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Abstract— Adaptive performance management solutions often 

rely on models that require accurate resource demand measures 

that are estimated in an on-line manner. However it is typically 

not possible to directly measure resource demands at the 

abstraction they are needed, e.g., for a software service within an 

application server that is invoked by a URL. For such cases, 

linear regression techniques are often used to estimate resource 

demands. We evaluate the effectiveness of the Least Squares 

(LSQ) and Least Absolute Deviations (LAD) regression 

techniques, used extensively by others, as well as Support Vector 

Regression (SVR) for the purpose of demand estimation. To the 

best of our knowledge SVR has not yet been evaluated for 

computer resource demand estimation. We consider the 

predictive accuracy of these methods for three different real and 

simulated workloads.  Our results demonstrate the importance of 

tuning the regression parameters of the techniques. We propose 

an on-line method named Mix Driven On-line Resource Demand 

Estimation (MODE) that automatically and quickly tunes the 

regression parameters for LSQ, LAD, and SVR to achieve their 

best results. The method is novel in that it relies on pre-defined 

workload mixes with known aggregate demand values to support 

the tuning exercise.  We show that when employed in an on-line 

manner, tuning with respect to pre-defined mixes is significantly 

more accurate than the traditional approach of using only step by 

step data.  

Keywords-component; Benchmarking, resource demand 

prediction, statistical regression 

I.  INTRODUCTION 

Quantitative performance models are often used to support 
the adaptive management of applications and systems. They 
typically require resource demand estimates for model 
parameters. However, resource demand prediction can be 
difficult because computer measurement systems do not always 
offer resource usage measurements at the desired abstraction. 
For example, total server CPU utilization over some time 
interval and operating system process CPU utilization over 
some time interval may be available whereas the utilization of a 
CPU by a particular software function or transaction is not. 
Software level monitoring and logging facilities often provide 
counts for the number of times software functions are invoked 
and even measures of response times. However relating these 
to demands is difficult, particularly in distributed and multi-tier 
environments. In these environments, application servers are 
often multi-threaded and frequently exploit virtualization 
technologies and hosts that have multiple CPUs. This paper 
considers several techniques that can be used to estimate 
resource demands in such environments.  

Regression techniques have been widely used [2] [13] [14] 
[15] [16] [18] [19] to support demand prediction by estimating 
per-function demands. The aggregate demand of a new 

workload function mix can be estimated as the product of the 
expected throughput of software functions in the new workload 
and their corresponding demands as estimated by regression. 
The accuracy of the aggregate demand estimate depends on the 
accuracy of the individual per-function demand estimates. If 
such estimates are poor then the effectiveness of quantitative 
models and methods that depend on them will suffer. 

Previous studies [14] [15] [16] [19] have shown that the 
accuracy of regression techniques suffer if the per-function 
demands for a system are not deterministic, which is generally 
the case for computer systems. Furthermore, many regression 
techniques suffer from the well-studied problem of multi-
collinearity [6] which can lead to unreliable predictions for 
demands. We applied the machine learning based Support 
Vector Regression (SVR) method to this same problem to 
determine whether it does better than standard regression 
techniques such as Least Squares (LSQ) and Least Absolute 
Deviations (LAD). Our results show that in some cases it does 
do better. However it does not always do better and it requires 
more effort to tune for good results. Our study reveals that each 
method outperforms the others in certain workload specific 
circumstances. 

Our proposed solution to the demand estimation problem is 
a technique we call Mix Driven On-line Resource Demand 
Estimation (MODE) that supports a suite of regression-based 
demand estimation methods. In on-line demand estimation, 
recent traces of system activity are used to predict future per-
function demands.  Such methods exploit temporal correlations 
in resource demand patterns between successive periods of 
system activity. Our MODE technique assumes accurate 
aggregate demand measurements are available for a number of 
pre-existing workload function mixes. Then as demand 
estimates are required, these pre-existing measurements are 
used to automatically tune in an on-line manner each demand 
estimation technique employed at each step in the on-line 
prediction process. The use of pre-defined workload mixes for 
tuning significantly outperforms the traditional approach of 
tuning regression in a step by step manner using only recent 
information. 

Section 2 describes related work on demand estimation.  
Our use of LSQ, LAD, and SVR for computer system demand 
estimation is described in Section 3.  Section 4 provides a brief 
description of MODE.  Section 5 describes our experimental 
setup and study. Section 6 presents the results of the traditional 
approach of using only step by step data and when using 
MODE. Section 7 offers summary and concluding remarks. 



 

 

II. RELATED WORK 

Bard and Shatzoff studied the problem of characterizing the 
resourceusageofoperatingsystemfunctionsinthe1970’s[2]. 
The system under study did not have the ability to measure the 
resource demands of such functions directly. The execution 
rates of the functions and their aggregate resource consumption 
were measurable and were recorded periodically. Each 
recorded sample served as a window and the windows 
collected in this manner served as inputs to a regression 
problem. Bard used the LSQ technique to successfully estimate 
per-function resource consumption for the study.  

Regression techniques have been employed to estimate the 
resource demands of distributed software systems since the 
90’s [4] [15] [16] [24].  Pacifici et al. [13] describe an 
application of regression for on-line demand estimation that 
employed LSQ and the aging of measurement traces that 
contribute to estimates [13].  Many of these studies reported 
challenges applying the techniques, in particular issues relating 
to non-deterministic demands and multi-collinearity. 

Surprisingly, not many regression-based demand estimation 
studies have considered in detail the impact of selecting 
appropriate window sizes, i.e., the time duration of each 
measurement sample used by regression.  Some studies 
consider a fixed window size when estimating per-function 
demand using LSQ and LAD [4] [18]. Zhang et al. apply LSQ 
regression technique to estimate the per-function demands and 
hence the resource utilizations of a TPC-W system [21]. Their 
study considered 4 different window sizes and concluded that 
the larger window sizes are better. Our study shows that the 
accuracy of demand estimates can be very sensitive to the 
choice of window size and that this choice is workload 
dependent.  In particular, our results show that accuracies can 
increase to a point with window size, but may then decrease 
again. 

Recently several studies have investigated alternatives to 

regression based approaches. Some techniques employ the use 

of queuing models, and Kalman filters or maximum likelihood 

estimation, to deduce workload parameters such as resource 

demands [7] [23]. Specifically, these techniques rely on 

measured response times from a system and an accurate 

performance model for the system.  Demand values are 

computedsuchthatthemodel’smeanresponsetimeprediction

closely matches the mean of the measured response times. 

These techniques were introduced for single class models, i.e., 

to estimate the demand of one software function, but have 

been extended by Kumar et al. to three classes [8]. In general, 

the techniques suffer due to the under-determined nature of 

this problem for multi-class scenarios. In contrast to the 

Kalman filter based techniques, MODE does not require a 

performance model for the system under study and its 

regression based techniques estimate the resource demands for 

many software functions, i.e., they are multi-class.  Another 

method named DEC [14] does not estimate per function 

resource demands at all. Instead it estimates the demands for 

new workload mixes based on known accurate aggregate 

demand estimates of other pre-existing workload mixes. It is 

reported to be more accurate than LSQ and LAD for 

estimating the demands for new workload mixes. The 

approach we present in this paper also requires accurate 

aggregate demand measurements for a number of pre-existing 

workload mixes. They are used to tune the regression methods 

in an on-line manner. In contrast to DEC, the MODE 

technique does estimate per function demands. 

SVR is a machine learning based regression technique [17]. 
It has been successfully used in several domains such as stock 
price prediction [20] and pattern recognition [9].  To the best of 
our knowledge it has not been used for estimating computer 
system resource demands.   

 Finally, the TPC-W [21] data used for this work has also 
been used in another of our earlier work [14]. However, the 
analysis and contribution presented in this paper are new. They 
differ from our earlier results [14]. This paper focuses on on-
line demand estimation where we estimate per-function 
resource demands. 

III. LSQ, LAD, AND SVR REGRESSION TECHNIQUES 

Equation (1) formalizes the LSQ regression problem for 

estimating the demand at a given resource. The problem has 

data from N measurement intervals each spanning a time 

interval defined as window size. For each interval i there is a 

resource usage measurement Yi and function execution count 

measurements for M functions, namely F1,i…FM,i. Yi is the 

dependent variable, F1,i…FM,i are the independent variables, 

and Ei is a random error associated with measurement of Yi. 

D1…DM are defined as coefficients of the independent 

variables. From a computer systems perspective, Yi represents 

the aggregate demand on a resource due to executing the M 

functions as per F1,i…FM,i. The coefficients represent estimates 

of per-function resource demands on some resource, e.g., a 

CPU. Accordingly, the contribution of a function k towards the 

aggregate demand Yi is estimated as DkFk,i, by applying the 

utilization law [6].  

LSQ finds values for coefficients D1…DM such that the 

objective function O is minimized. Furthermore, the 

coefficients D1…DM are constrained to be positive since they 

represent demands. It should be noted that the regression 

model shown does not have a y intercept term. This is because 

aggregate demands should be zero for intervals where no 

functions are executed. For a desired customer mix of 

functions F1…FM, Ŷ is an estimate of the resource demand for 

the mix.  In a system with R resources, equation (1) can be 

independently applied at each individual resource to estimate 

the R demand values corresponding to the resources. LSQ is 

referred to as an l2 method because it solves for coefficients 

such that the mean square of predictive errors with regard to 

the dependent variable is minimized.  
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LAD regression is less sensitive to outliers for the 

dependent variable than the LSQ technique. It has similar 

assumptions to LSQ but assumes measurement errors have a 

Laplacian distribution instead of the Normal distribution 



 

 

assumed by LSQ. LAD is referred to as an l1 method because 

it solves for coefficients to minimize the sum of the absolute 

difference between predictions for the dependent variable and 

the measured values for the dependent variable. The problem 

statement for LAD is given in equation (2). Both LSQ and 

LAD can perform poorly if regression assumptions are 

violated [6].  We used MATLAB implementations of LSQ and 

LAD for this study. 
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SVR is based on a classification technique called Support 

Vector Machines (SVM).  The basic idea behind SVR is to 

tolerate errors within a certain region while penalizing errors 

that fall outside this region.  There are several variants of the 

SVR.  We use the   -SVR technique which can be formulated 

as the optimization problem shown in equation (3). 

   
        

               
 

 
         

 

 
       

  

 

   

  

                                  

           
   

      
                                              

       

             

                                   

                      

  In equation (3), C is known as the cost factor and can take a 

value greater than 0.  The parameter   can take values from 0 

to 1.  For the sake of simplicity, let us assume the value of   to 

be 0 for the ensuing discussion.  With this setting, SVR 

ignores absolute errors of the dependent variable that are less 

than or equal to the   variable.  Errors beyond this threshold, 

as captured by the slack variables    and   
 are not tolerated by 

SVR and are penalized as per the cost factor C. The 

optimization finds D,  , and the slack variables   and    such 

that the errors not tolerated by SVR are minimized.  Non-zero 

values of   allow a fraction of the   error to be penalized. 

Higher values of C and   achieve a closer fit to the 

measurement, i.e., “training”, data.  However, care must be 

taken to avoid over-fitting which can compromise the 

predictive accuracy of the regression model when applied to 

non-training datasets.  As a result, the value of C and   must 

be carefully chosen while applying SVR.  We used the 

LIBSVM [5] toolkit for the SVR analyses in this study. We 

note that LIBSVM does not constrain software function 

demand estimates to positive values.  Furthermore SVR 

requires an intercept term b that is a bias and is not present 

with LSQ and LAD.      

IV. MODE: MIX DRIVEN ON-LINE DEMAND ESTIMATION 

For each demand estimation step in an on-line method, for 
each regression technique, MODE applies the regression 
technique and tunes its regression parameters to obtain the 
results that best predict the measured aggregate demands of a 
number of pre-defined function mixes. We tune with respect to 
mixes since in general it is not possible to measure per-function 
demands in many real systems.  For LSQ and LAD, MODE 
uses a binary search to identify the best window size for the 
data in the current on-line step. For SVR, MODE tunes its three 
parameters, i.e., window size, C, and   simultaneously using a 
grid-search technique [5].  

The pre-defined workload mixes are chosen to cover a 
multi-dimensional space of demand value mixes for the system. 
An example illustrating this concept is given in Section V. The 
aggregate resource demands for the pre-defined workload 
mixes are carefully measured. They are measured for a 
sufficiently long enough time for the system to achieve a steady 
state with repeatable results that are verified using confidence 
intervals. To estimate the accuracy of resource demand 
predictions, we compare the demands predicted by LSQ, LAD, 
and SVR for each of these mixes using equations (1), (2), and 
(3), respectively, to their measured aggregate demands.  
Specifically, we calculate the mean absolute error as shown in 
the equation (4) where Ŷi,r and Yi,r  are the aggregate demands 
predicted by regression and measured aggregate demands, 
respectively, for mix i. 

mean absolute error =  
             

      
                                     (4) 

We note that the coefficient of multiple determination R
2
 

cannot be used as a goodness of fit metric for our LSQ and 
LAD models since they do not have a y intercept term [12]. 
Finally, our approach only estimates the accuracy of demand 
predictions in an on-line mode because the per-step demand 
values are typically a small sample compared to the carefully 
measured aggregate demands for our pre-defined workload 
mixes. Regardless, the effectiveness of the approach is 
demonstrated in Section VI. 

V. CASE STUDIES 

To characterize the predictive accuracy of LSQ, LAD, and 
SVR we conducted a case study using the well-known TPC-W 
benchmark system [21]. TPC-W implements a bookstore 
application that supports 14 different system functions such as 
Home, Search, and Buy that correspond to various URL request 
types. Emulated customer browsers interact with the system to 
conduct ordering, shopping, and browsing sessions.   We also 
conducted two simulation case studies to investigate, in a 
controlled manner, the impact of service demand distributions 
for functions on the accuracy of the three techniques.  Section 
V.A describes the TPC-W study while Section V.B outlines the 
simulation studies. 

A. TPCW case study 

This section describes the experimental setup for TPC-W, 
the gathering of data for use in regression, and the selection of 
pre-defined workload mixes for MODE. 

1)  Experiment setup 



 

 

Our testbed consists of a Web server node, a database 
server node, and a client node connected by a non-blocking 
Ethernet switch that provides dedicated 1 Gbps connectivity 
between any two machines in the setup. The Web and database 
server nodes are used to execute the TPC-W bookstore 
application. We used the PHP-based TPC-W application 
developed at Rice University [1]. The client node is dedicated 
for running the httperf [11] Web request generator that was 
used to submit emulated customer sessions to the TPC-W 
system. All nodes in the setup contain an Intel 2.66 GHz Core 
2 CPU and 2 GB of RAM. We used the Windows perfmon 
utility to collect resource usage information from the Web and 
database server nodes using a sampling interval of 1 second. 
The CPU demands are much larger than disk and network 
demands for this system so we focus on demand estimation for 
these values.  We note that the very low disk demands are 
likely due to caching mechanisms employed by the operating 
system and the database management system. 

2) Gathering data for regression 
For the case study, we submitted 10,000 valid customer 

sessions to the TPC-W bookstore.  These sessions were 
obtained by conducting random walks over the Browsing, 
Shopping, and Ordering Markov chains specified by TPC-W 
[22].  Since our objective is demand estimation, each session 
was generated sequentially, i.e., the number of concurrent 
sessions using the system is 1.  We defer evaluating load 
dependencies in resource demands for future work.  Each 
session submits a sequence of URLs with stochastically 
generated arguments such as author names and book 
categories.  As mentioned previously, we collect resource 
usage measurements from perfmon when the sessions are being 
served by the system.  We use the resulting trace of URL 
submissions and resource usage information for our regression 
analyses.       

3) Choice of pre-defined workload mixes    
To tune the regression techniques using MODE we 

constructed a set of 120 pre-defined workload mixes and 
carefully measured the aggregate demands placed by these 
mixes on system resources. The well-known TPC-W Markov 
chains for Ordering, Shopping, and Browsing were utilized to 
derive the mixes.  The 120 pre-defined workloads included 40 
Ordering, 40 Shopping, and 20 Browsing mixes and a further 
20 new mixes by considering 20 linear combinations of 
selected Ordering, Shopping, and Browsing mixes. As shown 
in Figure 1, these 120 mixes allowed us to cover behaviors 
throughout the Web and DB CPU demand space. A range of 
representative mixes spanning the 3 TPC-W Markov chains 
were chosen as described above and as seen in Figure 1. 
MODE's effectiveness depends on the diversity of the 
calibration mixes. This was considered while constructing the 
120 mixes. Each workload mix submits a number of valid 
TPC-W sessions to the system.  We collect resource usage 
information during each measurement run and use it to 
compute the demand placed by the workload mix as a whole on 
various system resources.  We executed each workload mix 5 
times to obtain statistical confidence in the measured demands. 

Figure 1 illustrates the Database server node (DB) CPU 
demand versus the Web server node (Web) CPU demand 
values for the 120 mixes. From Figure 1, it can be observed 
that our workload mixes span behaviours throughout the Web 

 

Figure 1. DB CPU demands vs. Web CPU demands for 120 mixes. 

and DB CPU space. The figure also shows that different kinds 
of mixes impose very different per request demands upon the 
system. The Web CPU demands differ by a factor of 1.5 over 
all cases. However, the DB CPU demands differ by a factor of 
1000 over all cases and by a factor of 265 if only cases where 
DB CPU demands greater than 1 ms are considered. For this 
system good demand estimates are needed for planning 
exercises, in particular for the DB CPU.  

B. Simulation case studies 

The simulation studies explore scenarios that differ from the 

experimental TPC-W system.  The first case considers a system 

where the mean resource demands of functions are more 

similar to one another than observed in the experimental 

system. We refer to this as the Homogeneous case. The second 

case considers a system where each function’sdistributionof

resource demands has significantly higher variability than in 

the TPC-W system. The second case is referred to as the 

HighVariability case. 

For the sake of simplicity the simulated systems consist of 
one tier with a single resource. To facilitate ease of comparison 
with the TPC-W study, we maintain a semantic one-to-one 
correspondence between the functions in the simulated system 
with the TPC-W system.  This allows us to use the same 
workload and workload mixes as in the TPC-W study.  
However, synthetically generated resource demands are used 
during the simulation of the functions for both the 
Homogeneous and HighVariability cases. This lets us explore 
the impact of function demand distribution, with respect to the 
experimental system, upon the effectiveness of LSQ, LAD, and 
SVR. 

Table 1 shows the mean function demands for the TPC-W, 
Homogeneous, and HighVariability cases. The coefficient of 
variation (COV) for the demands is also given. Since per-
function demands cannot be directly measured for TPC-W, we 
estimate the aggregate demand placed by a function on the 
resources of the TPC-W system as the response time observed 
for that function during our experiments.  The Homogeneous 
case has demands that are more similar to each other. The ratio 
of the largest to smallest mean demand for the Homogeneous 
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and TPC-W cases are 80 and 475, respectively. The 
HighVariability case has the same mean per-function demands 
as the TPC-W system, but the per-function demands have a 
much higher COV near 10. 

VI.  RESULTS 

This section is organized as follows.  Sections VI.A and 
VI.B apply LSQ, LAD, and SVR to the entire trace generated 
using the process described in Section IV.  Section VI.A 
investigates the impact of window sizes on the three 
techniques.  Section VI.B studies the impact of the SVR 
parameters C and  .  Section VI.C considers the problem of on-
line demand estimation.  In particular, we step through the 
regression trace to continuously update the demand prediction 
model by considering the most recent, e.g., the last 1 hour, 
activity recorded in the trace.Werefertoeachstep’straceasa 
subtrace. Each has a sample of demands for software functions 
that may differ with respect to the overall long term average 
demands observed for a system. The results demonstrate the 
effectiveness of MODE at estimating demands corresponding 
to each subtrace.  

A. Sensitivity to window size 

Figure 2 shows the mean absolute errors as defined by 
equation (4) for LSQ, LAD, and SVR for the entire TPC-W 
trace for various window sizes.  The figure shows that 
prediction accuracies are very sensitive to window size.  For 
example, the mean absolute error of SVR is 11% for a window 
size of 600 sec while it is approximately 2% for a window size 
of 10 sec. From Figure 2, for the TPC-W case LSQ is least 
sensitive to window size.  

Figure 3 gives results for the Homogeneous case. The 
simulation runs for the non-TPC-W cases were much longer so 
we could evaluate larger window sizes. For all three methods, 
the figure shows that prediction errors are higher for very small 
and very large window sizes.  For very small windows, certain 
resource intensive functions, e.g., BestSellers, are likely to start 
in one window and complete in another. This violates the job 
flow balance assumption underlying the utilization law [6] 
upon which the demand computations are based.  For very 
large window sizes, the number of observations is small so 
there is insufficient information to distinguish per-function 
demands.   

Figure 4 shows the accuracy of the three techniques for the 
HighVariability system. It shows that for this case SVR is more 
accurate than the other methods for small window sizes.  For 
window sizes of 30 sec and 60 sec, SVR significantly 
outperforms LSQ and LAD.  LSQ and LAD require a relatively 
large window size of 180 sec to be accurate.  Since per-
function demands have high variability in this system, a large 
number of observations are required per-window to obtain 
reliable demand estimates with LSQ and LAD.  In contrast, 

SVR’s   error criterion seems to tolerate variability much 
better for small window sizes.  From Figure 4 LSQ and LAD 
significantly outperform SVR for very large window sizes. 

To summarize, Figure 2, 3, and 4 show that the best choice 
of window size is regression technique and workload specific. 
For example, SVR generally behaves well for small window 
sizes, except for the 5 sec TPC-W case. It behaves particularly 
well for small windows sizes for the HighVariability case. For 

Table 1.  Mean and COV of Function Demands for TPC-W, Homogeneous, and HighVariability 
 Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Mean TPC-W 1084.2 102.9 56.6 55.9 29.7 14.2 13.7 13.5 13.1 12.9 12.7 12.6 12.2 2.3 

Homogenous 400.0 100.0 60.0 50.0 30.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 5.0 

HighVariability 1084.2 102.9 56.6 55.9 29.7 14.2 13.7 13.5 13.1 12.9 12.7 12.6 12.2 2.3 

COV TPC-W 0.004 0.457 0.532 0.452 1.299 0.044 0.04 0.042 0.041 0.047 0.048 0.052 0.053 0.312 

Homogenous 1.01 0.99 0.99 1.00 0.99 1.01 1.03 0.96 0.99 0.98 1.04 0.95 0.86 1.04 

HighVariability 10.42 9.85 9.93 10.32 9.33 10.08 10.27 10.04 9.95 10.03 10.1 7.93 10.7 8.38 
 

 

Figure 2. Window size vs. mean absolute error - TPCW 

 

Figure 3. Window size vs. mean absolute error - Homogenous 

 

Figure 4. Window size vs. mean absolute error - HighVariability 
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the TPC-W, Homogeneous, and HighVariability cases, LSQ 
and LAD both behaved well with window size ranges of 10-
180 sec, 10-1200 sec, and 180-600 sec, respectively. These 
observations motivate the need for careful selection of window 
size and regression technique. 

B. Sensitivity of SVR to C and    

This section investigates the effect of the cost C and   
parameters for SVR described in Section III. For this section, 
the window size is fixed based on the best results from the 
previous section.  We employ a grid search technique with 
exponential increments [5] to find the best values for C and   
and plot the mean absolute errors for demand estimates with 
respect to our pre-defined workload mixes as a function of 
these two parameters. 

Figure 5, Figure 6, Figure 7 show the results of the grid search 
for TPC-W, Homogeneous, and HighVariability, respectively.  
The figures show that SVR is very sensitive 
to the choice of values for these two parameters.   The accuracy 
obtained with the default values of [C,  ] = [1,0.5]     for      the 
LIBSVM toolset are very close to the values that gave best 
accuracy we were able to observe for both the TPC-W and 
Homogeneous systems. However, the default setting works 
very poorly for the HighVariability system shown in Figure 7.  
Specifically, the grid search improved predictive accuracy by 
40% for the HighVariability system. 

Table 2 gives the per function measured demands for the 
Homogeneous and HighVariability cases, where the actual per-
function resource demands are known, along with estimates 
from LSQ, LAD, and SVR.  The table provides results for the 
best regression parameters we found using the results presented 
so far.  From Table 2, in general all three of the techniques 

offer good estimates.   In particular, only one demand estimate 
from SVR had a negative value for these long trace cases, 44 
and 74 hours, respectively for Homogeneous and 
HighVariability. 

C. On-line Demand Estimation 

As mentioned previously, on-line demand estimation 
involves using short subtraces that capture the most recent 
activity for a system. The recent activity may have per-function 
demands that differ from long term averages.  In this section 
we consider the impact of using short subtraces on the accuracy 
of the three regression techniques.  Results are shown for the 
Homogeneous and HighVariability case where the simulated 
per function demands are known.  These 44-hour and 74-hour 
long traces are divided into contiguous subtraces each spanning 
1 hour.  The full traces had approximately 80,000 and 50,000 
requests per hour, for Homogeneous and HighVariability, 
respectively. 

Figure 8 and Figure 9 show the mean function demand and 
COV of function demands for the 74 subtraces of the 
HighVariability case.   As seen in the figure, the per-subtrace 
behaviour varies considerably with respect to overall mean 
demand. Hourly mean per-function demands, as averaged over 
the 50,000 function invocations, varied between 60 and 100 
ms. The purpose of on-line demand estimation is to predict the 
per-function demands for each subtrace.  

We note that the variation in demands illustrated in Figure 
8 are random and due to the randomly generated high COV of 
demands for this case. In a real system we can expect temporal 
correlations in resource demand patterns between successive 
measurement intervals. For example, the demands may 

 

Figure 5. SVR mean absolute errors for C 
and   - TPC-W 

 

Figure 6. SVR mean absolute errors for C 
and   - Homogeneous 

 

Figure 7. SVR mean absolute errors for C 
and   - HighVariability 

 

Table 2. Measured and estimated per-function demands for LSQ, LAD, and SVR 

 Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Homogenous Measured 400.0 100.0 60.0 50.0 30.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 5.0 

LSQ 399.1 101.9 57.9 36.8 0.0 16.1 16.5 38.8 15.5 14.5 13.2 0.0 29.3 32.4 

LAD 396.7 101.0 59.7 52.2 0.0 12.1 17.1 0.0 13.5 15.3 15.4 35.5 11.7 28.8 

SVR 400.5 102.5 59.4 46.5 9.8 16.1 14.4 15.5 15.0 14.6 19.2 113.6 -82.6 19.3 

HighVariability Measured 1084.2 102.9 56.6 55.9 29.7 14.2 13.7 13.5 13.1 12.9 12.7 12.6 12.2 2.3 

LSQ 1036.0 106.5 68.3 60.5 45.6 25.4 1.4 0.0 20.8 0.0 17.8 0.0 0.0 0.0 

LAD 1032.5 112.2 67.9 55.3 0.0 36.0 0.0 0.0 29.7 0.0 9.1 0.0 0.0 66.3 

SVR 1091.7 102.9 67.7 95.8 30.1 29.8 19.7 10.0 58.3 1.9 19.4 11.4 21.0 32.8 
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increase and decrease over time due to competition for memory 
or other resources that have a varying impact on behaviour. 
Thus the predicted demands from one step are expected to be 
more useful for management in next step than the long term 
mean demands. 

We consider two tuning methods for the parameters of the 
regression techniques. The first is MODE, as described in 
Section IV. It uses the 120 pre-existing workload mixes to tune 
the regression parameters. To validate MODE, we also tune 
regression parameters using a traditional approach. The 
traditional approach acts as our baseline and minimizes each 
subtrace’smeanabsolute error as per equation (5).  

mean absolute error =  
      

 
                                                (5) 

where Ŷ  and Y are the regression-predicted and measured 
aggregate demands for a subtrace.  The traditional approach is 
applied to each subtrace for each regression method. 

Figure 10 and Figure 11 show the mean absolute error in 
demand estimates for traditional and MODE for the software 
functions with the top 5 demands over the 74 subtraces for the 
Homogeneous and HighVariability cases, respectively. The 
other functions had small demands so that even small absolute 
errors seem large for our metric. The results show that SVR 
performs very poorly for subtraces; it reports many negative 
per-function demand estimates for the hourly subtraces. All the 
regression techniques performed better when tuned with 
respect to pre-defined function mixes, i.e., MODE, than when 
tunedtomatcheachsubtrace’saveragemeasureddemand.For
all techniques we noticed that the errors in per-function 
demands are larger than for the long traces. In particular, the 
HighVariabiltiy trace is very challenging for regression-based 
online demand estimation. 

VII. SUMMARY AND CONCLUSIONS 

Adaptive performance management solutions often rely on 

models that require accurate resource demand measures that 

are estimated in an on-line manner. Regression techniques are 

often used to obtain such estimates. We evaluate three 

regression techniques and show the importance of tuning the 

parameters of such techniques. Our tuning approach is novel 

in that it employs pre-defined workload mixes to tune the 

techniques. All three techniques behave well when used with 

long measurement traces. We have also shown our tuning 

approach outperforms the use of a traditional step by step 

approach to regression for estimating per-function resource 

demands when used as an on-line method. 

We note that MODE is likely to benefit from a careful 

choice of pre-defined workload mixes that provides good 

coverage of the demand space. For the TPC-W system we 

found that MODE is not very sensitive to the set of pre-

defined mixes as long as the set has such diversity.  We will 

explore as future work whether this observation holds for 

other systems such as the HighVariability  system. 

Support Vector Regression (SVR) was employed for 

estimating computer system resource demands. We believe 

this is the first reported use of the method for this purpose. 

While it performed as well as LSQ and LAD for very long 

traces, SVR performed very poorly for the on-line case. This 

 

Figure 8. Mean function demand values of subtraces 

 

Figure 9. COV values of subtraces 

 

Figure 10: Traditional tuning versus MODE for Homogeneous 

 

Figure 11: Traditional tuning versus MODE for HighVariability 
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was because of the shorter subtraces. SVR does not restrict per 

function resource demands to positive values. Negative per-

function demand estimates showed up frequently for the 

shorter traces. 

As part of this effort, for the on-line case, we also 

considered using the result that was expected to be the best of 

the three regression methods, with respect to the pre-defined 

mixes. This unfortunately did not produce results superior to 

the techniques in isolation. While the use of the predefined 

mixes was helpful for tuning it was not sufficient to determine 

which of the methods provided better estimates. As a result, a 

user of MODE must still specify which regression technique 

should be used. 

MODE, as described, is targeted at systems where demands 

may change over time but are not likely to change 

dramatically, e.g., due to a system reconfiguration. Our future 

work will consider extending MODE to that scenario by 

characterizing the pre-defined workload mixes for each 

possible reconfiguration. We will also evaluate other 

regression-like methods in MODE such as the use of hidden 

Markov chains.  
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