
Autonomic Management of Workflows on Hybrid
Grid-Cloud Infrastructure

Giuseppe Papuzzo and Giandomenico Spezzano
CNR – National Research Council of Italy

Institute for High Performance Computing and Networking (ICAR)
Via P. Bucci 41C - 87036 Rende (CS), Italy

{papuzzo, spezzano}@icar.cnr.it

Abstract—Grids can be considered as dominant platforms
for large-scale parallel/distributed computing in science and
engineering. Clouds allow users to acquire and release resources
on-demand. Next generation computing environments will benefit
from the combination of Grid and Cloud paradigms providing
frameworks that integrate traditional Grid services with on-
demand Cloud services. Nowadays, workflows are the preferred
means for the combination of services into added value service
chains representing functional business processes or complex
scientific experiments. A promising way to manage effectively
services composition in a dynamic and heterogenous environment
is to make the workflow management framework able to self-
adapt at runtime to changes in its environment and provide
an uniform resource access mechanism over Grid and Cloud
infrastructures. Autonomic workflow management systems can
support the runtime modification of workflows with the aim of
improving their performance and recover from faults determin-
ing and provisioning the appropriate mix of Grid/Cloud services
with requested QoS.

This paper describes Sunflower an innovative P2P agent-based
framework for configuring, enacting, managing and adapting
workflows on hybrid Grid-Cloud infrastructures. To orchestrate
Grid and Cloud services, Sunflower uses a bio-inspired autonomic
choreography model and integrates the scheduling algorithm
with a provisioning component that can dynamically launch
virtual machines in a Cloud infrastructure to provide on-demand
services in peak-load situations.

INTRODUCTION

Workflow management systems (WMSs) are generally uti-
lized to define, manage and execute workflow applications on
Grid resources [1]. WMSs must be dynamic and adaptive
as Web/Grid services may be subjected to high variability
in demand and suffer from unpredictable peaks of heavy
load and/or the resources availability can change over time
while the workflow is executing. When there are insufficient
resources to meet the QoS requirement of the application, the
system should provide additional computational resources. In
these cases, the ability of temporarily extending the capacity
of the Grid by renting resources from an external provider
can be a viable proposition. Such an opportunity is offered
by Cloud Computing [2] which, by leveraging virtual machine
technology, delivery IT infrastructure on demand on a pay per
use basis. Clouds allow users to acquire and release services
on-demand. These services can be Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS).
Next generation computing environments will benefit from
the combination of Grid and Cloud paradigms providing
frameworks that integrate traditional Grid services with on-
demand Cloud services. This enable grid workflow systems
to easily grow and shrink the available resource pool as the
needs of the workflow change over time. A workflow running
on a hybrid computing infrastructure should react to workload
variations by altering its configuration in order to optimally
use the Grids and Clouds available resources and recover
from faults. Such modifications should happen automatically
and without any human intervention. An autonomic WMS
[3] exhibits the ability to reconfigure itself to the changes in
the environment and can adapt the size to keep the balance
between servicing its workload with optimal performance and
ensuring efficient resources allocation.
In this paper, we present a Cloud extension of Sunflower
[4] a bio-inspired service-based framework for the execution
of autonomic workflows that orchestrate Grid and Cloud
services using a decentralized choreography model. Sunflower
normally runs workflows using the grid resources but when
the performance of web services degrades and the QoS no
longer meets the needs of a particular virtual organization or
a particular member of a virtual organization, it acquires news
hosts using a Cloud computing infrastructure and transfers
the execution of the workflow on the Cloud infrastructure. To
make the infrastructure as cost-effective as possible, Sunflower
releases Cloud resources if the overall load returns to be
normal. Sunflower has the capability of monitoring the chang-
ing system status, analyzing and controlling tradeoffs among
multiple QoS features, and self-adapting its service configu-
ration to respond to changing requirements or environment.
To handle peak loads, Sunflower integrates the scheduling
algorithm with a EC2-like provisioning component that can
dynamically launch virtual machines in a Cloud infrastructure
and deploys the required middleware components on-the-fly.
The remainder of this paper is organized as follows. Next
section provides a description of the architecture for the
decentralized execution of workflows in Sunflower according
to choreography model. Section II describes the Cloud-enabled
workflow system. Section III describes preliminary experimen-
tal results and Section IV concludes the paper.



I. SUNFLOWER FRAMEWORK

Sunflower is an adaptive P2P agent-based framework for
configuring, enacting, managing and adapting autonomic
workflows. Sunflower assumes that multiple copies of a Web
service, with different performance profiles and distributed
in different locations, co-exist. During the execution of the
workflow, if a service fails or becomes overloaded, a self-
reconfiguring mechanism based on a binding adaptation model
is used to ensure that the running workflow is not interrupted
but its structure is adapted in response to both internal or
external changes.

Workflows are described in Sunflower by the BPEL lan-
guage in order to exploit existing design tools. Sunflower
replaces the standard BPEL engine with a new decentralized
engine able to exploit the dynamic information available in the
Grid and respond to the dynamic nature of the Grid. Figure
1 shows the architecture of the framework Sunflower. The
workflow process is enacted by a set of cooperating Sunflower
BPEL engines (SBE), instantiated at all participating nodes,
who are responsible for interpreting and activating part of the
process definition and interacting with the external resources
-invoked web services- necessary to process the various activ-
ities.

Fig. 1. The Sunflower architecture.

A dynamic group of bio-inspired mobile agents SWEA [5]
representing the workflow executors generated from the BPEL
workflow specification are initially deployed on the basis of
the workflow configuration. In Sunflower the coordination
model, that describes how the generated agents cooperate with
each other to reach a choreography execution, is obtained by
the Petri Net (PN) associated with the BPEL program [4].
The PN representation of the program is then structurally
decomposed into a set of distributed sub-flow schemas. On
the basis of these schemas, Sunflower enacts the federation
of SWEA agents that will be executed on the SBE nodes.
The decentralized execution of the workflow is coordinate by
tokens exchanged among the SBE platforms. Tokens contain
the whole execution state, including all data gathered during

execution. Each SWEA agent performs the portion of workflow
assigned and determine which agent should be activated next.

SWEA agents adapt their structure moving over the grid to
position themselves in the nodes with low workload and where
are available the Web services with the best performance. The
framework provides support for the migration-transparent of
the agents and instructs the agents, by a migration policy,
to migrate in order to achieve goals like load balancing,
performance optimization or guaranteeing QoS.

Sunflower monitors by Antares [6] the QoS for Web services
and effectively self-adapts the workflow engines in response
to changes in load patterns and server failures. Antares is
able to disseminate and reorganize service descriptors by
an ant clustering algorithm and, as a consequence of this,
it facilitates and speeds up discovery operations. Based on
dynamic service performance evaluation, the services with
similar or same metric are gather by Antares into clusters.
All member services in a cluster provide similar or same QoS
after service clustering. Scheduling managers make scheduling
decision based on user QoS requirements and information
in Antares. Consequently, the task scheduling involves two
steps: initial cluster selection from service clusters and further
service selection from the selected cluster.

To support workflow adaptation the SWEA agents are
assisted by routing/scheduling RA agents and monitor-
ing/analizing MA agents that interact with the Antares in-
formation system. The MA agent collects details about the
performance metrics and workload of a Grid service and when
detects a change, due to external events, it inserts a new Web
service descriptor with the new information in the Antares
virtual space and notify the change to the RA agent. When
the RA agent receives a notification about a modification of
the class of QoS, it sends a query to Antares to discovery
and select a descriptor of an equivalent optimal service. Then,
Antares returns to RA agent a reference to an end point handler
for the selected service. Before to execute the sub-workflow,
the SWEA agent contacts the MA agent to verify if the class
of QoS of the service to invoke is respected. In the affirmative
case, the SWEA agent invokes the service and performs the
workflow task, otherwise it uses its migration-policy to decide
its destination consulting the RA agent. The activities of the
MA and RA agents are performed continuously.

II. THE CLOUD-ENABLED WORKFLOW SYSTEM

In this section, we present the scheduling mechanism that
extends Sunflower to handle peak load situations generated
by excessive demands due to the simultaneously access of
many researchers or customers that share web services in a
Grid’s virtual organization or use computational-intensive web
services. To resolve workload variations generated by services
with a QoS degraded or peak load situations Sunflower before
attempts to use alternative grid services with the requested
QoS and in case all grid services have a degraded QoS it
uses additional computational resources provided on-demand
by a cloud computing infrastructure. A schema of the Cloud-
enabled Sunflower architecture is shown in figure 2. Sunflower



seamlessly integrates dedicated grid resources and on-demand
resources provided by the Eucalyptus’s Cloud infrastructure
and allows to invoke Web-Grid services implemented accord-
ing to the WSRF standard by GT4.

Fig. 2. The Cloud-enabled Sunflower architecture.

The Sunflower Console provides the user’s interface to
model a workflow using the Eclipse BPEL Designer and gener-
ate the XML-BPEL code. Through the decomposer module the
XML-BPEL code is partitioned into sub-workflow schema that
are associated to the SWEA agents. The Sunflower Console
also enables the deployment of the workflow according the
initial configuration on the nodes of the Grid. During this
phase the SWEA agents are queued on SBE nodes that contain
the Web services to invoke. In order to mask the complexity of
the underlying infrastructure two different environments must
be installed. A standard Sunflower environment is installed
on the Grid nodes. On the Cloud, Sunflower uses a Software
as a Service (SaaS) delivery model which provides different
customers the functionality of an application that is completely
hosted in the cloud. According the SaaS model, Sunflower
environment is installed on a running virtual machine (VM)
and then the VM is saved as an image that could be used to
deploy future multiple copies of the original VM. During the
runtime, if the overall load is normal, Sunflower dynamically
discovers by Antares the available Web services and performs
a dynamic mapping of the SWEA agents to nodes of the Grid
where are available the requested services with the suitable
QoS. The SWEA agents migrate from one SBE queue to
another SBE run queue if the current host provides a Web
service with a degraded QoS. When a peak load situation
occurs the scheduling decision might involve starting new
virtual machines by calling the provisioner that encapsulates
interfaces to manage virtual machines in on-demand infras-
tructure like Amazon EC2. The provisioner provide general
abstractions to upload virtual machine images, download,
modify, delete, or save copies of preexisting images and deploy
images as virtual machine. Sunflower uses the scheduling
algorithm outlined in figure 3, executed by RA agents, to make
these choices, using information provided by Antares. For each
Web service, the RA agent schedules the SWEA agents queued

in the local SBE.

1. foreach SWEA agents in queue on SBE
2. {
3. if (SWEA.ReqService.QoS > SBE.CurrentQoS)
4. {
5. AlterSBE = Antares.SearchQuery(SWEA.ReqService.ServiceType,

SWEA.RequiredService.QoS);
6. if(AlterSBE != null)
7. {
8. SBE.Routing(SWEA, AlterSBE);
9. }
10. else
11. {
12. AlterSBE = ec2-describe-instances(SWEA.ReqService.VMDiskImage,

SWEA.ReqService.QoS)
13. if(AlterSBE == null)
14. {
15. AlterSBE = ec2-run-instances(SWEA.ReqService.VMDiskImage,

SWEA.RequiredService.QoS)
16. }
17. SBE.Routing(SWEA, AlterSBE);
18. }
19. }
20. }

Fig. 3. The RA scheduling algorithm.

The scheduled SWEA agent checks if the QoS of the service
relied on the node of the grid is less than that required. In case
affirmative, a request is sent to the Antares registry service to
search for an equivalent service to replace. If the service exists
and is available, the reference to the service is returned to the
RA agent that uses this information to migrate the SWEA
agent on the node where the service is localized. Otherwise,
if there are not services available an activation request of a
new virtual machine is sent to the provisioner. Before that, a
new VM is activated the provisioner checks if one VM with
the QOS requested already exists else a new VM is started.
The VM continues the execution of the workflow and before to
invoke next Web service on the Cloud the RA agent checks, by
querying Antares, if an equivalent service is available on the
Grid. In case affirmative, the activation token with the status
information is transferred to the SBE node on the grid that
has the next service to invoke.

III. EXPERIMENTAL RESULTS

We conducted preliminary experiments considering a sce-
nario where a local grid is at times overloaded preventing the
execution of additional workflows because the web services
cannot maintain the QoS required. In this case, we temporarily
extend the grid thorough the use of IaaS Cloud resources to
specifically allow a statically sized system to cope with an
increased load. To demonstrate the operation of the framework
and to evaluate its ability, we built a hybrid infrastructure with
our IcarGrid and 5 Eucalyptus instances types that provide
an interface similar to Amazon EC2. Each instance type is
considered as a resource class. The table I describes in detail
the EC2 resource classes. The performance of our scheduling
algorithm has been evaluated using a geo-workflow which is
apt to simulate many complex real world geo-hazard cellular
automata (CA) models as landslide evolution, lava flows,
floods, etc. Our sample application is a geo-workflow that



performs real-life landslide simulation related to the zone of
Sarno (South Italy). More information can be found in [7]. In
our experiment, multiple geo-workflows, up to seven, can be
performed concurrently.

VM name CPUs Memory (MB) Disk space(GB)
m1.small 1 128 2

c1.medium 1 256 5
m1.large 2 512 10

m1.xlarge 2 1024 20
c1.xlarge 4 2048 20

TABLE I
THE TYPE OF VM USED IN THE STUDY.

For our measurement, we used the c1.medium host type
available on the Cloud infrastructure as it has shown to have
the best application Time-To-Completion (TTC). Figure 4
shows the execution time in seconds of a web service for
the visualization when it is invoked from 1 to 7 workflows
simultaneously. Note that the scheduling algorithm allocates to
the workflow the web service on the machine with the higher
performance. When more of three workflows are instantiated
the IcarGrid is enable to run additional workflow and up to
4 failures are generated. To continue the execution of the
workflows maintaining reasonable times new virtual machines
in the Cloud environment are booted.

Fig. 4. Execution times of multiple workflow instances in IcarGrid .

Figure 5 shows the case when from 1 to 4 VM are booted to
handle the peak load situations. Multiple workflows has been
run more than 30 times. The average runtime measurements
including the startup of new virtual machines are shown in
table II.

IV. CONCLUSIONS

In this paper, we have presented a decentralized and coop-
erative strategy for the execution of autonomic workflows on
heterogeneous distributed platform, such as Grids and Clouds.
A bio-inspired cross-layer approach is used to support the self-
adaptation of the workflow enactment engines to changes in

Fig. 5. Execution times for the execution of multiple workflow instances.

peer xeon E5520 xeon E3110 intel t6600 c1.medium c1.medium c1.medium c1.medium
1 49.703 - - - - - -
2 45.828 66.578 - - - - -
3 46.047 65.39 195,953 - - - -
4 45.781 62.375 186.313 146.828 - - -
5 54.984 61.438 189.859 146.344 143.578 - -
6 46.109 67.531 180.25 130.546 146.578 156.578 -
7 54.954 66.484 185.781 140.546 149.39 156.438 150.578

TABLE II
EXECUTION TIMES OF MULTIPLE WORKFLOWS INCLUDING THE STARTUP

OF NEW VIRTUAL MACHINES.

the Grid and fulfill QoS requirements for Web/Grid services.
To handle peak loads, Sunflower integrates the scheduling
algorithm with a provisioning component that can dynamically
launch virtual machines in Eucalyptus’s Cloud infrastructure
and deploys the required middleware components on-the-fly.
The overhead introduced from the Cloud infrastructure have
been evaluated for the execution of a geo-workflow.

REFERENCES

[1] W. van der Aalst and K.M. van Hee: Workflow Management: Models,
Methods, and Systems, MIT Press, Cambridge, MA, 2002.

[2] R. Buyya, Chee Shin Yeo, and S. Venugopal: Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities, Proceedings of the 10th IEEE International Con-
ference on High Performance Computing and Communications (HPCC
2008), IEEE CS Press, Los Alamitos, CA, USA, Sept. 25-27, 2008,
Dalian, China. - Keynote Paper, 2008.

[3] M. Rahman and R. Buyya : An Autonomic Workflow Management
System for Global Grids, Proceedings of the 8th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2008), IEEE
CS Press,Los Alamitos, CA, USA, pp.578-583, 2008.

[4] G. Papuzzo, G. Spezzano: Processing Applications Composed of
Web/Grid Services by Distributed Autonomic and Self-organizing Work-
flow Engines” in Parallel Computing: From Multicores and GPU’s to
Petascale, B. Chapman, F. Desprez, G.R. Joubert, A. Lichnewsky, F.
Peters and T. Priol (Eds.), Advances in Parallel Computing, IOS Press,
vol.19, pp. 195-204,2010.

[5] Brazier, F.M.T., Kephart, J.O., Van Dyke Parunak, H. Huhns M.N. :
Agents and Service-Oriented Computing for Autonomic Computing: A
Research Agenda, IEEE Internet Computing, vol. 13 n. 3, pp. 82-87
2009.

[6] A. Forestiero, C. Mastroianni, G. Spezzano: Antares: An Ant-Inspired
P2P Information System for a Self-Structured Grid, BIONETICS 2007
- 2nd International Conference on Bio-Inspired Models of Network,
Information, and Computing Systems, Budapest, Hungary, 2007.

[7] G. Folino, A. Forestiero, G. Papuzzo, G. Spezzano,: A Grid Portal for
Solving Geoscience Problems using Distributed Knowledge Discovery
Services”, FGCS - The International Journal of Grid Computing:
Theory, Methods and Applications, vol. 26, n. 1, pp.87-96, 2010.


