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Abstract—Although fingerprinting techniques are helpful for
security assessment, they have limited support to advanced
security related applications. We have developed a new security
framework focusing especially on the authentication reinforce-
ment and the automatic generation of stateful firewall rules
based on behavioral fingerprinting. Such fingerprinting is highly
effective in capturing sequential patterns in the behavior of a
device. A new machine learning technique is also adapted to
monitor high speed networks by evaluating both computational
complexity and experimented performances.

I. INTRODUCTION

Fingerprinting automatically infers specific information

from monitored devices: operating system [1], [2], protocol

used [3] or device type [4], [5], [6] (or protocol stack). The

latter infers automatically the types of devices: brand name,

series of hardware or name and version of software.

Such tools are helpful for security assessment by revealing

devices having security flaws in a network like for instance

operating systems or software having known vulnerabilities.

Moreover, an attacker can hide itself by spoofing normal

device type. To detect that, our approach takes benefit from

our previous fingerprinting method [4], [6] which characterizes

a device by its behavior i.e., the way it interacts with others.

This kind of fingerprinting can also catch attack behaviors to

create automatically attack patterns which might be inputted

as signatures for an Intrusion Detection System (IDS).

However, a main issue is the real-time applicability of

such techniques for safeguarding efficiently users, hosts and

network infrastructure. Thus, the contribution of this paper

is threefold. Firstly, a new method is proposed for managing

behavioral fingerprints. Secondly, we propose the Behavioral

Security Framework using fingerprinting for security purposes

like vulnerable device discovery, spoofing detection or au-

tomated attack signature creation. Finally, complexity issues

are evaluated analytically and experimentally. Regarding our

previous work [4], [6], we have reused the construction of the

behavioral fingerprints as well as the SVM classification.

This paper is structured as follows. The framework is

described in section II. Section III details the fingerprinting

technique. The security applications are assessed in section IV

as well as the complexity in section V. Section VI highlights

main related work. Conclusion is given in section VII.

II. FINGERPRINTING BASED SECURITY FRAMEWORK

The Behavioral Security Framework depicted in figure 1

is based on behavioral fingerprinting. This paper introduces

two main applications: authentication reinforcement (authenti-

cation module) and attack/intrusion detection (attack module),

and voluntary omits applications related to security vulnera-

bilities assessment based on a general inventory of connected

devices, which may be directly derived from fingerprinting

[5]. Figure 1 shows the architecture including a first level of

protection (firewall and/or an IDS) screening the traffic as a

first step towards a more rigorous authentication.

A. Authentication reinforcement

The first module of our security framework reinforces the

user authentication. Obviously, the latter cannot be exclusively

based on fingerprinting but should use an authentication mech-

anism such as password protection or certificate based solu-

tions but they are still faced with security issues. For example,

stealing passwords using a dictionary, social engineering or

phishing is easily possible [7]. Thus, device fingerprinting is

helpful in detecting an anomalous device type even if the

user succeeds to authenticate. Anomalies could be related

to attacker activities but can also reflect a normal behavior

change. Therefore, the authentication module within

the behavioral security framework (figure figure

1) only provides results to the original authentication module

responsible to trigger counter-measures. For example, if the

fingerprinting detects an anomaly, the user could be required to

do an additional check (second password, email confirmation,

usage of a TLS certificate, alarm reported to the administra-

tor...). Moreover, if the second check succeeds, the user profile

has to be updated.

In fact, anomalies might be detected in parallel in two man-

ners. On one hand, a difference between the announced type,

since most of protocols define a user agent field [8], [9], and

the type automatically inferred can be detected. The attackers,

who execute specific tools, prefer to announce faked user

agents for avoiding detection (type spoofing) since they often

specific tools. Thus, the first authentication reinforcement has

to compare the inferred device type by fingerprinting with the

announced device type. On the other hand, the user behaviors

may be monitored over time to profile the types they use and

track deviations from them.
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Fig. 1: Behavioral security framework

B. Attack module

The attack module (figure figure 1) might be trained

with attack generators such as KiF [10], which produces

and discovers automatically new attacks for SIP [8] (Session

Initiation Protocol). The fingerprint of the attacks can then be

automatically generated and expressed with stateful firewall

rules. If the firewall is able to filter the traffic regarding such

rules, its configuration is updated, otherwise it has to delegate

the process to the attack module itself which will then

only output the action to trigger.

Otherwise, the attack module can be trained with nor-

mal behaviors to act as an anomaly intrusion detection system

by looking for behaviors too much divergent from a profile.

III. BEHAVIORAL FINGERPRINTING

Behavioral fingerprinting was introduced in [6]. The key

idea is to represent the devices by their behaviors: the way they

interact with other ones. Since the original work includes all

theoretical details, this section gives an overview and provides

some extensions: a new technique based on K-TRACE and the

definition of the result confidence.

A. TR-FSM model

The behavior of a device type is represented as a Temporal

Random Parameterized Tree Extended Finite State Machine

(TR-FSM) and corresponds to the manner a device sends the

requests and how it replies to the requests from other ones.

Moreover, the behavioral fingerprinting takes in account the

message delays. A TR-FSM is a tree based representation of

the device specific protocol state machine including delays as

shown in figure 2. In fact each node represents the type of the

message which is emitted (prefixed by !) or received (prefixed

by ?). An edge between two nodes indicates that they have

been successively monitored in the same session. The delay

between them is put as an attribute on the edge. Basically,

for each observed sequence of messages, a branch is created.

Then, the branches are aggregated using a generic root node

and the common prefix are merged such as the node !INVITE

in figure 2(a).

The protocol knowledge is reduced to the message types,

which can be automatically inferred as highlighted in [6] or

based on a message parser. It eases the applicability of our

(a) Twinkle 1.10 (softphone) (b) Cisco 7940 (hardphone)

Fig. 2: TR-FSM examples. Two shared paths are grey colored
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Fig. 3: Common classification problems

behavioral security framework to any protocol. Furthermore,

the time measurements are dependent of the network locations.

Hence, the round-trip time has to be measured and filtered out.

Otherwise, if the measurements are always done at the same

location, this step can be avoided.

B. Classification

Once the TR-FSMs are constructed, they have to be clas-

sified. Support Vector Machines (SVM) are good trade-offs

between accuracy and computational complexity [11] and have

proved their efficiency[6]. To extend the evaluation, this paper

introduces another method, TRACE/K-TRACE [12], which is,

like SVM, dedicated to separate data points which are not

linearly disjoint and we propose a very low computational

version hereafter. The limited overhead is also highlighted in

our evaluation while the accuracy is not degraded. A common

classification problem with non linearily separable data is

depicted in figure 3 where traditional clustering methods fails

to separate the different clusters.

1) SVM: Supposing P different kinds of devices which

form the set D = {d1, . . . , dP }, L = {l1, . . . , lM} is

the training set of M TR-FSMs. Multi-class SVM resolve

optimization problems to determine separating hyperplanes in

a higher dimensional space where points have been projected

using a function φ (figure 4), and with maximum margins for

each pair of classes (types). Hence, assuming two types, dl
and dk, the hyperplane hlk is characterized by a subset of

points of L, namely support vectors, SV lk, belonging to type

dl or dk. The decision function is directly derived from these

supports vectors. Thus, flk(tx) returns the predicted type for tx
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Fig. 4: Machine learning methods and non linearly separable data
points (2 classes). SVM finds a separator after projection.
TRACE discovers barycenters of each cluster. K-TRACE
projects points into a higher dimensional space for reducing
the number of clusters. A new point, $, is assigned depending
on its position regarding the hyperplane (SVM) or to the
closest barycenter (TRACE and K-TRACE)

regarding hlk. This corresponds of the side-position of a point

to assign, $ in figure 4. Since there are several hyperplanes

(one per pair of types), the predicted type corresponds to

mostly chosen one by all the decision functions. As defining

the projection function φ is hard, a kernel function is applied to

a pair of points, K(ti, tj), and has to follow strong properties

[13]. Details may be found in our prior work [6] proving the

correctness of a TR-FSM based kernel function which mainly

relies on counting the number of common paths (sequence of

nodes from the root to any other node) weighted by the delays.

2) K-TRACE: K-TRACE [12] is a kernel-based extension

of the Total Recognition by Adaptive Classification Experi-

ments (TRACE). TRACE algorithm is executed in a supervised

manner and is well suited for piece-case linearly separable data

points for which traditional clustering methods fail because

they look for continuous clusters. To discover the multiple

clusters corresponding to a single class (device type), TRACE

finds multiple barycenters (figure 4) thanks to a learning

process (also called training). The initialization creates one

cluster per class containing all points from L of this class.

Hence, the set C = {c11, . . . , c
1
P } is built from the trees ti of

the training set:

c1j = {ti|real(ti) = dj} (1)

where real(ti) returns the real identity of a tree in the learning

set L. Actually, c
j
i represents the jth clusters of the type i.

Then, the algorithm computes the barycenters of the clusters

and divides a cluster in case of incoherency, i.e. the closest

barycenter from a point is not the one of its own cluster. More

precisely, it works as follows:

1) compute each barycenter, B = {bji}, for each cluster c
j
i

of C

2) compute all Euclidean distances d(ti, b
l
k) for all ti

belonging to the training set and all blk in B

3) selects all points whose the closest barycenter is not the

one of the corresponding class:

S = {ti|∃b
l
k, b

s
r, ti ∈ clk, d(ti, b

s
r) < d(ti, b

l
k)} (2)

4) stop if S is empty

5) select the tree of S, b+, which is the farthest from its

barycenter:

6) get all the clusters, C′, containing points of the type

real(b+)
7) apply k-means on C′ by using the original barycenters

and b+ as seeds. As K-means is usually employed

with unlabeled data, the seeds are randomly selected

unlike our approach. In this case, our approach and

its evaluation is not dependent on a specific initial

configuration.

8) since a new barycenter is added, a new cluster of the

same type (real(b+)) is created. The set C is updated

with the constructed clusters by k-means

9) go to step 1

The testing stage is based on the final set of barycenters

B. In fact, each new point to identify is affected to the type

corresponding to the closest barycenter (figure 4).

Applying a projection function, like SVM, helps to in-

crease the separability of the points and so to reduce the

number of TRACE iterations and the set of final barycenters,

which speeds up the classification during the testing stage.

This algorithm, K-TRACE, is a kernel-based method and is

depicted in figure 4. Therefore, the algorithm is exactly the

same than TRACE but it is executed on the projected data

points φ(ti). Similarly to SVM, the definition of this function

is not straightforward and justify the use of the kernel trick:

K(ti, tj) = 〈 φ(ti).φ(tj) 〉. However, the Euclidian distance

normally based on φ(ti) has to be computed as follows

between ti and the barycenter blk:

d(ti, b
l
k) = K(ti, ti)−

2

|βl
k|

∑

x∈βl
k

K(ti, x)+
2

|βl
k|

2

∑

x∈βl
k

∑

y∈βl
k

K(x, y)

(3)

with:

βl
k = {ti|ti ∈ clk} (4)

Identifying a new device representation needs to compute

its distance from all barycenters and so from all other data

points from the training set as shown in equation (3). Thus,

the complexity is very high whereas the goal is to speed up the

classification. Consequently, we propose a simple adaptation

to keep the original interest of TRACE by representing each

subcluster by an unique point. In fact, the closest point of each

computer barycenters during the training stage is kept. They

form the set B′.Then, the distances between a new tree, tx,

to classify and each of them, tj , is computed in the higher

dimensional using the kernel function similar to [12]:

d(tx, tj) = K(tx, ti) +K(tj, tj)− 2K(tx, tj) (5)

Unlike equation (3), the calculation does not require to com-

pute the kernel functions with all other points of the cluster.



C. Confidence level

Security applications usually rely on confidence levels in

order to trigger correct counter-measures without blocking too

many normal connections (false positives). Thus, we propose

in this section a way to determine the confidence level of the

predicted type.

Assuming the TR-FSM tx, it is assigned to the type d =
assigned(tx) based on several decision functions using SVM.

In fact, the sign of flk(tx) indicates if the device tx belongs

to the type l or k. Then the class which is mainly chosen

is considered as the good one. Considering the distribution

V (tx = dp) =
|{fdp, fdp(tx) > 0}|

|{flk}|
, the identification result

d corresponds to argmax
k

V (tx = dp). In fact, the distribution

represents the proportion of voters for each possible device

type. Hence, the value V (tx = d) helps to determine the

confidence level. The result should have more impact if the

vote is not floating. A floating vote result is equivalent to a low

standard deviation. Considering σV as the standard deviation

of the distribution V , the confidence level is defined as follows:

c(tx) = α× V (tx = d) + β × σV (6)

α and β can be tuned. In this paper, they are fixed to 0.5 for

computing the usual mean. Regarding K-TRACE, the higher

the difference between the distance from the closest barycenter

to the point to assign and the distance from others, the higher

the confidence should be. So, to keep the same definition as

prior, the distances are normalized between 0 and 1 and the

following distribution is defined:

V (tx = dp) =
1−minl d(tx, b

l
p)

∑

bl
k
1− d(tx, blk)

This refined distribution definition is then used in (6).

IV. EVALUATION

The experiments are based on SIP [8] which is well used by

VoIP operators since it is designed for managing multimedia

sessions. Due to its popularity, a broad range of VoIP threats

appeared last years [14] whereas it becomes one major service

in the Internet. Therefore, designing efficient solutions for

VoIP service is necessary but the approach described in this

paper remains generic.

A. Accuracy assessment

Our evaluation is based on the same datasets than in [6]

(table I)) with network traces from our own testbed and also

from a real VoIP operator (T1, T2) that we assume originally

free of attacks. 40% of the data were used for training the

system with the testbed dataset because of its relative small

size, although we have evaluated our system in a critical way

when using real data as only 10% have been used during the

training. In addition, each experiment is run ten times where

message sequences are shuffled prior.

General statistics about the datasets and fingerprinting accu-

racy are given in table I. Regarding our context, the accuracy

Testbed T1 T2

#device types 26 40 42
#messages 18066 96033 95908

Avg packet size (#bytes) 541 465 466
Avg. TR-FSM size (#nodes) 18.97 12.93 12.94

%learning 40 10 10

SVM Accuracy
avg 0.91 0.81 0.86
std 0.011 0.004 0.002

K-TRACE Accuracy
avg 0.84 0.73 0.74
std 0.032 0.008 0.005

TABLE I: Experimental datasets fingerprinting results

Testbed T1 T2
Min. confidence of right identification 0.56677 0.54706 0.54580
Max. confidence of wrong identification 0.56658 0.54410 0.54153

TABLE II: Maximal and minimal confidence levels

is the proportion of devices which are assigned to the correct

types. Assuming a set P of N predictions represented as

predij meaning that a prediction of type j was made for a

device of real type i, the accuracy is:
∑

predij∈P,i==j 1

N

Performances are better with the testbed dataset because

the learning is executed on a bigger proportion of data. The

operator dataset includes some device types under represented,

which leads to degrade the results. Moreover, K-TRACE is

less accurate but is still acceptable since the accuracy varies

between 0.73 and 0.84 depending on the dataset. The standard

deviation highlights that results are quite stable. Hence, as it

is claimed in this paper, this proves that fingerprinting can

enforce security applications but have to be carefully taken in

account due to the errors entailed by classification techniques.

Additional results about SVM and the tuning of parameters

(especially the number of message sequences to use) can be

found in the original paper [6].

B. Calibration

The following experiment evaluates the confidence level

described in section III-C in two ways: when the identification

is right or when it is wrong. The goal is to calibrate the

system and to define a threshold τ evaluating the correctness

of the identification: a confidence level lower than τ indicates

that the result needs to be considered carefully. Due to

space constraint, this section presents SVM-based results but

conclusions are identical for K-TRACE.

After running multiple experiments and calculating the

average confidence levels for right and wrong results, the

minimal and maximal values can be computed as shown in

table II. It shows that the minimal average confidence for

a correct identification is always greater than the maximal

average confidence of wrong identifications. The confidence

level of the right and wrong identifications have close av-

erage confidence levels (around 0.56665) for the testbed

dataset and with a standard deviation of 0.00005. This

experiment helps to determine the threshold τ which can be set

for example to the average between the two values represented.



Fig. 5: Intrusion detection based on fingerprinting

For example, τ = 0.5456 is suitable for the dataset T1. In this

case, only right identifications are kept. Hence, the proposed

confidence level definition clearly improves the viability of

fingerprinting for supporting security applications. Choosing

always a high threshold, close to the maximal observed values

for the correct identifications, is another possible choice to be

very cautious.

C. Authentication reinforcement

Attackers use specific tools not used by legitimate users.

Hence, they masquerade as legitimate device types. Figure

5 summarizes the functioning of the detection. In fact, each

device announces its type (user-agent) which is compared to

the fingerprinting result. However, due to fingerprinting errors,

the confidence level is taken in account. Hence, when the

confidence level is high, a similar announced and fingerprinted

type implies no alert (level 0) whereas a divergence is syn-

onym of an intruder pretending to be another kind of device

(maximal alert level). When the confidence level is not high,

the decision strength is lower and then alert level is one when

the identity does not diverge and two otherwise.

Attack traffic was generated on the testbed using the bot

presented in [15] generating phone calls. The bot pretends to

belong a known device type from the training set. Table III

highlights the statistics from the attack traffic generated. The

traffic from the bots is mixed with 60% of the normal traffic.

τ is set to 0.5667 as it is an intermediary value highlighted

on table III. The distribution of benign and attack traffic

regarding the alerts is represented on figure 6. The benign

traffic entails many alerts of level zero and one whereas the

attack traffic is split into level two and three. Therefore, the

attacks are clearly distinguishable even if ten percents of the

benign traffic is about equally divided into alerts level two and

three. However, no attack has an alert level lower than two.

The ROC (Receiver Operating Characteristic) curve is plot-

ted in figure 7 by varying τ . Only the identifications having a

confidence higher than τ are plotted (true or false positives).

The scale highlights a huge increase of the true positives rates

comparing with the false positives since detecting 100% of

the attacks implies ten percents of false positives. Thus, if

the system triggers an additional check for a priori malicious

Device type #msgs #sessions #call initiation
SJPhone v1.65 220 18 27
Cisco 7940-v7 197 18 19
Snom v5.3 150 16 21

Twinkle v1.1 432 40 64

TABLE III: Attack traffic statistics
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Fig. 7: User agent masquerading detection - ROC curve

users, ten percents of normal users will be affected. Using

K-TRACE, the results are affected in a similar way than in

section IV-A.

Training the system with attack tools implies that 99.1% of

them are directly detected afterwards with a high confidence

value (higher than 0.5667 for SVM, which is the previously

determined value) whereas the normal traffic is never consid-

ered as an attack.

D. Attack detection

Automated learning of stateful firewall rules is one of

the main application of the attack module of our behavioral

security framework. In fact, stateful firewall rules can be

directly generated from the TR-FSM of an attacking device.

The attack is run multiple times in order to collect several

possible sessions which are aggregated into a TR-FSM. Figure

8(a) represents the results from a denial of service attack

reported in CVE (Common Vulnerabilities and Exposures)

2007-4459 against a Cisco 7940. The attack uses only ten

messages and the device responses are often errors (400,

404) due to the invalidity of the requests. Each individual

message is legitimate and thus a simple signature detection

will not discard it. Therefore, only the global sequence of sent

messages can achieve the attack.
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Fig. 8: Generation of the stateful rule of the attack against Cisco
Phone 7940

Then, the TR-FSM can be considered as a stateful rule

for a firewall but it can be restricted to messages from the

attacker (prefixed by !) for discarding the normal device

behavior. For example, if an attacker tries this attack on many

devices without knowing their real types, the responses sent

can differ but not the attack messages. Moreover, building

several TR-FSM with different devices allows to construct

a more complete stateful rule. Thus, by removing responses

from figure 8(a), all branches are identical and composed of

INVITE and OPTIONS in the same order leading to aggregate

them into a single sequence based signature depicted in figure

8(b). This rule is injected into SecSip, a stateful firewall

[16] based on a new language, VeTo[17], for tracking SIP

device behavior along its lifetime. The first step defines the

events ev_Invite and ev_Options corresponding to the

different kinds of emitted messages (INVITE and OPTIONS):
definition SIPMessages begin

when SIP:request.method @ match "ˆINVITE"

-> let: event ev_Invite;

when SIP:request.method @ match "ˆOPTIONS"

-> let: event ev_Options;

definition end

Then, the attack is described as a sequence of events (regular

expressions are authorized) equivalent to the messages in

figure 8(b):
veto attack_cisco uses SIPMessages begin

(ev_Invite,ev_Options[*2],ev_Invite,ev_Options[*3],

ev_Invite,ev_Options[*2]) -> drop;

veto end

Because responses are not defined as events, they are

ignored by SecSip. Hence, when the previously defined se-

quence of events is detected, the message corresponding to

the last event is dropped to stop the attack. For improving

the detection, the delays can also be included in VeTo rules.

Including delays in stateful rules is a user choice but can be

clearly an added value for a certain kind of attack like flooding

attacks as SpIT (Spam over Internet Telephony) can be.

Obviously, this attack is a simple example to illustrate the

process and the rule could be created easily by hand but

more complex attacks can include many messages sequences

(alternative paths in the tree) for which an automatic tool such

as proposed in this section is required.

V. REAL-TIME APPLICABILITY

For assessing the real-time applicability, this section in-

cludes analytical facts as well as experimental results based

on a single computer (Intel Core 2 Duo 3GHz).

A. Message parsing

The first task is to determine the types of the messages when

building a TR-FSM. Thus, the complexity is highly dependent

on the protocol grammar and a straight-forward manner is to

parse entirely the message to construct its syntactic tree as

also used for device fingerprinting in [5]. However, the type

is generally a field which is identified by a certain keyword

or a certain position and so it can be easily found without

constructing the complete syntactic tree: direct access to the



Stage
Execution time (seconds)

complexity regression
25% percentile median 75% percentile

Parsing 1.001 × 10−5 1.097× 10−5 1.192 × 10−5 Constant y = 1.087× 10−5
Tree construction 1.597 × 10−5 2.384× 10−5 3.409 × 10−5 O(#messages) y = 9.911× 10−7x+ 1.478× 10−06

Tree comparison 1.097 × 10−5 2.694× 10−5 5.198 × 10−5 O(#nodes×#nodes) y = 5.348 × 10−7x2 + 2.033× 10−05

TABLE IV: Performance evaluation

position in the message or one of the first parsed fields as for

instance in SIP. This implies a constant complexity since the

type is given by few bytes encapsulating in a small range of

the first bytes. In contrast, a syntactic parser able to deal with

huge grammars presenting potential ambiguities [18], [19] is

known to have a linear complexity in most cases.

We present results of evaluating the time to parse the

messages and to retrieve the necessary information in figure

9. For most cases, the time function follows the theoretical

complexity mentioned previously but highlights an incom-

pressible time equivalent to 13,1 milliseconds (intercept) if

the complete syntactic tree is built, although that the time for

a simple parsing is well concentrated around the median value

(1.097×10−5 seconds) as shown in table IV. Hence, syntactic

fingerprinting as proposed in [5] is not suited to the context

of high speed monitoring.

B. TR-FSM construction

Constructing a TR-FSM is divided in two times: (1) mes-

sage sequences must be monitored and (2) have to be ag-

gregated to build a TR-FSM. The running time of the first

step cannot be avoided but also dependent on the network

throughput and the device activity. So, associating a complex-

ity to this one is meaningless. However, the second stage

has to agglomerate such messages into a TR-FSM which

implies a linear complexity regarding the total number of

messages composing the tree [6]. This is checked in table IV.

Fortunately, the entire TR-FSM construction is very fast with

a median value equals 0.024 ms (table IV).

C. Machine learning

By design, the kernel function computation requires to com-

pute the intersection between paths of the trees to compare.

From an analytical complexity point of view, this is equivalent

to compare syntactic trees [5] except that timing differences

are also computed, i.e. the complexity is quadratic with respect

to the number of nodes. This is confirmed in figure 10 and in

table IV.

K-TRACE and SVM both iterate multiple times to find a

way to separate data points. Hence, the computation time of

the training stage is highly dependent on the data (separability

of data points) and the initialization of the SVM related

optimization problem. Furthermore, evaluating precisely the

complexity of this stage is not the most important since it can

be done offline and only the identification itself (testing stage)

has to be done online. However, our experiments show that

the learning time is not the bottleneck (maximum one hour

for a daily update).

The main advantage of the learning techniques is to extract

a subset of training data points which will be then compared
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to a new point to classify, i.e., a new device. SVM returns a set

of NSV supports vectors and K-TRACE, a set of Nbary points

representing the barycenters (see section III-B for details). The

time for identifying a device is directly dependent on them

because they correspond to the number of comparisons to

perform. Considering Ntrain the number of samples in the

original training set, the reduction factor is defined as:

reduction factor =











Ntrain

NSV

if SVM

Ntrain

Nbary

if K − TRACE

The less efficient the training is, the lower this factor is

(minimum is one).

This factor is plotted in figure 11 and increases while

the learning percentage also. Actually, when trees are added

to the training samples, the probability to have redundant

information, i.e., similar trees, increases also. Thus, more trees

will be discarded and the reduction factor is better. Figure

11 highlights the great efficiency of the K-TRACE method

comparing with SVM. Thus, K-TRACE is more capable

to discard redundant information when the training set is

expanded although SVM kept most of points as shown by

a reduction factor close to 1.

D. Identification time

Assuming tparsing , the time for parsing a message, tbuild,

the time for constructing a TR-FSM and tcomp the time for

comparing two TR-FSMs, the total execution time of one

online identification is:

t = tparsing × card + tbuild + tcomp ×Nsamples

where card is the average number of nodes in a TR-FSM

and is varying depending on monitored sessions. Hence, the

global time corresponds to parse the different messages, to

construct the TR-FSM and finally to compare this tree with
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previously selected training trees. In order to keep pace

with the network throughput, a device has to be identified

before the next identification starts which means that t ≤
inter packet time× card where inter packet time is the

inter arrival time between two packets. Hence, we obtain:

tparsing +
tbuild

card
+

tcomp

card
×Nsamples ≤ inter packet time

The different terms of this equation depend on the protocol

and the user activities. The operator and the testbed network

are similar in terms of TR-FSM sizes and message lengths

(table I) which are the main factors impacting the computation

time. Hence, regression functions in table IV can be considered

for extrapolating the results to the operator dataset. Therefore,

figure 12 displays the global computation time depending on

the number of selected TR-FSM (NSV or Nbary) and the

average value for card (table IV) together with the worst

case when card = 1. The operator dataset (T1) has an

average throughput of 110 messages per second equivalent

to 9 milliseconds between two messages and so excludes the

SVM method because the training process selects more than

10,000 NSV (support vectors) whereas K-TRACE computes

about 110 distinct Nbary (barycenters) which is acceptable

(figure 12). In this case, fingerprinting requires around 0.2ms

per packet which corresponds to a maximal network througput

of 5000 packets per second. Considering the statistics in table

I, this is also equivalent to 2.2 GB/second. Assuming our

configuration and the same reasoning, SVM, which provides

the best accuracy, is only viable if the througput for SIP is

lower than 21 MB/second.

VI. RELATED WORK

There are different kinds of fingerprinting methods. Passive

techniques only monitor the devices like p0F [1] which aims at

finding the operating system. NMAP [2] uses active techniques

i.e., probing the devices with specific requests. Although there

are different levels of granularity (operating systems: [1], [2];

protocol: [3]; device type: [20], [4]), none of them are lever-

aged for advanced security purposes especially device type

fingerprinting. The behavioral fingerprinting was introduced

in [4], [6] and does not require a full syntactic [5] or semantic

[21] knowledge about the protocol.

As argued in this paper behavioral fingerprinting can be

easily extended to security purposes. IDS research has sky-

rocketed in parallel of the Internet. Different surveys, as for

example [22], highlight the two main classes of IDS. Signature

based IDSs such as Snort [23] identify an attack based on a

signature. Anomaly based IDSs detect an attack based on its

deviation from a normal profile. Such systems have a higher

ability to detect unknown attacks but the number of false

positives is higher. Hence, the trend is to use more and more

sophisticated techniques as for example [24].

Obviously, the idea of modeling behavior was explored in

the past. User behavior was generally modeled as its activity

in a system i.e., the executed commands. For example, the

authentication reinforcement presented in this paper is close

to masquerade detection as for example by analyzing UNIX

command sequences [25]. System calls could be also analyzed

to detect anomalies [26].

The authors in [27] extend this concept to network protocol

state machine by combining manual building of a subpart of

the protocol state machine and by learning statistical properties

about transitions. However, such an approach needs to know

and manually analyze each protocol specification. NetSTAT

[28] also employed state machine for detecting intrusion but

needs to manually define prior scenario. A close work is [29]

which did a similar analysis for VoIP intrusion detection but

relies on fully described attacks unlike ours which automat-

ically builds the signatures of the attacks for any protocol.

Finally, the use of Markov chain was also explored in order

to model the transitions, between the messages, labeled with

probabilities as for example in [30].

Therefore, our framework combines state machine based

IDS and machine learning based IDS (no manual analysis).

Actually, the TR-FSM is a specific state machine repre-

sentation built by monitoring the network with a limited

computational overhead [6]. This is also due to a limited

parsing of messages unlike deep packet inspection. Moreover,

retrieving such representation does not need a full specification

knowledge [4]. Thus, this paper demonstrates the capacity of

fingerprinting regarding different security use-cases and proves

its online applicability.

VII. CONCLUSION

We extend the original model of behavioral fingerprinting to

being able to evaluate the confidence level and experimental

results show its interest in the security context. We also

shown that stateful firewall rules can be automatically in-

ferred. Furthermore, the device fingerprinting in real time was

evaluated and experimented practically with VoIP networks.

By proposing a new classification algorithm, we have shown

that monitoring high speed network is feasible. Our future

work will focus on improving the firewall rule generation by

merging and reducing the TR-FSM sizes.
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