
Supporting Vulnerability Awareness in Autonomic

Networks and Systems with OVAL

Martı́n Barrère, Rémi Badonnel and Olivier Festor

INRIA Nancy Grand Est - LORIA

Campus Scientifique

54506 Villers Les Nancy, France

Email: {barrere, badonnel, festor}@inria.fr

Abstract—Changes that are operated by autonomic networks
and systems may generate vulnerabilities and increase the ex-
posure to security attacks. We present in this paper a new
approach for increasing vulnerability awareness in such self-
managed environments. Our objective is to enable autonomic

networks to take advantage of the knowledge provided by vul-
nerability descriptions in order to maintain safe configurations.
In that context, we propose a modeling and an architecture
for automatically translating these descriptions into policy rules
that are interpretable by an autonomic configuration system.
We also describe an implementation prototype and evaluate its
performance through an extensive set of experiments.

I. INTRODUCTION

The continuous growth of networks, as well as the di-

versification of their services have considerably increased

the complexity of their management. Traditional network

management approaches are not suitable for supporting this

sustained dynamics. Autonomic computing [16] provides new

perspectives with respect to this issue, through the automation

of the management task. Autonomic networks and systems

are responsible for their own management. They have to

adapt their configurations with respect to their environment,

to protect themselves against security attacks, to repair their

own failures, and to optimize their various parameters. When

autonomic related operations are performed, the environment

is modified in order to achieve specific objectives. However,

such operations may lead to potential vulnerable states and

increase the exposure to security threats.

Indeed, as systems and technologies evolve, new space

for vulnerabilities comes into scene. Autonomic networks

and systems should therefore integrate support mechanisms

for preventing vulnerabilities. As happens in the real world,

autonomic elements coexist within dynamic environments, in-

teracting with others autonomic and non-autonomic elements.

If an autonomic element is compromised, its functions and

abilities become untrustworthy and eventually disabled; thus

autonomic elements that use services of the former become

compromised as well. This inevitably leads to distrust and

failure of the autonomic environment. Thus, vulnerability

awareness constitutes a fundamental property that must be

present in self-governed entities. Autonomic elements unable

to support this capability will age with time, becoming more

vulnerable, insecure and useless.

Vulnerability management is a crucial activity for ensuring

safe configurations and reducing the exposure of such auto-

nomic systems. It consists in checking their configurations,

identifying the presence of vulnerable states and performing

the required maintenance operations (typically, modification

of configuration parameters and/or application of security

patches). While strong standardization efforts have been done

for describing vulnerabilities, in particular with the OVAL1

language, there is no fully integration of vulnerability man-

agement mechanisms within the framework of autonomic

networks and systems. Such integration constitutes the target

of our work. We consider that autonomic environments should

dynamically capitalize the knowledge provided by vulnerabil-

ity descriptions repositories in order to increase their security,

stability and sustainability.

In that context, we propose a new approach for supporting

vulnerability awareness in autonomic networks and systems

using the OVAL language and the Cfengine tool [1], an

autonomic maintenance system that provides support for au-

tomating the management of large-scale environments based

on high-level policies. Our strategy consists in integrating

OVAL vulnerability descriptions into the management plane,

in order to enable the autonomic system to detect and prevent

configuration vulnerabilities. For that purpose, the OVAL vul-

nerability descriptions are dynamically translated into policy

rules directly interpretable by Cfengine. We have developed

an implementation prototype, and have performed an extensive

set of experiments in order to quantify the benefits and limits

of our solution.

Finally, the remainder of this paper is organized as follows.

Section II describes existing work and their limits in our area.

Section III presents the proposed approach for increasing vul-

nerability awareness within autonomic networks and systems.

It details the underlying architecture and the formalism for

supporting the translation of vulnerability descriptions into

Cfengine policy rules. Section IV depicts the prototyping of

Ovalyzer, an OVAL to Cfengine translator, whereas Section V

shows an extensive set of experiments and the obtained results.

Section VI presents conclusions and future work.

1Open Vulnerability Assessment Language



II. TOWARDS VULNERABILITY PREVENTION IN

AUTONOMIC NETWORKS

Autonomic computing provides a promising paradigm for

dealing with large scale network management [22], [16].

However, several challenges must be addressed first in order

to enable this approach into daily computer systems and

networks in an efficient manner. One of them, and also the

main target in this article, is the ability of autonomic networks

and systems to deal with security issues, particularly, to detect

vulnerabilities and maintain safe configurations. In this section

we present a review of related work done within several areas

of interest including change management, risk assessment, and

management of unknown and known vulnerabilities.

Usually, vulnerability management refers to the cyclical

practice of identifying, classifying, remediating and mitigating

vulnerabilities [21]. When autonomic networks and systems

perform changes on their environments, unsafe states may

appear, thus change and risk management techniques should be

considered. A large variety of techniques have been proposed

to evaluate the impact of changes in networks and systems [3],

[20], [15]. These contributions provide strong foundations for

their automation. Under an autonomic perspective, automated

techniques for assessing change associated risks as proposed

in [26] and [29], are extremely important because they provide

a key support for the change management process, particularly

for taking decisions about effective change implementations.

Our work further focuses on security aspects, however, such

previous research work on change management highlight

key challenges that must be taken into account when self-

configuration activities are performed.

But even when techniques for assessing changes impact are

available, knowing which actions may imply vulnerable states

is also challenging. Indeed we can see such problem in the op-

posite way, that is to say, knowing how vulnerable states look

like and the implications that may have a scheduled change, it

would be possible to infer whether such change will negatively

impact on the system security. This fact enforces the need of

increasing systems vulnerability awareness. When considering

an autonomic behavior, means for better understanding the sur-

rounding environment are deeply required. As the autonomic

nervous system, autonomic networks and systems must be able

to perform diagnosis on the environment they are working on.

Because systems high-level state is typically changing, these

capabilities provide the basis for adaptation. In this sense,

different methodologies and techniques have been proposed

for increasing security knowledge in systems and networks

[18], [11], [10].

Potential vulnerabilities can be present on a system without

explicit awareness of it, thus techniques for learning and dis-

covering new vulnerabilities are required. Taking advantage of

fuzzing methods may provide a powerful approach to unknown

vulnerability detection within autonomic environments [19],

[28]. Digital forensics techniques can be exploited as well

[9], [17]. Digital forensics provides a deep understanding of

discovering mechanisms about the anatomy of an attack, thus

its robust technical background on data collection and anal-

ysis establishes a solid framework for performing computer

system investigations, providing support to the vulnerability

management activity. Other approaches such as case-based

reasoning (CBR) provide interesting and useful perspectives

for detecting unknown vulnerabilities as described in [23].

Several works also consider the idea of modeling a network

intrusion as a sequence of steps where each gained privilege

by the attacker opens new intrusion capabilities [25], [27].

This concept provides robust foundations for attack graphs,

a widely used approach for performing network vulnerability

analysis as occur in [12] and [24].

Different approaches for specifying vulnerabilities have

been proposed in the past, but they lack of standardized

languages and platform independence, leading to compati-

bility and interoperability problems. In order to cope with

these problems, the MITRE corporation [5] has introduced

the OVAL language [7], an information security community

effort to standardize how to assess and report upon the

machine state of computer systems. OVAL is an XML-based

language that allow to express specific machine states such

as vulnerabilities, configuration settings, patch states. Real

analysis is performed by OVAL interpreters such as Ovaldi [8].

Several related technologies have evolved around the OVAL

language. NIST [6] is responsible for the development of

emerging technologies including the SCAP2 protocol [13] and

the XCCDF3 language [30]. The SCAP protocol is a suite

of six specifications that includes OVAL and XCCDF, and

it can be used for several purposes, including automating

vulnerability checking, technical control compliance activities,

and security measurement. XCCDF is a language for authoring

security checklists/benchmarks and for reporting results of

checklist evaluation. The use of SCAP, particularly OVAL and

XCCDF, not only allows to specify vulnerabilities, but also to

bring a system into compliance through the remediation of

identified vulnerabilities or misconfigurations. While OVAL

provides means for describing specific machine states, XCCDF

allows to describe certain actions that should be taken when

these states are present on the system under analysis.

Currently, OVAL repositories offer a wide range of vul-

nerability descriptions. Such existing knowledge can highly

increase the vulnerability awareness of autonomic networks

and systems. This work aims at defining a solution for

enabling autonomic environments to automatically capitalize

such external knowledge source and take into account this

security related information when self-management operations

are performed.

III. OVAL-AWARE SELF-CONFIGURATION

Within the autonomic computing field, the self-configuration

property refers to the ability of networks and systems for

automatically configuring themselves in order to obey high-

level policies, typically linked to business-level objectives.

2Security Content Automation Protocol
3eXtensible Configuration Checklist Description Format

2



When autonomic networks and systems perform changes in

order to be compliant with the specified policies, collateral

effects can be introduced in an involuntary manner. Such

unexpected effects can vary from internal malfunction to the

exposure of vulnerable states, thus vulnerability management

mechanisms are deeply required to ensure safe configurations

and to reduce the probability of potential attacks and failures

of the involved self-managed entities. In this section we

present our approach for supporting vulnerability awareness in

autonomic networks and systems. The objective is to integrate

vulnerability descriptions provided by OVAL repositories into

the autonomic management plane, particularly in the context

of the Cfengine autonomic maintenance tool.

A. Overall architecture

Our work proposes the integration of vulnerability de-

scriptions by providing an infrastructure where OVAL vul-

nerabilities descriptions can be translated into policy rules

interpretable by Cfengine. Due to the automation provided by

Cfengine for managing large-scale environments, the OVAL

process can be integrated into Cfengine devices when main-

tenance operations are performed. The overall objective is

to provide autonomic maintenance mechanisms for several

platforms using Cfengine as illustrated in Figure 1, and taking

into account the existing and future security related knowledge

specified in the OVAL language.

The proposed architecture illustrated in Figure 1 involves an

OVAL repository where the descriptions of known vulnerabili-

ties are stored. Such descriptions are intended to be translated

and introduced within a distributed Cfengine configuration.

Generated policies are deployed by the Cfengine server into

its several Cfengine agents (points in the cloud) which are in

charge of managing the devices present in the target network,

in order to detect and prevent vulnerable configurations when

self-management activities are performed. When a vulnerabil-

ity is found on a specific monitored device, Cfengine agents

are capable of generating specific alerts and shall be able to

perform correction operations.

B. OVAL vulnerability descriptions

Nowadays, the OVAL language is mostly used by vendors

and leading security organizations in order to publish security

related information that warn about current threats and sys-

tem vulnerabilities. OVAL repositories offer a wide range of

security advisories that can be used for avoiding vulnerable

states as well as augmenting networks and systems security

considering best practices recommendations.

The usual or intuitive way to think about a vulnerability is

to consider it as a combination of conditions that if observed

on a target system, the security problem described by such

vulnerability is present on that system. Each condition in turn

can be understood as the state that should be observed on a

specific object. When the object under analysis exhibits the

specified state, the condition is said to be true on that system.

Under this context, the manner in which OVAL represents

a vulnerability can be directly mapped to the usual way a

Fig. 1: High-level architecture

vulnerability is understood, as shown in Figure 2. Within the

OVAL language, a specific vulnerability is described using an

OVAL definition. An OVAL definition specifies a criteria that

logically combines a set of OVAL tests. Each OVAL test in

turn represents the process by which a specific condition or

property is assessed on the target system. Each OVAL test

examines an OVAL object looking for a specific state, thus an

OVAL test will be true if the referred OVAL object matches

the specified OVAL state. The overall result for the criteria

specified in the OVAL definition will be built using the results

of each referenced OVAL test.

As an example, we can consider an hypothetical vulnera-

bility for the Cisco IOS4 platform where two conditions must

hold simultaneously: the version of the platform must be 11.3

and the service ip finger must be enabled (thus N would be 2 in

Figure 2). Such vulnerability can be expressed within an OVAL

document by defining an OVAL definition that arranges two

OVAL tests as a logical conjunction where one test is in charge

of assessing the system version and the other one must check

the service status. The OVAL objects used in these tests will be

an object that represents the version of the system and other

object that represents the running configuration, respectively.

Finally, the OVAL states, one for the version and one for the

service, will express the states expected to be observed on each

4Cisco Internetwork Operating System

3



Fig. 2: Vulnerability conception mapping

object for the tests to be true and hence, defining the truth or

falsehood of the OVAL definition.

C. Translation formalization

The translation module identified in Figure 1 has as a

main goal the generation of Cfengine rules that accurately

represent the OVAL advisories present in the OVAL repository.

However, we consider the OVAL language should be seen from

a logical perspective, as a first-order language. In our model,

we understand the OVAL language as a means for predicating

on the underlying system. From a logical point of view,

its discourse universe is composed by each testable system

component for each supported platform. Each OVAL object

defines a family of items to be tested on the target system.

For example, an OVAL process object with name ”httpd” can

define a set of several processes with that name, where each

one of them is an identified OVAL item and will be tested

independently. The overall result will be computed according

to the parameters specified in the OVAL test. Because each

collected OVAL item is what is actually tested within the

OVAL process, the discourse universe of the OVAL language

refers to such OVAL items and not to the OVAL objects that

represent them.

Under this perspective, we consider a predicate as the very

essential construction within the OVAL language. The most

simple case can be seen as the evaluation of an OVAL item

gathered from the system against a specified OVAL state.

Mathematically, checking such item is the same as verifying

whether the specified item belongs to a defined mathematical

relationship. We believe that such formalization has potential

within autonomic environments and that might be successfully

exploited by reasoning engines such as done in [24] over

standard networks. The example presented in Figure 3 depicts

how the OVAL language can be used for expressing a predicate

over the httpd.conf configuration file, assessing that its owner

is the user root.

As mentioned before, the main core activity within the

OVAL language is about predicating over the underlying

system; this is, identify the system items (individuals of our

discourse universe) and perform the assessment checking if

they match specific states (check if retrieved individuals belong

to specific mathematical relationships). The properties of the

system under analysis can be seen as predicates where atomic

formulas – OVAL tests – can be compounded to build more

complex expressions – OVAL definitions –. Within the OVAL

language, definitions typically search for a combination of

specific characteristics that can reveal security holes on the

underlying system. Figure 4 presents a summarized mapping

between OVAL main constructors, their corresponding com-

ponents within a first-order logic and the respective Cfengine

building blocks.

Within our approach, Cfengine classes are particularly im-

portant as they are the main constructs for expressing results

of predicates over the system. For instance, when a collected

item is compared against a defined OVAL state, compliance

truth or falsehood will be represented by a Cfengine class.

If this item has to be compared against several OVAL states,

several Cfengine classes will be defined. The overall result for

this assessment will also be a Cfengine class based on each

<d e f i n i t i o n s >

<d e f i n i t i o n i d =” ova l : org . mitre . ova l : de f :PHI” . . . >

<c r i t e r i a >

<c r i t e r i o n comment=” s i n g l e formula ALPHA”

t e s t r e f =” ova l : org . mitre . ova l : t s t :ALPHA”/>

</ c r i t e r i a >

</ d e f i n i t i o n>

</ d e f i n i t i o n s >

<t e s t s>

< f i l e t e s t i d =” ova l : org . mitre . ova l : t s t :ALPHA”>

<o b j e c t o b j e c t r e f =” ova l : org . mitre . ova l : obj :MyOBJ”/>

<s t a t e s t a t e r e f =” ova l : org . mitre . ova l : s t e :MySTE”/>

</ f i l e t e s t >

</ t e s t s >

<o b j e c t s>

<f i l e o b j e c t i d =” ova l : org . mitre . ova l : obj :MyOBJ” . . . >

<pa t h o p e r a t i o n =” equa ls ”>/ e t c / h t t p d / conf /</ pa th>

<f i l e n ame o p e r a t i o n =” equa ls ”>h t t p d . conf </ f i l e n ame>

</ f i l e o b j e c t >

</ o b j e c t s>

<s t a t e s>

< f i l e s t a t e i d =” ova l : org . mitre . ova l : s t e :MySTE” . . . >

<u s e r i d o p e r a t i o n =” equa ls ”>r oo t </ u s e r i d>

</ f i l e s t a t e >

</ s t a t e s>

Fig. 3: Basic predicate within OVAL

4



one of the previous classes. On the other hand, a test result

will be also represented by a Cfengine class, hence, an OVAL

definition result will be based on the Cfengine classes defined

for each one of the referred tests. The steps followed by the

translation process are described in Algorithm 1.

The algorithm takes as input an OVAL document that

will be represented by the main configuration file within the

Cfengine policy. Each OVAL definition in turn will have its

own policy file that will be imported from the main Cfengine

configuration file. Each OVAL test is translated as a Cfengine

method that is invoked from the file that represents the OVAL

definition. OVAL objects are represented by Cfengine prepared

modules while OVAL states are specified using Cfengine

control variables. Results for OVAL tests and OVAL defi-

nitions are specified using Cfengine classes that in turn are

combined using the same logical structure described in the

OVAL definitions. Due to space limitations it is not possible

to detail further Cfengine grammar but more information can

be found at [14].

Mapping

First-order logic OVAL Cfengine

Arrangement of OVAL document Cfengine main

compound logical configuration

formulas file

Compound logical OVAL Cfengine input

formulas definitions files

Atomic OVAL tests Cfengine

predicates methods

Family of OVAL objects Cfengine

individuals in prepared

the discourse modules

universe

Mathematical OVAL states Cfengine control

relationships variables

Fig. 4: First-order logic, OVAL and Cfengine mapping

Since the OVAL language allows to express specific sys-

tem states, OVAL definitions can be used in several ways;

particularly for defining states that should not happen (e.g.

configuration vulnerabilities) or states that should happen (e.g.

recommendations and good practices). Under this perspec-

tive, OVAL definitions that model configuration vulnerabilities

should generate an alert on the translated Cfengine policy

when they are true. On the other hand, OVAL definitions that

model recommendations and good practices should generate

an alert when they are false. For the moment, only alerts are

considered when configuration vulnerabilities are observed. In

order to achieve fully autonomy, remediation and mitigation

measures have to be taken into account. XCCDF [30] is a

promising standard that can be used for expressing specific

system states that if hold, defined tasks can be performed in

an automatic manner.

Data: an OVAL document
Result: Cfengine policy rules

1 mainF ile ← create <Cfengine main configuration file>;
2 foreach def ∈ OVAL definitions do
3 defF ile ← create <Cfengine input file> for def ;
4 add import sentence at mainF ile;
5 foreach test referred by def do
6 on defF ile do {
7 obj ← OVAL object referred by test;
8 add prepared module call at ”control section”

for gathering obj;
9 foreach ste referred by test do

10 add ste control variables at
”control section”;

11 end
12 add test call method at ”methods section”

specifying objects and states;
13 }

14 methodF ile ← create <Cfengine method file>
for test;

15 on methodF ile do {
16 add method name and parameters at

”control section”;
17 add obj variable at ”control section”;
18 foreach atomic predicate on the specified obj

do
19 add result as a Cfengine class at

”classes section”;
20 end
21 combine classes for defining final method result

class;
22 }
23 end
24 add logical test criteria at ”alerts section” on

defF ile;
25 end

Algorithm 1: Translation algorithm

IV. IMPLEMENTATION PROTOTYPE

In order to provide a computable infrastructure to the pro-

posed approach, a translator is needed capable of interpreting

OVAL documents and generating the required Cfengine direc-

tives code. In this section we present Ovalyzer, an extensible

plugin-based OVAL to Cfengine translator.

Ovalyzer has been purely written in Java 1.6 over Fedora

Core (kernel version 2.6.30.10). The tool has been built over

the Spring framework 3.0 and uses JAXB [4] for managing

XML related issues. The translator provides serveral cus-

tomization options for building, deployment and logging tasks.

The Cfengine policy rules currently generated by the translator

are compliant with Cfengine 2.2.10 [1].

The prototyped translator is responsible for the translation of

OVAL documents to Cfengine policy rules that represent them.

The translator takes as input the content of OVAL documents

and produces Cfengine code that is structured as Cfengine

policy files that can be later consumed by a Cfengine running

instance. Figure 5 describes Ovalyzer main components and

the high-level interaction between them.

5



Fig. 5: Ovalyzer - High level operation

At step 1, an OVAL document is consumed as the input of

the translator. An OVAL pre-processor is in charge of parsing

the content of the specification, adjusting some configuration

aspects and feeding the OVAL analyzer module at step 2 with

a memory representation of the specified input. The OVAL

analyzer module is the component that orchestrates the trans-

lation flow and provides the required directives for generating

Cfengine code at step 3.i. Several calls are made by the OVAL

analyzer module to the Cfengine policy writer depending on

the content of the OVAL document. The Cfengine policy writer

is in charge of generating the main Cfengine policy entries at

step 4.1 and delegating at step 4.2, specific platform rules

to plugins specifically designed for generating this type of

Cfengine code. Plugins will produce the required Cfengine

code that will be included at step 5 inside the generated

Cfengine policy files.

The translator core is in charge of managing every high-level

aspect of the OVAL documents it processes while available

plugins provide the required functionality for generating the

appropriate Cfengine code. The data model used by Ovalyzer

is automatically generated using the JAXB technology. JAXB

provides means not only for modeling XML documents within

a Java application data model but also for automatically

reading and writing them. Such feature provides to Ovalyzer

the ability to evolve with new OVAL versions with almost

no developing cost. While declarative extensibility of the

translator is achieved by automatic code generation using the

JAXB technology, functional extensibility is supported by a

plugin-based architecture.

Plugins can be added on the plugin repository providing new

translation capabilities. Each plugin knows how to translate

a specific type of OVAL test to the appropriate Cfengine

rules. This approach provides extensibility features, enabling

a seamless functional evolution with the OVAL language.

Moreover, plugin developers have access to the same data

model built as a JAR library, simplifying eventual OVAL

evolution impacts. When an OVAL document is processed by

Ovalyzer, the required plugins are loaded at runtime from the

plugins repository and the operations available in the plugins

API are executed. Within the OVAL language, an OVAL

definition can be seen as a logical formula compounded by

OVAL tests. Because each type of test has it associated plugin,

an OVAL definition can be translated only if the required

plugins are present in the repository. Ovalyzer implements

a plugin search mechanism based on name patterns. For

example, if the name of the test belonging to the IOS platform

is line test, its associated plugin will be CfengineIosLine.jar;

on the other hand, if the name of the test is version55 test, its

associated plugin will be CfengineIosVersion55.jar. During the

translation, Ovalyzer relies on the functionality of plugins for

generating Cfengine code, thus an API has been specified in

order to define the required methods for achieving a successful

translation. Such methods have been specified based on how

the Cfengine language structures its content. The current

version of Ovalyzer provides an API of five methods that

plugins shall implement.

V. A CASE STUDY

In this section we present a case study based on the IOS

Operating System for Cisco devices.We consider an emulated

environment where we show how the proposed framework can

be used for augmenting the awareness of known vulnerabilities

on Cisco routers. We also present the results obtained from the

performed experiments.

Ovalyzer has been executed on an emulated environment

in order to evaluate several factors such as functionality, per-

formance and characteristics of the generated Cfengine code.

Cisco devices have been emulated using Dynamips / Dynagen

[2] running the operating system IOS version 12.4(4)T1.

A. IOS coverage and execution time

The official OVAL repository has 134 vulnerability defi-

nitions for the IOS platform, at the moment of writing this

article. These definitions are based on three types of test,

namely, line test (L), version55 test (V55) and version test

(V). As we mentioned before, one plugin per each type of

test is needed in order to provide the required translation

capabilities. For this case study, three plugins have been

written, namely, CfengineIosLine.jar, CfengineIosVersion.jar

and CfengineIosVersion55.jar. Such plugins together provides

a coverage of 100% of OVAL definitions for the IOS platform.

Figure 6 depicts how the addition and combination of the

required plugins increase the translation capabilities.

It can be also observed that each plugin does not provide

a large coverage by itself. For instance, line test only cov-

ers 1.49% of the available IOS definitions. This is because

typically vulnerability definitions use more that one test for

specifying the required conditions to be met on the target

system. When combined, plugins shall cover a wider range

of OVAL definitions. Different platforms may require a larger

family of components to analyze, thus requiring more type of

tests and hence, more plugins. In the case of the IOS platform,

only three plugins were required for translating the 100% of

available definitions in the OVAL repository.

6



Fig. 6: IOS plugins coverage

Since such translation shall be made in an automatic man-

ner, several tests for evaluating Ovalyzer’s performance have

been done. We have particularly focused in the time required

for generating Cfengine policy files over different sets of

IOS vulnerability definitions. Figure 7 shows the observed

timing values while varying the amount of translated OVAL

definitions.

The experiment consists in executing Ovalyzer with a set

of only one definition and measure the generation time, then

with a set of two definitions and measure the generation time,

and so on, until 134 definitions. Intuitively, one might expect a

curve that monotonically grows with the number of definitions

to translate, however, the obtained results are quite far from

what expected. Within some executions for translating more

than 100 definitions, the processing time is near from those

executions translating less than 20 definitions. On the other

hand, executions with a high translation time can be ob-

served on a regular basis during the experiment. Because such

experiments are run within an emulated and non-dedicated

Fig. 7: IOS translation performance

Fig. 8: IOS generation statistics

environment, we hold the hypothesis that this behavior is due

to scheduling strategies of the operating system, not only with

memory processes but also with I/O resources. We believe that

such behavior is interesting for two reasons. First, involved

equipment within autonomic networks may present similar

scheduling issues; second, it gives a realistic overview of

the expected behavior so autonomic strategies can take such

conduct into account. The graph also identifies the average and

median time of the executions performed, which respectively

are of 9.5 and 6.1 seconds. Even when occasionally high

time values occur and hence more experiments must be done

for explaining why, the extremes seem to be bounded in the

general case.

B. Size of generated Cfengine policies for Cisco IOS

As happens with the generation time, the number and size of

generated files constitutes an important dimension for analysis

as well. We have experimented with the generated policies

in the same way we did before, computing results for one

definition, then two definitions and so on, until 134 definitions.

Figure 8 illustrates the amount and total size of the generated

files according to the number of definitions translated. For

instance with 100 definitions, the translator generates a fileset

of 333 files with a total size of 775 KB.

Both, the number of files and the size of the generated

fileset, describe a linear growth when the number of IOS

definitions is increased. This is in part due to the nature of

the IOS definitions themselves, because in the average, each

one of them uses a similar amount of tests and resources. With

other platforms this behavior may not be observed because if

we consider two definitions, one using several tests and objects

and the other one, only one or two; the former will require

several policy files – according to the way the translation is

done – while the last one will be represented by a smaller set

of files. Considering the case study of the Cisco IOS platform,

the generation behavior (depicted by the first derivative of the

curves), is stable as illustrated in the inner graph in Figure 8.

Based on the experiments and results presented here, we aim

7



to define for future work a mathematical and well founded

mechanism for determining the size of a Cfengine policy

fileset for any given set of OVAL definitions.

VI. CONCLUSIONS AND FUTURE WORK

This work is mainly focused on integrating vulnerability de-

scriptions in the management plane of autonomic networks and

systems. Taking advantage of external knowledge sources such

as OVAL repositories enables the ability of highly increasing

vulnerability awareness in such self-managed environments.

Cfengine has been taken as the autonomic part of this ap-

proach while the OVAL language is the resource that provides

support for vulnerability descriptions. A formalization of the

translation between OVAL descriptions and Cfengine policies

has also been done by considering the OVAL language as

a first-order language. As a case study we have chosen the

IOS platform for Cisco devices, generating Cfengine policy

rules capable of analyzing and detecting vulnerabilities over

such platform, thus increasing vulnerability awareness in an

autonomic manner. In addition, several experiments have been

performed whose results successfully indicate the feasibility of

the proposed approach in terms of functionality and integration

into the Cfengine autonomic maintenance tool.

Vulnerability management integration into autonomic en-

vironments poses hard challenges. Supporting vulnerabil-

ity awareness constitutes the first step towards secure self-

managed infrastructures capable of detecting and remediating

potential security breaches. We argue that networks and sys-

tems can achieve real autonomy if they are able to manage

the required activities for understanding the surrounding envi-

ronment, ensuring safe configurations and taking corrective

actions when vulnerable states are found. For future work

we plan to perform a deeper analysis of the actual impact

of introducing our solution in real autonomic networks and

systems. We also aim at extending the proposed approach to

the execution of remediation actions. XCCDF is a promising

language that can be used for expressing actions to take

when a vulnerable condition is observed, being aware that

such modifications may also have collateral effects thus risk

assessment techniques must be taken into account. We are

also interested in the formalization of the underlying used

languages as it provide mathematical support for reasoning

about security issues that can be integrated into autonomic

networks and systems as well.

ACKNOWLEDGEMENTS

This work was partially supported by the EU FP7 Univerself
Project and the FI-WARE PPP.

REFERENCES

[1] Cfengine. http://www.cfengine.org/. Last visited on April 4, 2011.
[2] Dynamips/Dynagen Cisco Router Emulator. http://www.dynagen.org/.

Last visited on April 4, 2011.
[3] ITSM - IT Service Management. http://www.itsm.info/ITSM.htm.

[4] Java Architecture for XML Binding. http://java.sun.com/developer/
technicalArticles/WebServices/jaxb/.

[5] MITRE Corporation. http://www.mitre.org/. Last visited on April 4,
2011.

[6] NIST, National Institute of Standards and Technology. http://www.nist.
gov/. Last visited on April 4, 2011.

[7] OVAL Language. http://oval.mitre.org/. Last visited on April 4, 2011.
[8] Ovaldi, the OVAL Interpreter Reference Implementation. http://oval.

mitre.org/language/interpreter.html.
[9] H. Achi, A. Hellany, and M. Nagrial. Network Security Approach For

Digital Forensics Analysis. Proceedings of the International Conference
on Computer Engineering and Systems (CCES’08), pages 263–267,
November 2008.

[10] M. S. Ahmed, E. Al-Shaer, and L. Khan. A Novel Quantitative Approach

For Measuring Network Security. IEEE, April 2008.
[11] M. S. Ahmed, E. Al-Shaer, M. M. Taibah, M. Abedin, and L. Khan.

Towards Autonomic Risk-Aware Security Configuration. Proceeding of

the IEEE Network Operations and Management Symposium (NOMS’08),
pages 722–725, April 2008.

[12] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, Graph-Based Net-
work Vulnerability Analysis. Proceedings of the 9th ACM Conference

on Computer and Communications Security (CCS’02), page 217, 2002.
[13] J. Banghart and C. Johnson. The Technical Specification for the Security

Content Automation Protocol (SCAP). Nist Special Publication, 2009.
[14] M. Burgess and Æ. Frisch. A System Engineer’s Guide to Host

Configuration and Maintenance Using Cfengine, volume 16 of Short

Topics in System Administration. USENIX Association, 2007.
[15] M. Chiarini and A. Couch. Dynamic dependencies and performance im-

provement. In Proceedings of the 22nd conference on Large installation

system administration conference, pages 9–21. USENIX Association,
2008.

[16] Autonomic Computing. An Architectural Blueprint For Autonomic
Computing. IBM White Paper, 2006.

[17] V. Corey, C. Peterman, S. Shearin, M. S. Greenberg, and J. V. Bokkelen.
Network Forensics Analysis, 2002.

[18] R. Costa Cardoso and M.M. Freire. Towards Autonomic Minimization of
Security Vulnerabilities Exploitation in Hybrid Network Environments.
Proceedings of the Joint International Conference on Autonomic and

Autonomous Systems and International Conference on Networking and

Services (ICAS-ISNS’05), pages 80–80, 2005.
[19] J. Demott. The Evolving Art of Fuzzing 2 . Software Testing. pages

1–25, 2006.
[20] Y. Diao, A. Keller, S. Parekh, and V. V. Marinov. Predicting Labor

Cost through IT Management Complexity Metrics. Proceedings of

the 10th IFIP/IEEE International Symposium on Integrated Network

Management (IM’07), (1):274–283, May 2007.
[21] P. Foreman. Vulnerability Management. Taylor & Francis Group, 2010.
[22] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.

Computer, 36(1):41–50, January 2003.
[23] M. J. Khan, M. M. Awais, and S. Shamail. Enabling Self-Configuration

in Autonomic Systems Using Case-Based Reasoning with Improved Ef-
ficiency. Proceedings of the 4th International Conference on Autonomic

and Autonomous Systems (ICAS’08), pages 112–117, March 2008.
[24] X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A Logic-Based

Network Security Analyzer. on USENIX Security, 2005.
[25] N. K. Pandey, S. K. Gupta, S. Leekha, and J. Zhou. ACML: Capa-

bility Based Attack Modeling Language. Proceedings of The Fourth

International Conference on Information Assurance and Security, pages
147–154, September 2008.

[26] J. Sauve, R. Santos, R. Reboucas, A. Moura, and C. Bartolini. Change
Priority Determination in IT Service Management Based on Risk
Exposure. IEEE Transactions on Network and Service Management,
5(3):178–187, September 2008.

[27] S. J. Templeton and K. Levitt. A requires/provides model for computer
attacks. Proceedings of the Workshop on New Security Paradigms

(NSPW’00), pages 31–38, 2000.
[28] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware

Directed Fuzzing Tool for Automatic Software Vulnerability Detection.
Proceedings of the IEEE Symposium on Security and Privacy, pages
497–512, May 2010.

[29] J. A. Wickboldt, L. A. Bianchin, and R. C. Lunardi. Improving IT
Change Management Processes with Automated Risk Assessment. Pro-
ceedings of the IEEE International Workshop on Distributed Systems:

Operations and Management (DSOM’09), pages 71–84, 2009.
[30] N. Ziring and D. Waltermire. Specification for the extensible configu-

ration checklist description format (XCCDF). NIST (National Institute

of Standards and Technology).

8


