly,

we have to devise a procedure to select the most discriminant

filtering rules. Absolute rules are important, because they

define inherent characteristics of the anomaly. As regards

relatives rules, their relevance is directly tied to the degree of

separation between anomalous and normal flows. In the case of

outliers, we select the K features for which the Mahalanobis

distance to the normal-operation traffic is among the top-

K biggest distances. In the case of small-size clusters, we

rank the relatives rules according to the degree of separation

to the normal anomaly using the well-known Fisher Score

(FS) which uses the variance in each cluster (normal and

anomalous). To finally construct the signature, the absolute

rules and the top-K relative rules are combined into a single

inclusive predicate, using the covering relation in case of

overlapping rules.

VI. COMPUTATIONAL TIME AND PARALLELIZATION

The last issue that we analyze is the Computational Time

(CT) of the algorithm. The SSC-EA/ICRA-based algorithm

performs multiple clusterings in N(A) low-dimensional sub-

spaces Un ⊂ X. This multiple computation imposes scalabil-

ity issues for on-line detection of attacks in very-high-speed

networks. Two key features of the algorithm are exploited to

reduce scalability problems in number of features A and the

number of aggregated flows F to analyze. Firstly, clustering

is performed in very-low-dimensional sub-spaces, Un ∈ R
2,

which is faster than clustering in high-dimensional spaces [18].

Secondly, each sub-space can be clustered independently of

the other sub-spaces, which is perfectly adapted for parallel

computing architectures. Parallelization can be achieved in

different ways: using a single multi-processor and multi-core

machine, using network-processor cards and/or GPU (Graphic

Processor Unit) capabilities, using a distributed group of

machines, or combining these techniques. We shall use the

term ”slice” as a reference to a single computational entity.

Figure 2 depicts the CT of the SSC-EA/ICRA-based al-

gorithm, both (a) as a function of the number of features A
used to describe traffic flows and (b) as a function of the
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Fig. 2. Computational Time as a function of n of features and n of flows to
analyze. The number of aggregated flows in (a) is F = 10000. The number
of features and slices in (b) is A = 20 and S = 190 respectively.

number of flows F to analyze. Figure 2.(a) compares the

CT obtained when clustering the complete feature space X,

referred to as CT(X), against the CT obtained with SSC,

varying A from 2 to 29 features. We analyze a large number

of aggregated flows, F = 104, and use two different number

of slices, S = 40 and S = 100. The analysis is done with

traffic from the WIDE network, combining different traces to

attain the desired number of flows. To estimate the CT of

SSC for a given value of A and S, we proceed as follows:

first, we separately cluster each of the N = A(A− 1)/2 sub-

spaces Xi, and take the worst-case of the obtained clustering

time as a representative measure of the CT in a single sub-

space, i.e., CT(XSSCwc) = maxn CT(Un). Then, if N 6 S,
we have enough slices to completely parallelize the SSC

algorithm, and the total CT corresponds to the worst-case,

CT(XSSCwc). On the contrary, if N > S, some slices have to

cluster various sub-spaces, one after the other, and the total

CT becomes (N%S + 1) times the worst-case CT(XSSCwc),
where % represents integer division. The first interesting

observation from figure 2.(a) regards the increase of CT(X)
when A increases, going from about 8 seconds for A = 2
to more than 200 seconds for A = 29. As we said before,

clustering in low-dimensional spaces is faster, which reduces

the overhead of multiple clusterings computation. The second

paramount observation is about parallelization: if the algorithm

is implemented in a parallel computing architecture, it can be

used to analyze large volumes of traffic using many traffic

descriptors in an on-line basis; for example, if we use 20
traffic features and a parallel architecture with 100 slices, we

can analyze 10000 aggregated flows in less than 20 seconds.

Figure 2.(b) compares CT(X) against CT(XSSCwc) for an

increasing number of flows F to analyze, using A = 20 traffic

features and S = N = 190 slices (i.e., a completely par-

allelized implementation of the SSC-EA-based algorithm). As

before, we can appreciate the difference in CT when clustering

the complete feature space vs. using low-dimensional sub-

spaces: the difference is more than one order of magnitude,

independently of the number of flows to analyze. Regarding

the volume of traffic that can be analyzed with this 100%
parallel configuration, the SSC-EA/ICRA-based algorithm can

analyze up to 50000 flows with a reasonable CT, about 4

minutes in this experience. In the presented evaluations, the

number of aggregated flows in a time slot of ∆T = 20

seconds rounds the 2500 flows, which represents a value of

CT(XSSCwc) ≈ 0.4 seconds. For the m = 9 features that we

have used (N = 36), and even without doing parallelization,

the total CT is N×CT(XSSCwc) ≈ 14.4 seconds.

VII. EXPERIMENTAL EVALUATION IN REAL TRAFFIC

We evaluate the ability of our algorithm to detect and to

construct a signature for different anomalies located in the

same real traffic trace from the public MAWI repository of

the WIDE project [2]. The WIDE operational network pro-

vides interconnection between different research institutions

in Japan, as well as connections to different commercial ISPs

and universities in the U.S.. The traffic repository consists

of 15 minutes-long raw packet traces collected daily since

1999. The network traffic we shall work on consist of traffic

from one of the trans-pacific links between Japan and the

U.S., captured at sample point B. Reference [21] provides

fragmented documentation for the whole data set.

ICLA phase results for destination IP address /24 aggregated

data are displayed on figure 3.(a). Each vertex is a cluster

found in any of the generated sub-spaces. Each vertex number

is the index of a cluster among the whole cluster set within the

clustering ensembleP. The normal traffic is represented by the

vertex group with the highest number of vertices. Every other

group of points is a clique and potentially contains an anomaly.

Figure 3.(b) depicts the outlier similarity graph obtained for

destination IP address /24 aggregated data during the IOA

phase. Each vertex number is the index of the associated

outlier among the whole outlier set within the clustering

ensemble P. The same graphs are built over the source IP

address /24 aggregated data. Every edge means that the linked

clusters or outliers are similar according to the criteria defined

in III-B2.

Every connected component which is also a clique is then

extracted from the graph, considered as a potential anomaly.

Each potential anomaly is assigned an index. This index

has the following meaning: values between 0 and 99 means

anomalies from clusters found in source IP address aggregated

data, values between 100 and 199 means anomalies from

outliers found in source IP address aggregated data, values

between 200 and 299 means cluster found in destination IP

address aggregated data and values between 300 and 399

means anomalies from outliers found in destination IP address

aggregated data. The choice of 100 anomalies for each type

of anomaly source is made under the assumption that there is

less than 100 cliques in each graph.

Once anomalies are extracted from feature spaces by the

unsupervised detection, we apply anomaly correlation in order

to find flows that are different from the normal ones in both

aggregation type: source IP address and destination IP address.

Figure 3.(c) depicts the anomalies similarities as a graph.

Anomaly correlation then extracts three edges from the graph.

Each edge represents the link between two similar anomalies,

here anomalies 101 and 300, 111 and 305, and finally 100 and

205.
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(a) Cluster similarity graph (b) Outlier similarity graph (c) Anomaly similarity graph.

Fig. 3. Cluster similarity graph and outlier similarity graph for destination aggregated data. Anomalies are easily identified through cliques.

TABLE II
SIGNATURES OF ANOMALIES FOUND.

Anomaly type
Source traffic Destination traffic

Source signature Destination signature
segment indice segment indice

Few ICMP pkts 111 305 nSrcs = 1, nICMP/nPkts > λ1 nSrcs = 1, nICMP/nPkts > λ2

Few ICMP pkts 112 309 nSrcs = 1, nICMP/nPkts > α1 nSrcs = 1, nICMP/nPkts > α2

Network scan 100 205 nSrcs = 1, nDsts > β1,nSYN/nPkts > β2 nSrcs = 1, nDsts > β3, nSYN/nPkts > β4
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Fig. 4. Filtering rules for characterization of the found network scan in
MAWI.

Table II details each anomaly with its type, the segment

indices extracted from ICLA and IOA and the two signatures

detected from both source and destination aggregated data.

The terms “Few ICMP packets” actually means that these two

anomalies were containing just a few harmless ICMP packets.

Both of these anomalies could have easily been discarded by

an impact estimation based on nPkts/second.

Figures 4.(a,b) depicts the results of the characterization

phase for a network scan anomaly. Each sub-figure represents

a partition Pn for which filtering rules were found. They

involve the number of IP sources and destinations, and the

fraction of SYN packets. Combining them produces a signa-

ture that can be expressed as (nSrcs == 1) ∧ (nDsts > λ1)
∧ (nSYN/nPkts > λ2), where λ1 and λ2 are two thresholds

obtained by separating normal and anomalous clusters at half

distance. This signature makes perfect sense: the network scan

uses SYN packets from a single attacking host to a large

number of victims. The main advantage of the unsupervised

approach relies on the fact that this new signature has been

produced without any previous information about the attack

or the baseline traffic.

VIII. CONCLUSIONS

The completely unsupervised anomaly detection algorithm

we have presented has many interesting advantages w.r.t.

previous proposals in the field. It uses exclusively unlabelled

data to detect and characterize network anomalies, without

assuming any kind of signature, particular model, or canonical

data distribution. This allows to detect new previously unseen

anomalies, even without using statistical-learning or human

analysis or decision making. Despite using ordinary clustering

techniques, the algorithm avoids the lack of robustness of

general clustering approaches by combining the notions of

Sub-Space Clustering/Sub-Space Clustering, Inter-Cluster As-

sociation & Anomaly Correlation for Unsupervised Network

Anomaly Detection and Anomaly Correlation. The character-

ization approach permits the construction of easy-to-interpret-

and-to-visualize results, providing insights and explanations

about the detected anomalies to the network operator.

We have evaluated the computational time of our algorithm.

Results confirm that the use of the algorithm for on-line

unsupervised detection and characterization is possible and

easy to achieve for the volumes of traffic that we have

analysed. Even more, they show that if run in a parallel archi-

tecture, the algorithm can reasonably scale-up to run in high-

speed networks, using more traffic descriptors to characterize

network attacks.

We have verified the effectiveness of our proposal to detect

and isolate distributed network anomalies on real traffic, in

a completely blind fashion, without assuming any particular

traffic model, significant clustering parameters, or even clus-

ters structure beyond a basic definition of what an anomaly

is. This provides a strong evidence of the accuracy of the



SSC-ICLA/IOA-Anomaly Correlation-based method to detect

network anomalies. We think that this approach constitute a

great step toward an autonomous network anomaly detection

that will allow networks to self-diagnose themselves and thus

faster reactions and lower operational costs.
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