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Abstract—For a Carrier Ethernet or MPLS-TP service
provider the determination of a multipoint-to-multipoint
(mp2mp) virtual connection must be done in an efficient way
in order to maximise network performance. This problem can
be formulated as a Steiner tree problem which is a very
complex combinatorial problem, being NP-complete. In general,
any transport network ideal management system should seek to
balance the load of the links while, at the same time, seeking
to minimize the resources involved in each connection. In this
work it is presented a bi-criteria formulation for the Steiner
tree problem which includes these objectives. In order to solve
this problem a heuristic was developed based on a known bi-
criteria spanning tree algorithm that finds the set of efficient
supported solutions in a given sub-graph. This new heuristic
allows to obtain ‘good’ compromise Steiner trees in an efficient
manner. The obtained solution set contains some times the
optimal solution for each objective included in the problem
formulation. It is important to note that the analysis of the whole
set of solutions may be important in some management transport
network scenarios.

I. INTRODUCTION

In telecommunication networks, bandwidth is a very im-
portant resource and it must be efficiently managed at the
transport network level in order that the right amount of
bandwidth be available in each part of the network according
to some previous agreement between the transport network
service provider and each transport network user, which can
be also a telecommunication service provider. At the transport
network level each connection usually is active for a significant
amount of time.

In the new packet-based transport technologies such as Car-
rier Ethernet or MPLS–TP (Multiprotocol Label Switching–
Transport Profile) the services that can be delivered are point-
to-point (p2p), point-to-multipoint (p2mp) and multipoint-to-
multipoint (mp2mp) virtual connections, each one charac-
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terized by a parameter set known as SLA (Service Level
Agreement) [1], [2].

From the perspective of the transport network bandwidth
management, each virtual connection must be created using
the minimum amount of network resources while network
load must be distributed in a balanced manner over the
links. These two objectives can be integrated in a bi-criteria
optimization problem in which, in general, a set of Pareto
optimal solutions can be defined where a ‘good’ compromise
solution can be chosen. A Pareto optimal solution (or non
dominated solution) is a feasible solution such that there is no
other feasible solution which improves one objective function
value without worsening the value of any other objective.
These solutions can be supported or unsupported. Supported
non dominated solutions are non dominated solutions located
on the boundary of the convex-hull of the feasible solution
set while unsupported solutions are located in the interior.
An in depth analysis of the potential advantages of using
multi-criteria approaches in communication network routing
and an overview of works in this area, including multicast
routing models, is in [3], [4]. Furthermore, there are network
particularities which impose restrictions that are not easily
integrated in the algorithms for virtual connections calculation
and so, having a set of non dominated solutions instead of a
single one, can be an advantage.

In a previous work [5] a bi-criteria approach to find p2p
virtual connections in a transport network, was proposed. In
that work the network overall performance was evaluated in
several aspects and it was shown that bi-criteria optimization
can be a very good approach for bandwidth management.
In this paper a heuristic to find bi-criteria mp2mp virtual
connections in transport networks is presented and its perfor-
mance is evaluated through a comparison between the obtained
results and some reference values from a library of Steiner tree
problems [6].

This paper is organized as follows. In section II the problem
of finding ‘optimal’ mp2mp virtual connections in transport



networks is formulated as a bi-criteria Steiner tree problem.
In section III a heuristic to find ‘good’ compromise bi-criteria
Steiner trees is presented and in section IV the performance
evaluation of the proposed heuristic is presented. Finally the
conclusions are outlined in the last section.

II. A BI-CRITERIA STEINER TREE PROBLEM

A mp2mp virtual connection between a subset of nodes in
a network consists of a sequence of nodes and links connected
in such a way that there is only a single path between each
pair of nodes of that subset. This graph structure corresponds
to a tree where it is not possible the existence of cycles [7]. In
general there are not enough direct links between the nodes
which have to be connected so that some other nodes need
to be added for establishing that connection. The problem of
finding a minimum amount of network resources, according
to a given metric, for the establishment of a mp2mp virtual
connection corresponds to a Steiner tree problem [8], [7]. This
is a combinatorial problem for which several heuristics such
as [9], [10], [11], [12] and meta-heuristics such as [13], [14],
[15] have been proposed.

Formally, given an undirected graph G(N,A) where N is
a set of 1, 2, . . . , |N | nodes (or vertices) and A is the set of
links (or arcs) (i, j) connecting node i to node j with a cost
Ci,j and given a subset S ⊂ N of nodes, the problem of
finding the minimum cost tree TS spanning all nodes in S
and possibly some optional nodes in N \ S is known as a
Steiner tree problem (STP). The nodes in S are designated as
terminal nodes and the optional nodes in N \S are the Steiner
nodes. The cost of the tree is the sum of its arc costs.

Finding the minimum tree spanning all the nodes in the
graph is known as the minimum spanning tree (MST) problem
which can be solved by known polynomial-time algorithms
such as Kruskal or Prim’s algorithms [7].

In a bi-criteria MST approach there are two, usually conflict-
ing, objective functions associated with two costs
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�

in every arc of the graph. The problem consists of finding
the set of efficient trees {T} ⊂ T , where T is the set of all
the trees T = (N,A(T )) in G, which corresponds to the set
of non-dominated points in the objective functions space. The
cost of the tree CT = (C1

T , C
2
T ) is represented as a vector-

valued function, such that
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The set of efficient trees {T} ⊂ T is such that, for every T
� ∈

T , Cl
T ≤ Cl

T � , with l = 1, 2 , T �= T
�

and Cl
T < Cl

T � for, at
least, one value of l. The number of efficient spanning trees
in a graph is exponential, with a maximum equal to |N ||N |−2

and so the bi-criteria MST problem is intractable and NP-hard
[16]. Nevertheless the number of supported efficient spanning
trees is polynomially bounded by |A|2 for the bi-criteria case
and can be efficiently computed using a weighted sum method
such as in [17]. Note that each MST of T has always N − 1
arcs. For an overview of multiple objective MST problems see

[16]. In [18], for instance, all the efficient solutions of the bi-
criteria MST are computed by recurring to two approaches.
The one that presents better performance is based on a k–
minimum spanning tree algorithm such as the one in [19].

Concerning the bi-criteria Steiner tree problem there are a
few heuristics and meta-heuristic proposals such as [20], [21]
but as the complexity of the problem is very high there is no
single methodological approach that must be followed. A bi-
criteria STP is formulated in this paper in order to find ‘good’
compromise solutions, in terms of bandwidth management, for
mp2mp virtual connections in transport networks . The metrics
that are going to be used are hop count and load cost, defined
from the piecewise linear function of the occupied bandwidth
in [22], in order to find solutions that use as less network
resources as possible and to distribute as much as possible in
a balanced form the traffic load all over the network. These
metrics are additive and the tree cost is given, as before, by
the cost vector CTS = (C1

TS
, C2

TS
). Note that in the case of

STP, for the same number of terminal nodes, each optimal tree
may have a different number of arcs in different networks with
the same size, i. e. with the same number of arcs and nodes,
and that’s why we use hop count as a metric in this problem.
Another aspect to be considered is that, in a heuristic, each
obtained solution that dominates all the calculated solutions
can be in fact dominated by some other solution which was
not found by the heuristic because the solution space was not
completely explored.

III. A BI-CRITERIA STEINER TREE HEURISTIC

The heuristic approach for the bi-criteria STP is based on
the Kou et al. [9] heuristic for the single criterion problem.
This procedure has the following steps:

• Step 1: Construct the complete undirected graph
G1(S,A1) such that A1 is a set of arcs between each
pair of nodes in S and so |A1| = |S|(|S| − 1)/2. The
arc (i, j) ∈ A1 corresponds to the shortest path ri,j in
the graph G calculated with Ci,j (the cost of arc (i, j) in
graph G) using the Dijkstra algorithm and denoting by
Ci,j the cost of arc (i, j) in graph G1, this is given by
Ci,j =

�
(k,l)∈ri,j

Ck,l;
• Step 2: Find the MST T1 of G1, for instance with

Kruskal’s algorithm;
• Step 3: Construct the sub-graph GS� of G by replacing

each arc in T1 by its corresponding shortest path in G;
• Step 4: Find the new MST TS� by removing the cycles

in GS� ;
• Step 5: Construct TS from TS� by removing unnecessary

arcs in order that all leaves in the tree are terminal nodes.
The first attempt to develop a heuristic to obtain bi-criteria

Steiner trees was based on the previous one by replacing the
MST computation in Step 2 by the Hamacher et al. algorithm
which finds all supported efficient spanning trees in graph G1

[17]. For that purpose a cost pair (C1
i,j , C2

i,j) is associated with
every arc in G1in which the second cost considered, C2

i,j , is
the hop count. This cost can be easily obtained by computing
the hop count of each path ri,j in G.



The results obtained with this strategy were very encourag-
ing because it is possible with this heuristic to find, in some
networks, solutions which dominate the solution obtained by
the original Kou heuristic, using the load cost metric. This
means that with this new approach it is possible, in some
cases, to find a solution that has lower load cost and lower
hop count than the solution obtained by Kou et al. heuristic
[9]. This fact was a strong motive to improve this first bi-
criteria STP heuristic.

The basic key idea to improve this heuristic was the fact
that the optimal solution for the (single criterion) STP is often
composed of paths of low cost order in the cases where the
shortest path for some node pairs is not the best option. This
fact leads to changing the Step 1 of the previous heuristic
replacing G1 by G2(S,A2) with |A2| = k|S|(|S|−1)/2 where
k represents the number of shortest paths between each pair of
nodes calculated by the k–shortest path algorithm MPS [23].
This means that we obtain k parallel arcs between each pair
of nodes in G2 where each arc corresponds to one of the k
shortest paths.

The use of parallel arcs can be easily tackled by our
implementation of the Hamacher et al. algorithm [17] which
is used in Step 2. Additionally the second metric used in
the bi criteria minimum spanning tree algorithm was replaced
by a new metric which results from counting the number of
times that each arc in G belongs to each arc in A2. This new
metric in Hamacher et al. algorithm tends to lead to better
solutions because it tends to consider arcs in G2 which have
in common a greater number of arcs in G hence promoting
the consideration of lower cost Steiner trees (in terms of load
cost and hop count).

Let us consider that rod is the path in G between o, d ∈ S
which corresponds to (o, d)rod in G2 and that Rod is the set of
all the paths rod between o and d. Let R = ∪s,t∈SRst be the
union of all the possible sets Rst and Nst

ij be the number of
times that the arc (i, j) ∈ rod appears in each one of the sets
Rst. Then the new second cost of each arc in G2, C2

(o,d)rod is
given by:

C2
(o,d)rod = −

�
(i,j)∈rod

�
Rst⊂R\Rod

�
Nst

ij /|Rst|
�

hop count(rod)
(2)

The Bi-Criteria Steiner Tree Problem (BCSTP) heuristic can
now be summarized as follows:

1) Construct the complete undirected graph G2(S,A2) with
k parallel arcs between each pair of terminal nodes,
as previously described. Three cases were considered
for the construction of graph G2: i) with load cost in
MPS algorithm on graph G; ii) with hop count in MPS
algorithm on graph G; iii) with a linear combination of
load cost and hop count in MPS algorithm on graph G.
Note that this last case corresponds to the consideration
of a bi-criteria shortest path formulation [24], [5].

2) Compute the second cost of each arc in G2 according
to equation 2;

3) Find the set of efficient supported MST, {T2}, of G2

with the Hamacher et al. algorithm [17];

4) Construct the set of sub-graphs {GS�} of G by replacing
each arc of each T2 by its corresponding shortest path
in G;

5) Find the set {TS�} of new MST by removing the cycles
in each GS� through the elimination of the arc with the
higher load cost;

6) Construct the set {TS} from {TS�} by removing unnec-
essary arcs in order that all leaves in the tree are terminal
nodes and store it.

7) Remove all dominated solutions from the set of all stored
{TS} according to the hop count as well as the load cost
values of each tree.

IV. ANALYSIS OF RESULTS

The proposed BCSTP heuristic was evaluated by using
benchmark graphs from the the Steinlib Testdata Library [6].
For this purpose, load cost was replaced by the arcs costs in
the SteinLib.

One parameter that has to be tuned first is the number of
parallel arcs that must be considered in the heuristic. As a
first approximation k should be a small number such as 2 or
3 but in Steinlib there are some networks which have a lot
of alternative paths with the same cost between each pair of
terminal nodes. In order to deal with this situation, the number
of parallel arcs considered in the construction of graph G2 was
divided into two parameters: one is the path cost order number
which was set to 2 or 3, as mentioned before; the other one
is the total number of paths which was set to 10.

In the following figures the aggregated results for the sets
B, C, I80 and I640 test graphs were presented for the BCSTP
heuristic for each one of the three cases considered in the Step
1 (construction of the graph G2): i) load cost (BCSTP-LC);
ii) hop count (BCSTP-HC); iii) a linear combination (BCSTP-
LComb) of the two metrics. There are also results for k = 2
(2-10) and k = 3 (3-10) shortest paths between each pair
of nodes of G2 graph. For comparison purposes the results
obtained by Kou et al. algorithm using the load cost metric (in
figures 1 and 2) or the hop count (in figure 3) were included.
The results obtained by the heuristic without parallel arcs in
G2, designated as BCSTP-xx (1-1) in the figures, were also
considered.

In figure 1 it is presented, for each heuristic, the percentage
of number of times for which the optimal solution was
obtained for each set of networks. As it can be seen in the
figure, the optimum was obtained by BCSTP-LC (2-10) in
55% of the cases, for B networks. However, for I80 and
I640 networks a very small number of optimal solutions was
obtained by BCSTP-LC (x-x) because these networks are very
difficult Steiner problems. Note that in most of the cases
there were no optimal values obtained with BCSTP-HC (x-
x), using the hop count in Step 1, because these were the
heuristic variants which lead to the best hop count solutions.
The linear combination of the metrics, BCSTP-LComb (x-x),
gives in general intermediate values between BCSTP-LC (x-
x) and BCSTP-HC (x-x), as expected. Using 2 or 3 shortest
paths in Step 1, BCSTP-LC (2-10) and BCSTP-LC (3-10), can



!

!"#

!"$

!"%

!"&

!"'

!"(

) * +,! +(&!

!
"#

$%
&'(

)'(
*+
,#

-.
'/
(.
"+
,(
0/
''

-./

)*01234*56#3#7

)*01234*56$3#!7

)*01234*56%3#!7

)*01238*56#3#7

)*01238*56$3#!7

)*01238*56%3#!7

)*01234*.9:56#3#7

)*01234*.9:56$3#!7

)*01234*.9:56%3#!7

Fig. 1. Percentage of optimal solutions.
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Fig. 2. Average relative deviation from the optimum (sets of networks B
and C).

give good results but the better results depend on the network
test set. Another aspect is that Kou and BCSTP-LC (1-1) give
very similar results for C networks but for B and I80 networks
BCSTP-LC (1-1) give better results than Kou’s heuristic which
shows the effectiveness of the second metric proposed for Step
2 of the heuristic and the bi-criteria approach. The use of
parallel arcs leads in general to better results than the ones
obtained by BCSTP-LC (1-1) as can be seen in all the figures.
The use of more than 3 parallel arcs in G2 was also tested and
led to better results in some networks but the improvement was
not significant specially if we take into account the increase
in the computational effort.

In figure 2 the average relative deviations from the optimal
value, obtained by all the heuristics, are presented. The results
are similar to the previous ones. Note that the worst values for
all networks are obtained by BCSTP-HC (x-x) (variants that
lead in average to the best hop count solutions, as can be seen
in figure 3), followed by the Kou’s heuristic. It can also be
concluded that when we are looking for Steiner trees with low
load cost, this metric should also be used in Step 1 because
this leads to the best values, as expected.

In figure 3 the average relative deviations from the mini-
mum hop count obtained by all the heuristics, are presented.
Note that in this case the optimal value is not known.
As already mentioned the better results were obtained by
BCSTP-HC (x-x). Finally it is important to note that each
BCSTP heuristic gives a (small) set of solutions but only the
best one (for each case) was presented in the previous analysis.

In figure 4 the average computation time is presented for
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all the implemented heuristics. The main result is that in I
networks the computation time is very small because there
are very few paths with the same cost between the terminal
nodes which leads to fewer potential solutions in Step 2 than
in the cases of networks C. The other important aspect to be
mentioned is that the computation time depends also on the
number of terminal nodes and also depends on the number
of parallel arcs in G2 graph. It is important to note that the
C networks with more than 83 nodes were not considered for
this experimental study. Also, in the case of I640, the instances
with more than 50 terminal nodes were not considered because
the number of nodes involved in most of practical mp2mp
connections should be no more than 50 terminal nodes.

V. CONCLUSION

In this paper a bi-criteria Steiner tree problem is formulated
in order to find ‘good’ compromise mp2mp virtual connections
in transport networks in terms of load cost and hop count.
The metrics used in this formulation reflect the main aspects
that each transport network service provider should take into
account for an efficient bandwidth management. A heuristic to
solve this NP-hard problem was presented which can give so-
lutions that dominate the solutions obtained by Kou’s heuristic
in terms of load cost and hop count. The complexity of this
heuristic depends mainly on the number of terminal nodes and
not on the network size (which only matters for the MPS k–
shortest path algorithm), which makes it suitable for network
management interactive use. A more realistic experimental
study is under evaluation by considering real network data.
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