
Towards introspectable, adaptable and extensible autonomic managers.

Yoann Maurel, Philippe Lalanda
Laboratoire Informatique de Grenoble

F-38041, Grenoble cedex 9, France
(yoann.maurel, philippe.lalanda)@imag.fr

Ada Diaconescu
Departement INFRES, Telecom ParisTech

75013 Paris, France
ada.diaconescu@telecom-paristech.fr

Abstract—In this paper, we propose an architecture for
building adaptable, extensible and introspectable autonomic
managers. In that purpose, we introduce the concept of
administration tasks: very specialized components that are
opportunistically assembled into autonomic control loops. We
discussed particularly the possibility of monitoring and modi-
fying the managers’ behaviours at runtime. Our architecture
has been implemented as a service oriented framework using
iPOJO/OSGi technologies and tested on a sample application
pertaining to home automation.

Keywords-autonomic management;autonomic managers; ser-
vice oriented computing;framework;administration tasks

I. INTRODUCTION

Autonomic solutions [1] will play an increasing role in the
development of modern systems. Central to most autonomic
systems are autonomic managers responsible for the self-
management [2]- i.e implementing the adaptation process.
In our view, autonomic managers must be:

• Administrable/Introspectable: managers are complex
systems and their behaviour should be administrable.
Self-management is the result of a succession of spe-
cialized activities (monitoring, inferences, aggregation,
problem detection ...). Their implementation requires
expertise and is often an overwhelming task. Our goal is
to ease the implementation and the evaluation of these
tasks and favour the reuse of specialized activities.

• Adaptable: managers’ behaviours should evolve in
the light of past performances/evaluations. Managers
should display various behaviours depending on the
evolution of context and goals.

• Extensible: managers should be able to adapt to dif-
ferent management situations and configuration. Estab-
lishing an exhaustive description in advance is hardly
possible - particularly for pervasive environments [3].
One solution is to build extensible managers so as to
take new situations into account.

In that purpose we propose an architecture and a sup-
porting domain-specific service-oriented component model
for building autonomic manager. We decompose managers’
behaviours into specialized management functions imple-
mented by discoverable components called administration
tasks (figure 1). The main advantages include:

• Allowing the reuse of existing administration tasks -
i.e. autonomic management functions;

• Enabling the easy and fast assembly of such reusable
administration tasks into autonomic control loops;

• Enabling the dynamic evaluation of these tasks;
• Supporting the dynamic adaptation and extension of

existing autonomic control loops;
• Supporting redundancy of administration tasks, which

will whether work in parallel (if not in conflict) or will
be selected by a specialized arbiter (if in conflict).

This paper first provides an overview of our framework
and administration tasks and then explains how the manager
is made introspectable and adaptable. Finally it presents
implementation details and some applications.

II. FRAMEWORK OVERVIEW

Our framework is divided into three layers (figure 1) :
1) the management layer, composed of a set of admin-

istration tasks, managing the system;
2) the control layer managing tasks lifecycle and organ-

ising the tasks collaboration;
3) the administration layer providing the tools - HMI,

API, ...- for building and managing the manager;

Figure 1. Architecture of a manager.

The system is managed by the management layer com-
posed of a set of administration tasks: highly specialized



coherent component, performing a specific activity that
advances a control loop’s execution (e.g. monitoring a value,
aggregating information or detecting a specific problem).
Tasks are discovered/deployed at runtime - using a service
oriented approach - and then opportunistically combined
into autonomic control loops. These loops are thus not
defined in a static way but are the result of the tasks’
collaboration. Tasks may work in parallel so that several
loops - dealing with specific concerns - may coexist at
runtime. Depending on the context, the set of working tasks
is refined dynamically by adding, updating or removing
tasks. This way the manager behaviour can be adapted or
extended.

Tasks offer an homogenous integration model for man-
agement activities, by featuring the same architecture and by
exposing the same API, irrespectively of the control-loop
phase they achieve. We propose a component model that
establishes a clear separation between the concerns. A task
is made of several modules (figure 2). The communication
is realized by one input and one output communication
port. The activation and triggering conditions are analyzed
and managed by the scheduler. The coordinator avoids
conflicts between tasks by communicating with a selection
process provided by the control layer. The specific task
algorithm is implemented by the processor. Two modules are
for administrations purposes: the statistical module gathers
information on task execution and the administration module
exposes unified administration APIs.

Figure 2. Task’s sub-modules

Encapsulating management activities into functionally-
independent homogeneous and coherent units favours their
reuse and hides the implementation heterogeneity of the
underlying collection, inference and execution methods.
Proposing a component model allows the developer to ex-
tend or reimplement existing modules for specific purposes.
Our framework provides fully functional reusable modules.

III. ADMINISTRATION AND INTROSPECTABILITY

To improve maintainability, our framework allows the
dynamic monitoring of the manager at runtime and proposes
a model-driven approach for building managers.

To allow their evaluation, each task is endowed with a
statistics module. It executes at each task call, provides
information on the task state (configured, valid/invalid, wait-
ing, active or blocked) and calculates usage statistics (e.g.
the number of task executions, the quantity and type of

processed/produced data, the average task execution time,
the number of times a task was considered blocked). The
default statistics module can be extended to provide new
types of information.

These statistics are part of the information gathered by the
control layer to build a model@runtime[4] of the current
manager execution. The model contains task information
(identifier, type, configuration including scheduler, coordina-
tor and ports configuration) as well as controller configura-
tion (selection mechanism configuration and general config-
uration properties). This model is used by the administration
layer to evaluate and adapt the manager’s behaviour. At any
time the framework can provide a full description of the task
activity.

We establish a clear separation between task type, task
implementation and task instances. The implementation de-
fines the implementation and the combination of all sub-
modules. This concept corresponds to the component type
or class concept. The same task implementation may have
multiple task instances at runtime. The task instance concept
corresponds to the component instance concept (or to the
object/instance concept in object-oriented programming).
At the same time, a given functionality can be realized
in several manners (e.g. language, algorithms or targeted
system). For this reason we introduce the task type concept;
it enables us to standardize the use, the configuration and
the data consumed/produced (data are typed too) by task
categories that accomplish the same functions. Each task
implements a specification that describes its utilization and
the operation it realizes. Two tasks of the same types are
substitutable.

The administration layer is at the origin of the creation and
configuration of the manager. The manager is described in a
targeted manager model. This description in terms of tasks
types describing task’s functionality is fully independent
from the implementation. At runtime, a construction module
is responsible for instantiating this model - by selecting task
implementation - and synchronizing both model@runtime
and targeted manager models. The administration layer of-
fers all the necessary tools to monitor, build and modify the
manager. In particular, it offers an API, an ADL interpreter
and a GUI (figure 3)

Figure 3. HMI allows to modify the manager at runtime.



IV. ADAPTABILITY AND EXTENDIBILITY

One key strength of our framework is that the combi-
nation of tasks is opportunistic and may be refined during
runtime. Adaptation and extension are made possible for the
following reasons.

First, tasks are free to choose the appropriate moment to
activate. Each task is endowed with a specific module, the
scheduler, that determines when to activate. The triggering
condition can depend on the collected data (type or quantity)
as well as on external events (e.g. time). They are part of
the model@rutime and their configuration can be changed
dynamically at runtime.

Second, the framework supports redundancy of adminis-
tration tasks, which will whether work in parallel or will be
selected for by a specialized selection mechanism. One im-
portant adaptation in our system concerns the configuration
of this mechanism provided by the control layer. By modi-
fying the configuration it is possible to change the manner
in which concurrent tasks execute and thus to change the
overall manager behaviour. Having multiple tasks competing
enables the management process to explore various possible
solutions. We use two approaches for solving conflicts. First
we use a synthesis task which will receive the contribution of
each executed task and decides on an appropriate result. This
solution is interesting for testing several solutions in parallel
- however it might be difficult for the synthesis task to
rollback some actions as this method intervenes after tasks’
execution. Second, the control layer proposes one or more
dedicated specialized components - the arbiters - that will be
called by conflicting tasks to select which tasks can execute
and which tasks cannot. These arbiters are implemented as
services and can be replaced or reconfigured anytime during
runtime to adapt the manager behaviour. Selection is solely
performed when necessary: the expert configures tasks with
the list of conflicting data types. We provide several arbiter
implementations embedding different arbitration algorithm
(e.g. data based, token based or priority based). Developers
are free to extend them.

Third adaptation is made possible by using a service-
oriented approach for task discovery. Tasks are implemented
as services and the communication between them is direct
and data/event-driven. Data producers and data consumers
discover dynamically at runtime and it is possible to add, re-
move or update tasks dynamically during runtime. This way
human or auto-adaption modules can extend the manager
behavior using the aforementioned administrations tools.

In particular, the adaptation/extension of the manager
can be automated by self-adaption modules using the
model@runtime to identify the new requirements. This au-
tomation doesn’t need to be complex for being useful. In
particular we used such modules to replace blocked tasks or
trying new task implementations when an implementation
was judged faulty.

V. IMPLEMENTATION AND APPLICATION

Our architecture has been implemented in JAVA on top of
the popular OSGi 1 framework. Service orientation brings
the necessary weak coupling and dynamism for our ap-
proach. We based our implementation on Cilia[5], a service-
oriented mediation framework implemented with iPOJO[6].
We extend it significantly to develop our component model.
In particular, we derived the Cilia ADL to specialize it by
hiding all the service references and iPOJO related technical
details so as to raise the abstraction level.

To test our approach, we implemented a manager respon-
sible for administrating a residential surveillance application.
This application is made of several video cameras used to
monitor an house. Captured images are used by an OSGi
application running on a dedicated platform. Several services
including motion detector are used to trigger alarm. We used
this application to experiment a lot of different management
situations -managing batteries, disk, CPU, alarm ... -and
we showed how to implement these different concerns in
isolation and then how to build a coherent manager in [7].

In this paper, we will solely focus on auto-adaptation
scenarios. We select some basic scenarios - focussed on
the disk and CPU management - and show how auto-
adaptation can be performed. For convenience, we used a
batch of precaptured images in the following scenarios. In
the following graph (figure 4 and 5), the x-axis represents
the time in s, the y-axis represents the usage in percentage
of CPU (dotted blue line) and memory (solid red line).

In the first scenario, we try to adapt the framework when
a task is detected blocked. The framework detect blocked
task by checking that the average execution time is not
going beyond a predetermined threshold. We integrate an
automatic module in the administration layer responsible for
auto-replacing blocked task implementation by an alternative
when possible. This is what happened in figure 4, the first
task is replaced by an alternative at 150s. Hopefully an
implementation providing best result is found. When no
alternative task is found -or when too much changed have
been done in a short delay implying an unstable state- the
administrator is asked to manually modify the manager. This
scenario shows how a simple auto-adaptation module can be
used to improve manager dependability.

The second graph (figure 5) shows the usage of arbitra-
tion. We develop three different algorithms - one erasing im-
ages and two different compression algorithms - for solving
the same problem (avoiding disk saturation). Compression is
always a better choice because it is not destructive, however
it is only efficient for a short period because the number
of images to be compressed diminish over time (as the
proportion of compressed images increases). To solve that
problem, we use a generic token-based arbiter. Each task has
a certain maximum amount of token to spend on a given

1http://www.osgi.org/Main/HomePage



10%

30%

50%

70%

90%

0 50 100 150 200 250 300

Disk1

CPU

D
is

k/
C

P
U

 U
sa

ge

T
hr

es
ho

ld
s

Time (s)

CPU
Disk

Erase

timeout
=

blocked

New ImplementationFaulty implementation

substitution

Figure 4. Substitution of a blocked task.

period of time - token are regained at regular interval. This
is why on the first part of the graph (150-250s), one of the
compression tasks (5 tokens) is used five times more than the
erase task (1 token). Erase is called when the compression
algorithm uses its token too quickly. This way the system is
able to choose the non-destructive tasks first - and they are
often sufficient. The two compression tasks are grouped into
a composite task (basically a task composed of other tasks
with its own selection mechanism). A second arbiter uses an
estimation of CPU and compression efficiency of each task
(this information is whether provided by implementations’
meta-information or calculated by a special-purpose statistic
module). When configuring the arbiter, the expert indicates
what should be considered first (CPU or compression). At
runtime it is possible to change the configuration to adapt
the behaviour. This is why the compression algorithm is
changed after the reconfiguration happening at 265. The
new algorithm is more efficient (the memory curve descends
more) but consumed more CPU (for the same number of
images to compress the CPU usage is higher at 320s than
at 180s).To ease comparison between the two tasks we have
manually erased compressed images between 260 and 270s.
These scenarios show how competing tasks can be used
together to create a complex behaviour and how the manager
can be reconfigured depending on goals.

10%

30%

50%

70%

90%

150 200 250 300 350

Disk1

D
is

k/
C

P
U

 U
sa

ge

T
hr

es
ho

ld
s

Time (s)

CPU priority Compression priority

pu
rg

e 
an

d 
re

co
nf

ig
ur

at
io

n

CPU

tokens consumption

Disk Erase Compress zip Compress lzma

Figure 5. Using arbitration to select competing tasks.

VI. RELATED WORK

Autonomic Computing is based on an excellent logical
architectures such as MAPE-K for Monitoring, Analyzing,
Planning, Executing and Knowledge[2]. However this ar-
chitecture is sometimes hard to implement and sometimes
too constraining: why not merging Analysis and Planning
for instance? The architecture blocks are coarse-grained
and the different concerns are often mixed (one block
for monitoring the whole context). They are frequently
implemented using rules or coarse-grained component with
negative consequences on maintenance or dynamism. Fi-
nally, as concerns are mixed, managers are hard to extend
and reuse. In practice, most projects offer little guidance
on the design of the manager internal architecture or are
specialized in a specific adaptation method (e.g. Rainbow
[8] and architecture adaptation). Tasks are finer grained than
MAPE-K blocks and coarser-grained than rules.

The possibility of changing dynamically the internal ar-
chitecture of managers is often ignored. MAPE-K does not
provide guidance on how to manage dynamism between
modules. When possible the modification often relies on
rules or coarse-grained components (e.g. [9] [10]). The prob-
lem is that rules are fine-grained and often hard to predict,
understand and maintain. Autonomic computing is often
used for managing SOC applications ([11] [12]) but rarely
to bring dynamism or building managers. [13] proposes to
use Web Services but granularity is important and WS have
a considerable performance cost. The solution advocated
here has similarities with blackboard system[14] or with the
TAEMS project[15]. However, in our solution control and
data are much more distributed (tasks communicate directly
with their counterparts and the selection mechanisms are
only involved when necessary). Furthermore, we offer a
complete framework and a component model with adminis-
tration tools to observe and modify the behaviour.

VII. CONCLUSION

Having adaptable, extensible, administrable managers
avoids the need to provide an exhaustive description of
the behaviors. Administration tasks provide homogeneous
model for the integration of autonomic functions with an
adequate granularity to build such managers. Using SOC, we
are able to add, remove or update the behavior at runtime.
In this paper, we show that simple and useful adaptation
can be performed on managers and provide examples: 1) in
manager internal state when tasks were blocked, a simple
auto-adaptation module is able to replace them; 2) when the
priorities of the manager change with the use of different
compression algorithms based on indications provided by
the administrator. Future works include a) evaluating per-
formances - preliminary results shows that the performance
cost is between 5% and 20% depending on the complexity
and arbitration; b) distributing tasks across different systems;
c) developing an IDE.



REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on the
state of information technology,” IBM, 2001.

[2] J. O. Kephart and D. M. Chess, “The vision of
autonomic computing,” Computer, vol. 36, pp. 41–50,
January 2003. [Online]. Available: http://dx.doi.org/10.1109/
MC.2003.1160055

[3] M. Weiser, “The computer for the 21st century,” Scientific
American, pp. 94–104, 1991.

[4] R. France and B. Rumpe, “Model-driven development of
complex software: A research roadmap,” in 2007 Future of
Software Engineering, ser. FOSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 37–54. [Online].
Available: http://dx.doi.org/10.1109/FOSE.2007.14

[5] I. N. Garcia Garza, G. Pedraza, B. Debbabi, P. Lalanda,
and C. Hamon, “Towards a service mediation framework
for dynamic applications,” in Services Computing Conference
(APSCC). Hangzhou: IEEE Asia-Pacific, December 2010.

[6] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an extensible
service-oriented component framework,” in IEEE Interna-
tional Conference on Services Computing, 2007. SCC 2007,
2007, p. 474–481.

[7] Y. Maurel, A. Diaconescu, and P. Lalanda, “CEYLON :
A service-oriented framework for building autonomic man-
agers,” in Proceedings of the IEEE Conference and Work-
shops on Engineering of Autonomic and Autonomous Systems
(EASe 2010), Oxford, England, March 2010.

[8] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with reusable
infrastructure,” Computer, vol. 37, no. 10, p. 46–54, 2004.

[9] H. Liu and M. Parashar, “Accord: A programming framework
for autonomic applications,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews,
vol. 36, no. 3, p. 341–352, 2006.

[10] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri,
and S. Rao, “Autonomia: an autonomic computing environ-
ment,” in 2003 IEEE International Performance, Computing,
and Communication Conference, 2003, p. 61–68.

[11] P. Deussen, M. Baumgarten, A. Manzalini, C. Moiso, M. Mul-
venna, and E. Ho?fig, “Componentware for autonomic super-
vision services: The CASCADAS approach,” International
Journal On Advances in Intelligent Systems, vol. 3, no. 1+
2, p. 87–105, 2010.

[12] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen,
J. Lorenzo, A. Mamelli, and U. Scholz, “Music: middleware
support for self-adaptation in ubiquitous and service-oriented
environments,” Software Engineering for Self-Adaptive Sys-
tems, p. 164–182, 2009.

[13] S. A. Gurguis and A. Zeid, “Towards autonomic web services:
Achieving self-healing using web services,” in DEAS’05,
2005.

[14] H. P. Nii, “Blackboard systems, part one: The blackboard
model of problem solving and the evolution of blackboard
architectures,” AI Magazine 7(2), pp. 38–53, 1986.

[15] K. Decker and V. Lesser, “Task Environment Centered Design
of Organizations,” AAAI Spring Symposium on Computational
Organization Design, January 1994.


