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Abstract—We address the problem of resource allocation
in a large-scale cloud environment, which we formalize
as that of dynamically optimizing a cloud configuration
for green computing objectives under CPU and memory
constraints. We propose a generic gossip protocol for
resource allocation, which can be instantiated for specific
objectives. We develop an instantiation of this generic
protocol which aims at minimizing power consumption
through server consolidation, while satisfying a changing
load pattern. This protocol, called GRMP-Q, provides
an efficient heuristic solution that performs well in most
cases—in special cases it is optimal. Under overload, the
protocol gives a fair allocation of CPU resources to clients.
Simulation results suggest that key performance metrics do
not change with increasing system size, making the resource
allocation process scalable to well above 100,000 servers.
Generally, the effectiveness of the protocol in achieving its
objective increases with increasing memory capacity in the
servers.

Index Terms—cloud computing, green computing, dis-
tributed management, power management, resource allo-
cation, gossip protocols, server consolidation

I. INTRODUCTION

Power consumption in datacenters is significant; it has
been growing rapidly in recent years, and this growth is
expected to continue, as several studies show [1]–[3]. An
effective approach to reducing the power consumption
of datacenters is server consolidation [4], [5], which
aims at concentrating the workload onto a minimal
number of servers. It is effective, because utilization
levels in datacenters today are often low, around 15%
[6]. As a running server consumes upwards of 60% of its
maximum power consumption, even if it does not carry
load (cf. [4]), switching servers that are (temporarily) not
needed to a mode that requires minimal or zero power
can significantly reduce power consumption.

All key enabling technologies required for server
consolidation are available today. Virtualization and live
migration technologies support dynamic consolidation
of workload under changing demand. Having various
levels of standby modes (characterized by different levels
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Fig. 1. (a) Deployment scenario with the stakeholders of the
cloud environment considered in this work. (b) Overall architecture
of the cloud environment; this work focuses on resource management
performed by the middleware layer [7].

of power consumption and wakeup time) that modern
equipment offers allows to adapt datacenter resources to
changing needs.

In this work, we address the problem of resource man-
agement for a large-scale cloud environment (ranging
to above 100,000 servers) with the objective of serving
a dynamic workload with minimal power consumption.
While our contribution is relevant in a more general
context, we conduct the discussion from the perspective
of the Platform-as-a-Service (PaaS) concept, with the
specific use case of a cloud service provider which hosts
sites in a cloud environment. The stakeholders in this
use case are depicted in figure 1a. The cloud service
provider owns and administers the physical infrastruc-
ture, on which cloud services are provided. It offers
hosting services to site owners through a middleware that
executes on its infrastructure (see figure 1b). Site owners
provide services to their respective users via sites that are
hosted by the cloud service provider.

The results from this work contribute to engineering
a middleware layer that performs resource allocation in
a cloud environment, with the following design goals.

1) Performance objective: (a) When the system is
in underload, the objective is to minimize power
consumption through server consolidation while
satisfying the demand of hosted sites; (b) When the



system is in overload, the objective is to allocate
the available resources fairly across hosted sites.

2) Adaptability: The resource allocation process must
dynamically and efficiently adapt to changes in the
demand.

3) Scalability: The resource allocation process must
be scalable both in the number of servers in the
cloud and the number of sites the cloud hosts.
Specifically, the resources consumed per server in
order to achieve a given performance objective
must increase sublinearly with both the number
of servers and the number of sites.

Our approach centers around a decentralized design
whereby the components of the middleware layer run
on every server of the cloud environment. (We refer to
a server of the cloud as a machine in the remainder of
this paper.) To achieve scalability, we envision that all
key tasks of the middleware layer, including estimat-
ing global states, placing site modules and computing
policies for request forwarding are based on distributed
algorithms. Unlike existing management software for
private clouds, such as OpenNebula [8], OpenStack [9],
AppScale [10] and Cloud Foundry [11], our proposed
solution provides, in a combined and integrated form,
(a) dynamic adaptation of existing resource allocation in
response to a change, (b) dynamic scaling of resources
for an application beyond a single physical machine and
(c) scalability beyond some 100,000 servers.

This paper is based on our prior work on scalable
resource management for cloud environments [7]. It uses
the middleware architecture from that work, adapts the
formalization of the resource allocation problem and
reuses the concept of computing resource allocation
policies through gossip protocols. The key contributions
of this paper are as follows. First, we present a generic
gossip protocol for resource management in cloud envi-
ronments which can be instantiated for specific objec-
tives. Second, we formalize the problem of minimizing
power consumption through server consolidation and
provide a heuristic solution in form of an instance of
the generic protocol. Finally, we demonstrate through
simulations the effectiveness of the protocol compared
to an ideal system, and we show that the protocol scales
well to a very large cloud.

The paper is structured as follows. Section II outlines
the architecture of a middleware layer that performs re-
source management for a large-scale cloud environment.
Section III presents our model for resource management
in cloud environments and our generic solution to the
problem of resource management. Section IV presents
the specific problem studied in this paper and our
proposed solution. The solution is evaluated through

Fig. 2. The architecture for the cloud middleware (left) and compo-
nents for request handling and resource allocation (right) [7].

simulations in Section V. Section VI reviews related
work, and Section VII contains the conclusion of this
research and outlines of future work.

II. SYSTEM ARCHITECTURE

Figure 2 (left) shows the architecture of the cloud
middleware. The components of the middleware layer
run on all machines. The resources of the cloud are
primarily consumed by module instances whereby the
functionality of a site is made up of one or more
modules. In the middleware, a module either contains
part of the service logic of a site (denoted by mi in
figure 2) or a site manager (denoted by SMi).

Each machine runs a machine manager component
that computes the resource allocation policy, which
includes deciding the module instances to run. The
resource allocation policy is computed by a protocol
(later in the paper called GRMP) that runs in the re-
source manager component. This component takes as
input the projected demand for each module that the
machine runs. The computed allocation policy is sent
to the module scheduler for implementation/execution,
as well as the site managers for making decisions on
request forwarding. The overlay manager implements a
distributed algorithm that maintains an overlay graph of
the machines in the cloud and provides each resource
manager with a list of machines to interact with.

Our architecture associates a site manager with each
site. Each site manager handles user requests to a par-
ticular site. It has two important components: a demand
profiler and request forwarder. The demand profiler
estimates the resource demand of each module of the
site based on the request statistics, QoS targets, etc.
(Examples of such a profiler can be found in [12],
[13].) The estimate is forwarded to all machine managers
that run instances of modules belonging to the site.
Similarly, the request forwarder sends user requests for
processing to instances of modules belonging to the
site. Request forwarding decisions take into account the
resource allocation policy and constraints such as session



Fig. 3. Machine Pool Service

affinity. Figure 2 (right) shows the components of a site
manager and how they relate to machine managers.

From the point of view of power consumption, we
consider a machine as having two states, active and
standby. An active machine runs all software layers and
components shown in figure 2 and, therefore, consumes
a high level of power, while a standby machine does not
execute any of the components in figure 2 and its power
consumption is thus small or negligible. In this work we
restrict ourselves to one standby state, for the reasons
given in [14], knowing that the industry standard ACPI
defines several levels of standby [15]. The standby state
in our work can be realized as the ACPI G2 state in
the ACPI specification. This is because the state allows
an activation of a machine remotely through a wake-on-
LAN packet. Each machine in the cloud is registered
with the machine pool service shown in figure 3, which
keeps track of the machine’s power state, i.e., active or
standby.

The resource manager component determines whether
a machine can be put to standby or an additional machine
needs to be activated. In the former case, it sends a
Switch-to-standby message to the machine pool service,
which subsequently switches the machine to the standby
state. In the latter case, it sends an Activate-a-machine
message to the service, which returns the identifier of an
activated machine, if one is available.

The remainder of this paper focuses on the func-
tionality of the resource manager component. For other
components of our architecture, such as overlay manager
and demand profiler, we rely on known solutions. A
scalable design for the machine pool service is part of
our future work.

III. MODELING RESOURCE ALLOCATION AND OUR
GENERIC SOLUTION

For this work, we consider a cloud as having com-
putational resources (i.e., CPU) and memory resources,
which are available on the machines of the cloud in-
frastructure. We assume the machines in the cloud to be
homogenous in the sense that their CPU and memory

capacities as well as their power consumption properties
are identical.

We restrict the discussion to the case where all
machines belong to a single cluster, and cooperate as
peers in the task of resource allocation. The specific
problem we address is that of placing modules (more
precisely: identical instances of modules) on machines
and allocating cloud resources to these modules, such
that the objectives of the cloud are achieved.

We model the problem of resource management as
that of an optimization problem whose solution is a
configuration matrix that controls the module scheduler
and request forwarder components. At discrete points in
time, events occur, such as load changes, addition and
removal of site or machines, etc. In response to such
an event, the optimization problem is solved again, in
order to keep the configuration optimal. We introduce
our model for resource allocation in Section III-A and
present the generic algorithm for resource management
in Section III-B

A. The Model

We model the cloud as a system with a set of sites
S and a set of machines N that run the sites. Each site
s ∈ S is composed of a set of modules denoted by Ms,
and the set of all modules in the cloud is M =

⋃
s∈SMs.

We model the CPU demand as the vector ω(t) =
[ω1(t), ω2(t), . . . , ω|M |(t)]

T and the memory demand as
the vector γ = [γ1, γ2, . . . , γ|M |]

T , assuming that CPU
demand is time dependent while memory demand is not
[16].

We consider a system that may run more than one
instance of a module m, each on a different machine,
in which case its CPU demand is divided among its
instances. The demand ωn,m(t) of an instance of m run-
ning on machine n is given by ωn,m(t) = αn,m(t)ωm(t)
where

∑
n∈N αn,m(t) = 1 and αn,m(t) ≥ 0. We call

the matrix A with elements αn,m(t) the configuration
(matrix) of the system. A is a non-negative matrix with
1TA = 1T .

A machine n ∈ N in the cloud has a CPU capacity
Ω and memory capacity Γ. We use Ω and Γ to denote
the vectors of CPU and memory capacities of all the
machines in the system. An instance of module m
running on machine n demands ωn,m(t) CPU resource
and γm memory resource from n. Machine n allocates
to module m the CPU capacity ω̂n,m(t) (which may be
different from ωn,m(t)) and the memory capacity γm.
The value for ω̂n,m(t) depends on the allocation policy
Ω̂(t) in the cloud. The specific policy we use in this
work allocates ω̂n,m(t) =

ωn,m(t)∑
i ωn,i

Ω.



B. GRMP: The Generic Resource Management Protocol

According to the above model, the configuration ma-
trix A determines how cloud resources are allocated
to sites. We advocate the use of a gossip protocol to
efficiently compute this matrix for a large-scale cloud.
Gossip protocols are round-based protocols where, in
each round, a node selects a subset of other nodes to
interact with. Node selection is often probabilistic and
as nodes execute more rounds, their states converge to a
desired state. Gossip protocols have been proposed for
a number of management tasks including disseminating
information in a robust way, computing aggregates, as
well as creating and maintaining overlays.

In this subsection, we introduce a generic gossip pro-
tocol for resource allocation, which can be instantiated
for various management objectives. We call this proto-
col GRMP (Generic Resource Management Protocol).
GRMP runs in the Resource Manager component of
all machines in the cloud (See Figure 2). The set of
candidate machines to interact with is maintained by the
Overlay Manager component of the Machine Manager.

GRMP is invoked at discrete points in time. Depend-
ing on the specific deployment, the invocation may be
periodic, in response an event (such as a significant load
change or addition of new machines), or a combination
of both. During each invocation of GRMP, each machine
executes rmax rounds and outputs the configuration
matrix A. The value for rmax depends on the specific
instantiation of GRMP. The matrix A is distributed
across the machines of the system and controls the start
and stop of module instances and determines the control
policies for module schedulers and request forwarders.
The resource manager component determines whether
the computed configuration matrix is implemented or
not. We assume that the time it takes for GRMP to
compute a new configuration, A, is small compared to
the time between events that trigger consecutive runs
of the protocols. At the time of initialization, GRMP
reads as input a feasible configuration of the system,
which can be computed using, e.g., [7], [17]. At later
invocations, the protocol reads as input the configuration
matrix produced during the previous run.

The pseudocode of GRMP is given in Algorithm 1.
The protocol follows the so-called push-pull gossip inter-
action pattern, which we implement with an active and a
passive thread on each machine. To keep the presentation
simple, we omit thread synchronization primitives which
prevent concurrent update of the local state by the active
and passive threads.

GRMP is a generic protocol in the sense that three
abstract methods must be implemented in order to
compute a configuration matrix for a specific resource

Algorithm 1 Protocol GRMP computes a configuration
matrix A. Code for machine n
initialization
1: read ω, γ,Ω,Γ, rown(A);
2: initInstance();
3: start passive and active threads;

active thread
1: for r = 1 to rmax do
2: n′ = choosePeer();
3: send(n′, rown(A)); rown′ (A) = receive(n′);
4: updateP lacement(n′, rown′ (A));
5: sleep until end of round;
6: write rown(A);

passive thread
1: while true do
2: rown′ (A) = receive(n′); send(n′, rown(A));
3: updateP lacement(n′, rown′ (A));

management objective.
1) initInstance() is the initialization method for the

specific gossip protocol.
2) choosePeer() is the method for selecting a peer

for gossip interaction.
3) updateP lacement() is the method for recomput-

ing the local state during a gossip interaction.
In subsection IV-B, we present an instantiation of

GRMP, called GRMP-Q, which performs resource allo-
cation for the objective of reducing power consumption.
A gossip protocol that we developed in our earlier work
can also be interpreted as an instantiation of GRMP
[7]. That protocol implements the objective of fair al-
location of CPU resources to sites. While the methods
initInstance() and choosePeer() are implemented in
a similar way as those for GRMP-Q, the semantics of
updateP lacement() is different. It updates the local
states of interacting machines in such a way that their
relative CPU demands, computed as

∑
m ωn,m

Ω for ma-
chine n, are equalized. This protocol is optimal under
certain conditions, which means that the sequence of
configurations the protocol generates when executing
rounds converges exponentially fast to an optimal one
[7].

IV. THE PROBLEM AND OUR SOLUTION

A. Resource Management as an Optimization Problem

The first objective is to satisfy the user demand if
this is possible with the available cluster resources (i.e.,
underload) and to fairly allocate resource if it is not (i.e.,
overload). We formalize this using the concept of utility.
We define the utility generated by an instance of module
m on machine n as the ratio of the allocated CPU
capacity to the demand of the instance on that particular
machine, namely, un,m(t) =

ω̂n,m(t)
ωn,m(t) . (An instance with



ωn,m = 0 generates a utility of∞.) The utility generated
by a site is defined as u(s, t) = minn,m∈Ms

un,m(t).
The cloud utility U c(t) is then defined as U c(t) =
mins|u(s,t)≤1 u(s, t) = minn,m|un,m≤1 un,m(t). The
first objective can then be expressed as maximizing
U c(t), which ensures that all site demands are satisfied
in case of underload. In case of overload, maximizing
U c(t) ensures max-min fairness regarding CPU resource
allocation to sites.

The second objective is to minimize the power con-
sumption of the cloud. We model the power consumption
of a machine n with the function

Pn(t) =

{
0 if rown(A)(t)1 = 0

1 otherwise

Pn(t) = 0 means that the machine can be switched
to standby state, and Pn(t) = 1 means that the machine
must remain active. We express the power consumption
of the cloud by P c(t) =

∑
n Pn(t). The second objective

is therefore to minimize P c(t).
The problem of resource allocation is that of adapting

a configuration A(t) to a new configuration A(t + 1),
such that the objectives of the resource management
system are achieved for the new demand ω(t+ 1). The
third objective is to identify a configuration that mini-
mizes a given cost function c∗(A(t), A(t+1)). This cost
function captures the penalty associated with changing
the configuration A(t) to A(t+ 1). Such a penalty may
reflect, for example, a high level of network bandwidth
consumption or a long service interruption time during
reconfiguration. (The cost function we consider in this
work counts the number of module instances that are
started to reconfigure the system from the current to the
new configuration.)

We now formalize the optimization problem using the
three objectives discussed above. Consider a cloud with
CPU capacity Ω and memory capacity Γ. Then, given
a configuration A(t), CPU demand vector ω(t+ 1) and
memory demand vector γ, the problem is to find a con-
figuration A(t+1) that solves the following optimization
problem.

maximize U c(t+ 1)

minimize P c(t+ 1)

minimize c∗(A(t), A(t+ 1))

subject to A(t+ 1) ≥ 0, 1TA(t+ 1) = 1T

Ω̂(A(t+ 1),ω(t+ 1))1 � Ω

sign(A(t+ 1))γ � Γ.

(OP)

This optimization problem has prioritized objectives.
This means that, among all configurations A that maxi-
mize the cloud utility U c, we select those configurations

that minimize the power consumption P c. Out of these
configurations, we choose one that minimizes the cost
function c∗. The constraints of (OP) relate to (1) splitting
up the CPU demand of each module into the demand of
the module instances, and (2) ensuring that the allocated
CPU and memory resources on each machine can not be
larger than its available capacity.

Let us briefly comment on the hardness of (OP). Mem-
ory demand for a module is not divisible, which means
that the memory demand of a module can not be split
among its instances that run on different machines. This
makes (OP) NP-hard. However, in many practical cases
where the combined memory demand is significantly
smaller than the memory capacity of the cloud, a solution
to (OP) can easily be found.

B. Our Solution GRMP-Q: A Heuristic Solution to (OP)

As an instance of GRMP, GRMP-Q implements the
three abstract methods of GRMP as shown in algorithm
2. In the initInstance method, the machine n initializes
Nn, the set of machines that run common modules with
n. A machine n prefers to run the gossip step with an
other machine j ∈ Nn. The reason is that load can
be moved between the two machines without requiring
additional memory and at no cost of reconfiguration.
However, always selecting j from Nn may result in the
cloud being partitioned into disjoint sets of interacting
machines. To avoid this situation, n is occasionally
paired with a machine outside of the set Nn. The
neighbor selection function choosePeer() implements
this as follows: it returns a machine selected uniformly
at random from the set Nn with some (configurable)
probability p and from the set N −Nn with probability
1− p.

The core of the protocol is implemented in the
updateP lacement function that moves module in-
stances from one machine to another. The objective
of the movement is determined by the relative CPU
demand of the participating machines, which is defined
for machine n as vn =

∑
m ωn,m/Ω. Specifically, for

machines n and j, if vn+vj ≥ 2, the protocol estimates
that the cloud is in overload and calls a function that
aims to achieve fairness for CPU resources. This function
(that is outlined in [7]) moves modules from the machine
with higher relative demand to the machine with lower
relative demand, with the goal of equalizing vn and vj .

If vn + vj < 2, the protocol estimates that the
cloud is in underload and calls functions that aim
to reduce the power consumption of the cloud, while
ensuring demands of sites are satisfied. These func-
tions are packNonShared, which is always called, and
packShared which is called only if the two machines



share modules. The functions are based on the following
two concepts.

The first concept, which is implemented by the func-
tion pickSrcDest, ensures that the protocol primarily
moves modules from an overloaded machine to the
underloaded one, aiming to satisfy the demand of the
module instances on the overloaded machine. On the
other hand, if both machines are underloaded, the pro-
tocol moves modules from the machine with lower load
to the machine with higher load, in an attempt to fully
pack one machine or freeing up another.

The second concept relates to the packing efficiency of
the protocol. Specifically, it attempts to avoid situations
where a single type of resource (i.e., only CPU or mem-
ory) of a machine is utilized while the other is not. Such
a situation reduces the packing efficiency of the protocol
and hence the reduction in power consumption. There-
fore, during an interaction, the protocol identifies the
dominant resource at the destination (i.e., the resource
type that has the larger relative demand), and chooses
modules at the source machine such that they have less of
the dominant resource. (In the pseudocode, the relative
memory demand is defined as gn =

∑
m γm/Γ.) The

full description of the functions is available at [18].

C. Properties of GRMP-Q

Since GRMP-Q is a heuristic solution, the configura-
tion it produces is generally not optimal in the sense of
(OP). To understand the properties of the protocol, we
introduce useful notions: CPU load factor CLF = ωT 1

|N |Ω

and memory load factor MLF = γT 1
|N |Γ . The cloud is

in overload whenever CLF > 1, which means that the
total demand for CPU resources exceeds the available
capacity in the cloud. (This paper does not consider the
case MLF > 1 because an initial placement for such a
load in the cloud is not possible and memory demands
are assumed to be constant.)

a) Cloud in overload (CLF > 1,MLF < 1):
The protocol is designed in a way that all machines in
the cloud eventually become overloaded. Once this is
the case, the protocol executes in the same way as the
fairness protocol described in [7], which means that it
attempts to allocate CPU resource across sites using a
max-min fairness policy.

b) Memory demand much smaller than capacity
(MLF � 1): After each gossip interaction, the inter-
acting machines are in one of the following states: (1)
both machines have equal load. (2) one machine carries
maximum CPU load. (3) one machine carries no load.
Under these conditions, the configuration computed by
the protocol converges to an optimal solution of (OP) —
if we neglect the cost of reconfiguration. If CLF < 1,

Algorithm 2 Protocol GRMP-Q, an instance of GRMP
for solving (OP). Code for machine n

initInstance()
1: read Nn;

choosePeer()
1: if rand(0..1) < p then
2: return unifrand(Nn);
3: else
4: return unifrand(N −Nn);

updatePlacement(j, rowj(A))
1: if (vn + vj ≥ 2) then
2: equalize(j, rowj(A));
3: else
4: if j ∈ Nn then
5: packShared(j);
6: packNonShared(j);

packShared(j)
1: (s, d) = pickSrcDest(j); ∆ωd = Ω−

∑
m ωd,m;

2: if vs > 1 then ∆ωs =
∑
m ωs,m − Ω; else ∆ωs

=
∑
m ωs,m;

3: Let mod be the list of modules shared by
s and d, sorted by decreasing γs,m/ωs,m;

4: while mod 6= ∅ ∧ ∆ωs > 0 ∧ ∆ωd > 0 do
5: m = remove first element from mod;
6: δω = min(∆ωd,∆ωs, ωs,m); ∆ωd-=δω;
7: ∆ωs-=δω; δα=αs,m

δω
ωs,m

; αd,m+=δα; αs,m-=δα;

packNonShared(j)
1: (s, d) = pickSrcDest(j);
2: ∆γd = Γ−

∑
m γd,m; ∆ωd = Ω−

∑
m ωd,m;

3: if vs > 1 then ∆ωs =
∑
m ωs,m−Ω; else ∆ωs =∑

m ωs,m;
4: if vd ≥ gd then sortCri = γs,m/ωs,m; else

sortCri = ωs,m/γs,m;
5: Let mod be the list of modules on s

not shared with d, sorted by decreasing
sortCri;

6: while mod 6= ∅ ∧∆γd > 0∧∆ωd > 0∧∆ωs > 0 do
7: m = remove first element from mod;
8: δω = min(∆ωs,∆ωd, ωs,m); δγ = γs,m;
9: if ∆γd ≥ δγ then
10: δα = αs,m

δω
ωs,m

; αd,m+=δα; αs,m-=δα;

11: ∆γd -= δγ; ∆ωd -= δω; ∆ωs -= δω;

pickSrcDest(j)
1: dest=arg max(vn, vj); src=arg min(vn, vj);
2: if vdest > 1 then swap dest and src;
3: return (src, dest);

an optimal solution implies that b|N |CLF c machines
carry maximum load, |N | − d|N |CLF e carry no load,
while all site demands are satisfied.

c) General case (CLF < 1,MLF < 1): By
design, the protocol gives preference to moving load
away from an overloaded machine over transferring load
for the purpose of reducing power consumption. As a
consequence, we can state that, if the new configuration
the protocol produces includes machines that do not
carry load, the machines with load fully satisfy the
demand.



V. EVALUATION THROUGH SIMULATION

We have evaluated GRMP-Q through extensive simu-
lations using a discrete event simulator that we developed
in-house. We simulate a distributed system that runs
the machine manager components of all machines in
the cloud. Specifically, these machine managers execute
the protocol GRMP-Q, which computes the allocation
matrix A, and also the CYCLON protocol, which pro-
vides for GRMP-Q the function of selecting a random
neighbor. The simulator also implements the algorithm
outlined in [7] to compute an initial feasible configura-
tion of the cloud. The external events for this simulation
are the changes in the demand vector ω.

Evaluation metrics: We measure reduction of
power consumption as |N |−P

c

|N | , the fraction of machines
in the cloud that are freed by the protocol. Second, we
measure the fairness of resource allocation through the
coefficient of variation of site utilities, computed as the
ratio of the standard deviation to the average of the
utilities. Third, we measure the satisfied demand as the
fraction of sites that generate utilities of larger or equal
to 1. Finally, we measure the cost of reconfiguration as
the ratio of module instances started to module instances
running, per machine.

Generating the demand vectors ω and γ: The
number of modules of a site is chosen from a discrete
Poisson distribution with mean 1, incremented by 1.
The memory demand of a module is chosen uniformly
at random from the set cγ ·{128MB, 256MB, 512MB,
1GB, 2GB}. For a site s, at each change in demand,
the demand profiler generates CPU demands chosen
from an exponential distribution with mean ω(s). We
choose the distribution for ω(s) among all sites to be
Zipf distributed with α = 0.7, following evidence in
[19]. The maximum value for the distribution is cω·500G
CPU units and the population size used is 20,000. For a
module m of site s, we choose a demand factor βm with∑
m∈Ms

βm = 1, chosen uniformly at random, which
describes the share of module m in the demand of the
site s. cγ and cω are scaling factors (see below).

Scenario parameters: We evaluate the performance
of our resource allocation protocol GRMP-Q under
varying intensities of CPU and memory load, which
we vary by changing cγ and cω . All machines in the
cloud have the same CPU capacity 34.513G CPU units
and memory capacity 36.409 GB. These values give
MLF = CLF = 0.5 for cγ = cω = 5. We use the
following parameters unless stated otherwise:

• |N |=10,000, |S|=24,000, rmax = 30, p = |Nn|
1+|Nn|

• maximum number of instances/module: 100, num-
ber of load changes during a run: 100

A. Performance of GRMP-Q under Varying CLF and
MLF

In this scenario, we evaluate the performance
of GRMP-Q for CLF={0.1,0.4,0.7,1.0,1.3} and
MLF={0.1,0.3,0.5,0.7,0.9}, by measuring the metrics
listed above. We compare our results with that of an ideal
system that has the aggregate CPU and memory capacity
of the cloud and that consumes power according to the
function PClb = dmin(1,max(CLF,MLF ))e. (PClb is
a lower bound to PC which is a good approximation
of the optimal value for PC , for low values of MLF .)
In this paper, we report on the results relating to power
reduction and satisfied demand. The complete evaluation
of the protocol is available in [18].

1) Reduction of Power Consumption: Figure 4a
presents the reduction in power consumption achieved
by GRMP-Q for the various values of CLF and MLF .
As expected, this quantity decreases for increasing CLF
and MLF . For instance, the reduction in power con-
sumption decreases from 85% for CLF = MLF = 0.1
to 0 for CLF ≥ 1 and MLF ≥ 0.9. This is expected
since the number of machines needed to run and satisfy
the demands of all sites increases with both CLF and
MLF . This reduction also reduces to 0 for CLF ≥ 1.

2) Satisfied demand: Figure 4b suggests that satisfied
demand depends on both CLF and MLF . For the
ideal system, the satisfied demand depends only on
CLF . Specifically, the demand of all sites is satis-
fied when CLF is less than 1 and not satisfied oth-
erwise. Our protocol satisfies more than 99% of site
demands in underload scenarios, except for the case
of (CLF,MLF ) = (0.7, 0.7) and (CLF,MLF ) =
(0.7, 0.9). As can be seen, for CLF values larger than 1,
our protocol achieves a larger satisfied demand than the
ideal system, at the expense of an unfair CPU allocation.

B. Scalability

In this scenario, we measure the dependence of our
evaluation metrics on the size of the cloud. To achieve
this, we run simulations for a cloud with (2,500, 5,000,
10,000, 20,000, 40,000, 160,000) machines and (6,000,
12,000, 24,000, 48,000, 96,000, 384,000) sites respec-
tively (keeping the ratio of sites to machines at 2.4).
In the setting, we evaluate two different sets of CLF
and MLF which are {(0.5, 0.5), (0.25, 0.25)}. Figure
5 shows the result obtained, which indicates that all
metrics considered are independent of the system size.
In other words, if the number of machines grows at
the same rate as the number of sites, (while the CPU
and memory capacities of a machine, as well as all
parameters characterizing a site, such as demand, number
of modules, etc., stay the same), we expect all considered



(a) Fraction of machines that can be put to standby

(b) Fraction of sites with satisfied demand.

Fig. 4. The performance of the resource allocation protocol GRMP-Q
in function of the CPU load factor (CLF ) and the memory load factor
(MLF ) of the cloud (10,000 machines, 24,000 sites).

metrics to remain constant. Note that our conclusion
is related exclusively to the scalability of the protocol
GRMP-Q. The complete resource management system
includes many more functions that have not been eval-
uated here, for instance, the scalability of effectively
choosing a random peer.

VI. RELATED WORK

The problem of reducing power consumption of a
datacenter under performance constraints has been exten-
sively studied [5], [20]–[27] and there are also product
solutions that incorporate a solution to such a problem
[4]. The key differentiating factor of our work, compared
to all the others, is the use of a decentralized algorithm to
compute resource allocation policies in the cloud. This,
in sharp contrast to the solutions in the literature, allows
our resource management system to scale to 100,000
machines, and dynamically adapt to changes in demand

Fig. 5. Scalability with respect to the number of machines and sites.

of running sites. The full presentation of related work is
available in [18].

VII. DISCUSSION AND CONCLUSION

We make three contributions with this paper. First,
we introduce and formalize the problem of minimizing
power consumption through server consolidation when
the system is in underload and fair resource allocation
in case of overload. Second, we present GRMP, a generic
gossip protocol for resource management that can be
instantiated for different objectives. (A protocol for fair
resource allocation from our earlier work is in fact an
instantiation of this protocol.) Finally, we present an
instance of GRMP that provides a heuristic solution to
the problem of minimizing power consumption, which
we show to be effective and scalable.

The simulation studies of GRMP-Q indicate that the
protocol performs in accordance with its design goals
stated in section I, for the parameter ranges investigated.
For instance, in an underload scenario with CLF =
MLF = 0.1, the protocol computed a configuration
where less than 20% of the machines carry load, while
still satisfying user demand. In overload scenarios, the
protocol allocates resources fairly to sites, as long as
sufficient memory is available [18]. Furthermore, the
results demonstrate that the protocol is scalable in the
sense that its key performance metrics do not change
with increasing system size.

With respect to future work, we plan to (1) determine
the convergence rate of GRMP-Q and its dependence on
CPU and memory demands; (2) develop a version of the
protocol for a heterogeneous cloud environment in which
CPU and memory capacities vary across machines; (3)
develop a distributed mechanism that efficiently places
new sites; (4) make the protocol robust to machine
failures; (5) develop versions of GRMP that support
further objectives (e.g., service differentiation) and con-
straints (e.g., colocation and anti-colocation); (6) develop
a scalable implementation of the machine pool service
that considers power consumed for cooling.
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