
Policy Refinement: Decomposition and
Operationalization for Dynamic Domains

Robert Craven,1 Jorge Lobo,2 Emil Lupu,1 Alessandra Russo,1 Morris Sloman1
1Department of Computing, Imperial College London, UK

2IBM Research, T.J. Watson, NY, USA
{robert.craven, e.c.lupu, a.russo, m.sloman}@imperial.ac.uk, j.lobo@us.ibm.com

Abstract—We describe a method for policy refinement. The
refinement process involves stages of decomposition, operational-
ization, deployment and re-refinement, and operates on policies
expressed in a logical language flexible enough to be translated
into many different enforceable policy dialects. We illustrate with
examples from a coalition scenario, and describe how the stages
of decomposition and operationaliztion work internally, and fit
together in an interleaved fashion. Domains are represented in a
logical formalization of UML diagrams. Both authorization and
obligation policies are supported.

I. INTRODUCTION

The problem of policy refinement is that of automating the
movement from a high-level, abstract characterization of a
policy, to policies in the languages of the various enforcement
points, which refer to the concrete objects and actions per-
formed. The policies must be fine-tuned to the specifications
of devices, and they should respond to changes in the system
they regulate in ways that guarantee that the high-level policy
passed as input is still satisfied. The problem is increasingly
important, as reflected in the growing number of papers in
recent years [1], [2], [3], [4], [5], [6]. However, in spite of this
trend of increasing interest, there are still very few coherent
approaches covering multiple aspects of the problem.

In recent work [7], [8] we presented ideas on policy decom-
position. This is the process of using the relationship between
actions at a higher level of abstraction and the sequences
of actions at lower levels that can implement them, in the
generation of refined policies. Policies that reference subjects
and targets in more abstract terms are transformed into policies
that apply to the objects that compose those subjects and
targets. Our ideas for decomposition used a language based on
constraint logic programs, with concepts from data integration
used for the form of the decomposition rules.

In the current paper, we extend this line of inquiry further
to focus on two things: (i) the nature of operationalization
as the second, crucial feature of policy refinement; and (ii)
the integration of decomposition and operationalization into a
complete method for the refinement of authorization and obli-
gation policies. Operationalization is the process of selecting
the objects to which policies apply. We also consider, more
briefly, the problem of re-refinement—when, after an initial
refinement and enforcement of policies, the information in the
domain changes to force alterations to the refinements.

Our policy language is a subset of that of our analysis
framework [9]. We use a logical representation of UML for

domains, and modify the syntax of our earlier presentation
of decomposition rules, in very minor ways, to allow the
integration of decomposition and operationalization. We em-
phasize that the formalism, which was presented at greater
length in [10], is a logic for accomplishing various analysis
and refinement tasks on policies, and is not intended, in its
current form, as an enforceable policy specification language.

After a brief overview (II), we present our formalism (III),
and an account of decomposition rules and their applica-
tion (IV). We present the technical details of operationaliza-
tion, with examples (V). Next, we consider the interleaving of
decomposition and operationalization, and also the question of
re-refinement (VI). After this is related work, and a conclusion.

II. REFINEMENT OVERVIEW

There are three kinds of input to the refinement process:
a UML representation of the domain; an authorization or
obligation policy; and decomposition rules representing how
actions and objects described at a higher level of abstraction
relate to those described at a lower level. All are formalized
in normal logic programs with constraints. The policy given
as input is typically at a high level of abstraction, and the
purpose is to refine it, as automatically as possible, into low-
level policies that are expressed in whatever industrial policy
languages the enforcement points support.

The formal representation of the UML has both a descrip-
tion of the class structure, the associations possible, and the
operations one can perform on instances of the classes; and an
instance repository, that records the specific objects existing
in the domain and the relations between them. There is also an
account of the object and operation terminology understood by
the policy enforcement points; when policies have been refined
so they are expressed exclusively in terms of such vocabulary,
refinement has ended and the policies are translated into
specific policy languages and sent for enforcement.

Our refinement process interleaves two different phases,
using the different categories of input in turn. First, a high-
level policy is operationalized so that all the objects it applies
to are found. This means comparing the conditions in the
policy with the instance repository to determine the possi-
ble, specific sets of objects satisfying those conditions. For
each such combination of objects, a phase of decomposition
follows. Decomposition rules that match the operationalized
policies are applied, so the policies are expressed in terms

of more concrete classes of objects—closer to policies that
can be sent for enforcement. The way decomposition works
depends on whether the policy being refined is an authorization
or obligation policy. Decomposition rules provide information
about how an action is to be implemented, and we take the
view that a positive authorization policy allows the subject to
perform the action in all ways, a negative authorization policy
prohibits all ways of carrying out an action, and an obligation
policy requires a subject to carry out an action in one way.

After a decomposition phase, reference to new classes at a
more concrete level are introduced; the new policies need to
be operationalized, so objects of those classes can be found
from the instance repository. Thus, after an initial opera-
tionalization, refinement is iterated stages of decomposition
and operationalization. After operationalization, the policies
are tested to see whether they are expressed in terms an
enforcement point understands. If so, they are translated into
the specific policy languages (e.g. Ponder [11]) running on
the enforcement points and sent for implementation; different
translation schemes trans1, . . . , transn are used for this pro-
cess. Our method is illustrated in Figure 1.

Initial Policy

UML Instance

UML Class

Decompositions

Operationalization

Decomposition

concrete layer?

trans1 transn

Initial Policy

UML Instance

UML Class

Decompositions

Operationalization

Decomposition

concrete layer?

trans1 transn

“No”
“Yes”

Inputs Refinement Process

Fig. 1. Overview of refinement

If, after refinement, objects in the domain are created,
destroyed, or their properties change, then information held
in the instance repository, used to refine the existing policies,
may no longer be valid, and the policies themselves depending
on this should be replaced with others consistent with the
changes. Knowledge of classes and their operations may also
change: half-way through the lifetime of a system, for instance,
a new type of server might be introduced. As decomposition
rules relate actions performable on classes to their implemen-
tation as actions performed on those classes’ components, the
introduction of new classes typically means the introduction
of new decomposition rules. These possibilities mean that
re-refinement must be studied, as a way of automating the
alterations necesarry to the existing refinements.

III. BASIC FORMALISM

The representation of domains is a simple logical formaliza-
tion of UML diagrams, with several additional features used
for reasoning over the domain. Decomposition rules’ structure
must reflect the hierarchies and relationships implicit in the

UML representation. Policies themselves are expressed in a
logical language expressive enough that many widely-used
policy languages can be translated into it; the language is that
of normal logic programs. In the current section, we discuss
the representation of domains and the policy language.

The representation of domains is itself divided into two
parts. The more ‘static’ bit describes the classes of object
present, the isa relationships between them, and the types of
possible association and aggregation. The ‘dynamic’ part is
liable to change more often: e.g. if a specific object vidCam23

exists at time 4 and is a device, this can be represented as
holdsAt(obj(vidCam23, device), 4).

Definition 1 A class definition C is a set of ground facts
of class, isa, assType, aggregType, compType, classOp such
that: for all isa(c, c′), assType(c, a, c′), aggregType(c, a, c′)
or compType(c, a, c′) ∈ C, then class(c), class(c′) ∈ C; if
classOp(c, o, n, l) ∈ C then class(c) ∈ C and for all c′ ∈ l,
class(c′) ∈ C and l has length n. We also include:

isaTrns(C,C′)← isa(C,C′). (1)

isaTrns(C,C′)← isa(C,C′′), isaTrns(C′′, C′). y

assType(c, a, c′) is used to represent that an association a
can hold between objects of classes c and c′; similarly for
aggregType and aggregations, and compType and composi-
tions. classOp(c, o, n, l) is used to represent that an opera-
tion o can be performed on objects of class c; the opera-
tion has n parameters whose classes are in l. For instance,
the fact classOp(nikon23, takePhoto, 2, [nikonRes, posInteger])
may represent that Nikon cameras of model 23 support a
takePhoto operation that takes two arguments: the photo
resolution, and the number of photographs to take. (1) is used
for reasoning over the transitive closure of the isa relation.

Definition 2 An instance definition at t, where t is a non-
negative rational number, is a set of ground instances of
holdsAt all of whose second arguments are t, and whose first
arguments—the fluents—are instances of obj, ass, aggreg or
comp; with the following definition:

holdsAt(objTrns(O,C), T)← holdsAt(obj(O,C), T). (2)

holdsAt(objTrns(O,C), T)← holdsAt(O,C′), T), isaTrns(C′, C).y

Our policy language includes positive and negative au-
thorization rules, and obligation rules. The authorization
rules have the form permitted(Sub,Act,Tar, T) ← B or
denied(Sub,Act,Tar, T)← B, and the obligation policy rules
have the form obligation(Sub,Act,Tar, Ts, Te, T) ← B. The
language has sorts for subjects, actions and targets, and the
relevant arguments in the head of the policy rules should be
terms of those sorts. The bodies B are conjunctions of atoms
holdsAt (with fluents obj, ass, aggreg and comp), happens, do
and fulfilled, with constraints over the temporal variables. The
holdsAt refer to properties of the domain, and the temporal
constraints are used to say when all these conditions should be
true: the conditions can be historical. (In previous versions [8]
of our language we allowed a more expressive syntax for

policies; this is simplified here to focus on the fundamental
logic of policy refinement.) Constraints c are of the forms
s1 = s2, s1 < s2, s1 6 s2, where the si have the form n, v,
s1 + s2 or s1 − s2—for n ∈ R+ ∪ {0} and variables v.

As an example, consider the obligation policy that [All
communications officers from every platoon must file daily
summary reports to their divisions within one hour of a re-
minder]. This can be formalized in our policy language as:

obligation(Sub, fileRep(R), Tar, T1, T2, T)← (3)
holdsAt(obj(Sub, commsOfficer), T),
holdsAt(ass(Sub, belongs, P), T), holdsAt(obj(P, platoon), T),
holdsAt(obj(R, report), T), holdsAt(obj(Tar, division), T),
holdsAt(ass(P, part of, Tar), T),
happens(reminder(fileRep, R, dailySummary), T1),

T2 = T1 + 3600, T1 6 T 6 T2.

The first six conditions in the body define the subject, action
and target the policy applies to; the next, happens predicate
requires that the obligation depends on the occurrence of a
reminder event; and the constraints require that the subject
has sixty minutes to fulfil the obligation, that is imposed
immediately the event on which it depends occurs.

Our policy language has many other features which we will
not treat in detail here. However, important in what follows
will be the predicate fulfilled, which is defined independently
of the policies as follows:

fulfilled(Sub, Tar,Act, Ts, Te, Tf , T)←
obligation(Sub, Tar,Act, Ts, Te, Tf), do(Sub, Tar,Act, Tf),

not cease obl(Sub, Tar,Act, Tinit, Ts, Te, T
′),

Tinit 6 Ts 6 T ′ < Te, T
′ < Tf , Tf < T.

cease obl(Sub, Tar,Act, Ts, Te, T)←
do(Sub, Tar,Act, T ′), Ts 6 T ′ < T 6 Te.

An obligation is fulfilled if it is currently active, and the
action required by the obligation is performed at the right
time. Fulfilment conditions will be important when we refine
to sequences of actions, later, as a way of ensuring the actions
are performed in the right order.

IV. DECOMPOSITION

We achieve decomposition by the application of decom-
position rules, relating domain elements represented more
abstractly to the components and implementations of those
elements at a more concrete level. We first describe the
application of a single decomposition rule.

Decomposition rules are presumed to be part of the input
to the refinement process, and are properly considered to be
part of the domain knowledge. The basic component of a
decomposition rule is a conditioned action.

Definition 3 A conditioned action is an expression of the
form (QsSub,Act, QtTar) : C1, . . . , Cn; the conditions Ci

have the forms obj(O,C), ass(O,A,O′), aggreg(O,A,O′) or
comp(O,A,O′). C is a class name from the domain, and
A is an association, aggregation, or composition type. Any

variable occurring in Sub, Act or Tar also occurs in the Ci.
The expressions Qs and Qt are either empty, or quantifiers of
the form ∀ or ∃!n, where n is a positive integer; if both of Qs

and Qt are non-empty, then one is preceded by +. y

These expressions define a set of performances of actions by
subjects on targets, subject to the constraints C1, . . . , Cn and
relative to a particular state of the instance repository that
represents the domain. Their full meaning becomes clearer
when it is shown how they function in decomposition rules.

The quantifiers will be used as a cue for the operational-
ization process to determine how many subjects or targets to
find satisfying the conditions in the policies derived using the
decomposition rule. Where Sub is the subject of a conditioned
action (whose type will be constrained by the conditions
C1, . . . , Cn), a quantifier ∀Sub means that the action should
be performed by all Sub of the constrained type; a quantifier
∃!nSub would mean that precisely n subjects of the relevant
type should perform the action. If both subject and target have
a quantifier, the + indicates ordering, and hence scope. If
the head of a conditioned action is (+∀Sub,Act,∃!3Tar), then
every subject of the type defined must perform Act on precisely
3 targets—not necessarily the same targets. Alternatively, if the
head of the conditioned action is (∀Sub,Act,+∃!3Tar), this
means that precisely three targets should have Act performed
on them by all subjects—in this case, the same three targets.

Definition 4 A decomposition rule is an expression C ⇒
[C1 then · · · then Cn], where each Ci is a conditioned
action. C is the top, and the Ci are the bottoms. There must
be some obj(Sub, C) and obj(Tar, C ′) in the conditions of
C, such that for some n and l, C |= class(C) ∧ class(C ′) ∧
classOp(C ′′,Act, n, l) ∧ isaTrns(C,C ′′). If the form is

(Sub,Act, Tar) : Conds⇒ (4)

(Q1
sSub1,Act1, Q1

tTar1) : Conds1
then · · · then (Qn

s Subn,Actn, Qn
t Tarn) : Condsn

then for all Qi
x, Qi

x is non-empty iff the variable quantified
by Qi

x does not appear as the subject or target of either the
top of the rule, or a previous conditioned action (i.e. some
Subj or Tarj for j < i). Additional constraints on the
relationships between the classes for the subjects and targets
in the bottoms, and those for the subjects and targets of the
top, are inherited from Definition 5 of [8]. These ensure the
hierarchical relationships in the UML are observed. y

The meaning of such decomposition rules is that when an
action (Sub,Act,Tar) is performed (as identified by the con-
ditions Conds), then this can be implemented by the sequence
of actions in the bottom of the rule.

An application of a rule (4) matches its top against the
policy being refined, and then decomposes the policy by
producing one copy of it for each of the rule’s ‘bottoms’, but
with the subject, action and target replaced by those of the
conditioned action in the bottom, with their quantifiers. The
process is quite straightforward, and as we have described and
illustrated it at length elsewhere [8] we do not repeat the bulk

of that here. The only difference with our previous presentation
is the existence of the quantifiers. These do not affect the
results of the decomposition process itself, but feed into the
subsequent operationalization phase, as we later describe.

The output from an application of a decomposition rule
to a policy has the form ((P1, S1), . . . , (Pn, Sn)) where each
Pi is a policy with quantifiers, and each Si is the sequence
information, consisting of do literals and constraints in the case
of authorization policies, and fulfilled literals and constraints
in the case of obligation policies.

When the action permitted (denied) by an authorization
policy decomposes to a sequence of actions, the Si ensure
that the previous actions in the sequence have been executed.
Consider a sample policy that [Communications officers are
permitted to file reports to their platoons within 5 mins after a
report notification event], and suppose the following rule:

(Sub, fileRep(R), Tar) : obj(Sub, soldier), obj(Tar, unit) (5)
⇓

(Sub, send(R), ∃!2Tar1) :
obj(Tar1, reportRep), aggreg(Tar1, belongs, Tar)

then (Sub, backup(R),∃!1Tar2) :
obj(Tar2, backupServer), ass(Tar2, belongs, Tar)

(The Sub variable in the bottoms of the decomposition rule
needs no associated quantifiers because it appears in the top of
the rule.) The meaning of this rule is that an action of a soldier
filing a report to a unit can be implemented by that soldier
sending the report to two of the unit’s report repositories, and
then backing up the report to one of the unit’s backup servers.
If the policy is decomposed using the rule, the result will be:

permitted(Sub, send(R), ∃!2Tar1, T)← (6)
holdsAt(obj(Sub, commsOfficer), T),
holdsAt(aggreg(Sub, belongs, P), T),

holdsAt(obj(P, platoon), T), holdsAt(obj(Tar1, reportRep), T),
holdsAt(aggreg(Tar1, belongs, P), T),

happens(reminder(fileRep, R), T ′), T ′ 6 T 6 T ′ + 300.

Sequence: []

permitted(Sub, backup(R),∃!1Tar2, T)← (7)
holdsAt(obj(Sub, commsOfficer), T),
holdsAt(aggreg(Sub, belongs, P), T),

holdsAt(obj(P, platoon), T),
holdsAt(obj(Tar2, backupServer), T),
holdsAt(aggreg(Tar2, belongs, P), T),

happens(reminder(fileRep, R), T ′), T ′ 6 T 6 T ′ + 300.

Sequence: [do(Sub, send(R), Tar1, T ′′), T ′ 6 T ′′ < T]

An authorization for backup(R) to be performed must be
given only when both send actions (to the two reposito-
ries) have been performed. Let us suppose that the sub-
sequent operationalization phase chooses the two targets
dump1 and dump2 for the first policy (6)—and that the
subject throughout is alice. Then the second policy must
only give authorization after do(alice, send(R), dump1, T1)
and do(alice, send(R), dump1, T2) are both true. This means

that the operationalizations of the first policy also apply to the
do conditions, the Sequence information, which is related to
the second policy. These do conditions can therefore only be
added after the operationalization has taken place.

Similar remarks apply to fulfilled and obligation policies; for
obligation policies, fulfilled plays a role analogous to that of
do for authorizations. Notice that the addition of quantifiers
before variables in our policies takes us strictly outside the
language of normal constraint logic programs. However, we
see a phase of decomposition followed by operationalization
as unified steps in a process of refinement; after each phase
of operationalization, the policies are again within the syntax
of constraint logic programs.

V. OPERATIONALIZATION

Operationalization is the selection of specific resources
policies apply to, and as this depends on which resources
exist, the inputs to operationalization will be a sequence of
semi-refined policies (from a decomposition) with associated
sequence information, and the instance repository of current
facts about the domain. The algorithms for selecting resources
depend on the kind of input policy, and the nature of the sys-
tem used to store information about the domain. Our interest
here is twofold. We want to provide one implementation of our
refinement procedure, using a logic-programming system with
decomposition rules and standard logic-programming queries.
We also want to model the overall refinement process, to show
how the stages of decomposition and operationalization fit
together, even if—in practice—the algorithms used to pick
resources might differ. If the methods used to operationalize
policies were based on constraint satisfaction algorithms, or
linear programming, or other optimizatation algorithms, these
could be ‘plugged in’ to our overall refinement design.

Policies have a general form H(Sub,Act,Tar, . . . , T) ←
Holds,Happens,Cons, Seq. The H is permitted, denied or
obligation. Happens conditions are events the policy depends
on. Seq conditions ensure sequences of actions are performed
in the right order. The Holds conditions will, for the most
part, constrain the subjects, actions and targets of the policy.
The Holds conditions might also contain literals that define
the parameters of the various Happens events. For example,
in policy (3), the condition holdsAt(obj(R, report), T) refers
to the report that the reminder event in that policy’s happens
condition mentions. In this policy, it would not be possible
to operationalize the reports at refinement-time—the report
may not appear in the instance repository, and may only be
created later. The grounding of the variable R is determined
by the parameters of the reminder event, and the operational-
ization procedure should ignore it. Accordingly, we allow
policy authors to mark variables in policies, to indicate that
the corresponding resource should not be operationalized at
refinement-time. Policy (3) can be altered to reflect this, by
replacing all occurrences of R with R−. Any variable marked
with a − will not be operationalized.

As stated above, operationalization takes as input:

1) A sequence of quantified policies and sequencing con-
ditions ((P1, S1), . . . , (Pn, Sn)) from a decomposition.

2) UML formalization of class information and instance
repository, CI.

Pseudocode for the top-level of the process is in Algorithm 1.
(For the notation here: sequences and lists are represented as

Algorithm 1 operationalize(((P1, S1), . . . , (Pn, Sn)), CI)
1: L← (((P1, S1), . . . , (Pn, Sn))); O ← ()
2: while L is non-empty do
3: P← head(L); (P, S)← head(P)
4: if isGround(subject(P)) ∧ isGround(target(P)) then
5: if tail(P) = () then L← tail(L)
6: else L← tail(L) end if
7: L← (tail(P)) · tail(L)
8: P ′ ← addSeq(P, S); O ← O · (prune(P ′))
9: else

10: if hasPlus(subject(P)) ∨ isGround(target(P)) then
11: L′ ← pick(subject(P)target(P), P, S, tail(P), CI)
12: else
13: L′ ← pick(target(P)subject(P), P, S, tail(P), CI)
14: end if
15: L← L′ · L
16: end if
17: end while
18: return O

(e1, . . . , en). subject and target pick out those terms in the
heads of a policy. Substitutions θ with unique members X/Y
are sometimes represented by them; the application to a term
P is Pθ or P [X/Y]. List concatenation is ·.)

The key sub-procedures here are addSeq and pick. addSeq
takes a fully-operationalized policy (with ground subject and
target) and adds the sequence information that comes from
the operationalization of previous policies to its conditions.
As explained at the end of Section IV, this is a matter of
adding all the ground do or fulfilled literals and constraints
to the policy’s body. We do not describe this process further
here, but illustrate it later in the section. The procedure hasPlus
checks whether a quantifier for a variable is preceded by +

(indicating the order in which it should be operationalized).
prune(P) removes ground literals from the body of the policy.

The main work is done by the pick sub-procedure. This takes
as input quantifiers over subjects and targets, constraining
how many resources the policy applies to, and using the
conditions policy body to discover the possible subjects and
targets, finds the right number of them according to whichever
plugged-in form of optimization algorithm is being used. The
sequenceing conditions (in the tail(P) also passed as input) are
simultaneously ground. This process is shown as Algorithm 2.
Here, the procedure l(·) makes a list from the members of
a set (in any order). In line 16, the expressions SF

i are
transformations of the Si in accordance with the groundings
in F : where F = {θ1, . . . , θn}, then the sequence condition
do(Sub,Act,Tar, T), for instance, is transformed to:

Algorithm 2 pick(Q1Q2, P, S, ((P1, S1), . . . , (Pn, Sn)), CI)
1: if isGround(Q1) then
2: if Q2 = ∀X then F ← get(X, all, P, CI)
3: else if Q2 = ∃!mX F ← get(X,m,P, C) end if
4: else
5: if Q1 = ∀X then G← get(X, all, P, CI)
6: else if Q1 = ∃!mX then G← get(X,m,P, C) end if
7: if isGround(Q2) then
8: F ← G
9: else

10: if Q2 = ∀Y then F ← G
11: else if Q2 = ∃!lY
12: F ← {get(Y, l, P [X/x], CI) | ∃θ ∈ G,X/x ∈ θ}
13: end if
14: end if
15: end if
16: return l({(Pθ, Sθ) | θ ∈ F}) · ((P1, S

F
1), . . . , (Pn, S

F
n))

do(Sub,Act, Tar, T1)θ1, . . . , do(Sub,Act, Tar, Tn)θn,

T = max{T1, . . . , Tn}

And fulfilled(Sub,Act,Tar, Ts, Te, Tf , T) is transformed to:

fulfilled(Sub,Act, Tar, Ts, Te, T1, T)θ1, . . . ,

fulfilled(Sub,Act, Tar, Ts, Te, Tn, T)θn, Tf = max{T1, . . . , Tn}

The main subprocedure used here is get(X,N,P, CI), which
finds N resources as bindings for the variable X , in ac-
cordance with the constraints imposed by conditions in the
policy P , with respect to the class definition and instance
information CI. Specific optimization and selection algorithms

Algorithm 3 get(X,N,P, CI)
1: V ← {θ | CI |= q(P)θ ∧ isGround(q(P)θ)}
2: if N = all then return V
3: else
4: VX ← {x | ∃θ ∈ V, X/x ∈ θ}
5: R← PLUGIN(N,VX , P)
6: return {θ ∈ V | ∃x ∈ R, X/x ∈ θ}
7: end if

can be plugged in to get at the point PLUGIN—this procedure
chooses N objects from VX in an optimal way, subject
to constraints derived from the nature of the policy P for
which the objects are being chosen. The policy’s action may
determine the type of heuristic used to select objects; or
the policy itself may contain additional information, such as
timing constraints, that affects the suitability of choices for N .

The procedure q(P) used in Algorithm 3 takes a pol-
icy and transforms its conditions to be used as a query
to the instance repository; the query finds those values of
variables in the body that represent objects in the domain.
To find q(P) for a policy P , the holdsAt conditions in
P ’s body are used. First, conditions containing variables

marked by − are omitted. Temporal variables are ground to
the current time. Literals holdsAt(obj(O,C), T) are replaced
by holdsAt(objTrns(O,C), T). For example, a subject may
be constrained to be a sensor—holdsAt(obj(Sub, sensor), T)
occurs as a condition in the policy. Yet the instance repository
may only record which specific type of sensor an object is. If
holdsAt(obj(sensor1, vidCam), 3) is in the instance repository,
and it is known that all video cameras (class vidCam) are
sensors, then the operationalization should be able to take
account of that. (2) achieves this.

For example, let us look at the operationalization of P1, [All
communications officers in platoons must file a report to their
division within an hour of being prompted to do so] :

obligation(+∀Sub, fileRep(R−),∃!1Tar, T1, T2, T)← (8)
holdsAt(obj(Sub, commsOfficer), T),
holdsAt(ass(Sub, belongs, P), T), holdsAt(obj(P, platoon), T),

holdsAt(obj(R−, report), T), holdsAt(obj(Tar, division), T),
holdsAt(ass(P, part of, Tar), T),

happens(reminder(fileRep, R−, dailySummary), T1),

T2 = T1 + 3600, T1 6 T 6 T2.

Refinement is at time 200. (8) is passed as input to Algorithm 1
as ((P1, ())). Its subject and target are unground, and the
subject is marked by a +, so line 11 in the algorithm would
be reached, calling pick(∀Sub∃!1Tar, P1, (), (), CI), where CI
is the class information and instance repository. Passing to
Algorithm 2, the test at line 1 is failed, and control moves to
line 5, calling get(Sub, all, P1, CI). q(·) generates a query:

holdsAt(objTrns(Sub, commsOfficer), 200), (9)
holdsAt(ass(Sub, belongs, P), 200),

holdsAt(objTrns(P, platoon), 200),
holdsAt(objTrns(Tar, division), 200),
holdsAt(ass(P, part of, Tar), 200)

Suppose that at time 200, alice and bob are two communi-
cations officers (commsOfficer) belonging to plat1, which is a
platoon. plat1 is part of div1, a division. Algorithm 3 outputs:

{{Sub/alice, Tar/div1}, {Sub/bob, Tar/div1}} (10)

Control passes back to Algorithm 2 and to line 12. This
calls get(Tar, 1, P ′, CI) twice: first with a policy where the
Sub is alice, and then where it is bob. In the first case, in
Algorithm 3, the query (9) gives the first member of (10) as
the only substitution; in the second, the second member is
returned. By line 13 of Algorithm 2, F contains both of (10).
At line 16, ((P2, ()), (P3, ())) is returned, where P2 is

obligation(alice, fileRep(R−), div1, T1, T2, T)← (11)
holdsAt(obj(alice, commsOfficer), T),
holdsAt(ass(alice, belongs, plat1), T),

holdsAt(obj(plat1, platoon), T), holdsAt(obj(R−, report), T),
holdsAt(obj(div1, division), T),
holdsAt(ass(plat1, part of, div1), T),

happens(reminder(fileRep, R−, dailySummary), T1),

T2 = T1 + 3600, T1 6 T 6 T2.

and P3 is P2 with alice replaced by bob. Algorithm 1 then
prunes these two policies of ground conditions in ther bodies
and adds them to the output.

obligation(alice, fileRep(R−), div1, T1, T2, T)← (12)

holdsAt(obj(R−, report), T),

happens(reminder(fileRep, R−, dailySummary), T1),

T2 = T1 + 3600, T1 6 T 6 T2.

is left, with the corresponding version of policy P3—again,
the same as 12 with bob instead of alice. A phase of op-
erationalization is then over, and the policies are tested for
being enforceable. If this test is not passed, there is more
decomposition and operationalization.

VI. INTERLEAVING, DISTRIBUTION, RE-REFINEMENT

Decomposition breaks down the policy, replacing it by a
sequence of policies that apply to objects and actions specified
at a lower level; the operationalization phase then finds which
of the possible objects should be selected for the policy to
apply to. After operationalization, there is a test to see whether
the policies are now sufficiently low-level to be sent for
enforcement. If passed, then translation schemes are used to
transform the policies into languages the policy enforcement
points understand. Which translation schemes to use will
depend on the objects the policy applies to, and the kinds
of enforcement points being used to enforce policies on those
objects. For example, in the case of authorization policies in
our example domain, it may be that filing a report ultimately
means using SCP to send it to a directory on the division’s
report repository, followed by backing up the report by up-
loading it to an SVN server using svn+ssh. The enforcement
point associated with SCP access to the report repository may
be using Ponder2 [11]; the point controlling access to the SVN
server may be using XACML [12]. Translation schemes would
take policies expressed in our language-independent logic, and
convert them into the necessary formats.

If the test to see whether the policies are ready to be
deployed is not passed, another phase of decomposition
and operationalization is entered. We show how this works
for (12). We first apply the decomposition rule (5) (with the R
variable marked to indicate it ought not to be operationalized):

obligation(alice, send(R−),∃!2Tar1, Ts, Te, T)← (13)
holdsAt(obj(Tar1, reportRep), T),
holdsAt(aggreg(Tar1, belongs, div1), T), Ts 6 T 6 Te,

happens(reminder(fileRep, R−), T ′), Te = Ts + 3600.

obligation(alice, backup(R−), ∃!1Tar2, Td, Te, T)← (14)
holdsAt(obj(Tar2, backupServer), T),
holdsAt(aggreg(Tar2, belongs, div1), T),

happens(reminder(fileRep, R−), T ′), Td 6 T 6 Te.

Sequence: [fulfilled(alice, send(R−), Tar1, Ts, Te, Td, T),

Te = Ts + 3600, Ts 6 Td 6 T < Te].

These are now sent to the operationalization algorithm; if we
suppose that the instance repository contains the information

that rep1, rep2 and rep3 are report repositories (reportRep),
that all belong to div1, and that bS is a backup server
(backupServer) belonging to the same division, then the output
from the operationalization phase will give:

obligation(alice, send(R−), rep1, Ts, Te, T)← (15)
happens(reminder(fileRep, R), Ts),

Te = Ts + 3600, Ts 6 T 6 Te.

(same as (15) with rep2 for rep1) (16)

obligation(alice, backup(R−), bS, Td, Te, T)← (17)
happens(reminder(fileRep, R), Ts), Te = Ts + 3600,

fulfilled(alice, send(R−), rep1, Ts, Te, T
1
d , T),

fulfilled(alice, send(R−), rep2, Ts, Te, T
2
d , T),

Td = max{T 1
d , T

2
d }, Td 6 T.

The process then repeats itself, with the three policies above
being sent to be tested to see whether they are ready to be
enforced, or to further decomposition and operationalization.

It is important to note that the fulfilled conditions in (17),
which refer to actions that might not be at the most con-
crete level for this domain, will not themselves be fur-
ther decomposed in later refinements. The decomposition of
(Sub,Act,Tar) triples only applies to the heads of policies, and
not to do or fulfilled literals in policies’ bodies. If a condition
appears in the body of a policy that refers to the completion of
an action specified at a high level of abstraction, event correla-
tion engines can be used to check the condition’s holding. They
will relate the performance of the various low-level actions to
the condition. The information in decomposition rules, with
timing constraints on how close together the actions should
occur, will be inputs to these correlation checks.

At this point we can state the details of the most general
algorithm for refinement, involving interleaved stages of de-
composition and operationalization. The algorithm is in two
parts. The first, Algorithm 4, operates on a list of policies,
and defines the overall control of how the authorization and
obligation policies are differently treated, and what happens
when a policy P has been fully refined (i.e. isConcrete(P)
is true). This and Algorithm 5 call each other as co-routines.
Algorithm 5 must call 4 because, in general, decomposition
and operationalization of a single policies produces multiple
lower-level policies.

The inputs to the refinement process are therefore a policy
P , marked with quantifiers and possibly with − signs next
to some of the variables to prevent their having resources
assigned to them at refinement-time; a set of decomposition
rules R; and class and instance information CI. The policy is
operationalized in a preliminary stage, and the results are then
sent to refineList.

The algorithms presented above, and earlier in Section V,
apply when all information is stored together, and the refine-
ment process is conducted by a unique ‘engine’. However,
there are clearly many sorts of domain where this assumption
is inappropriate. If distinct organizations have come together,
and refine shared policies that apply in different ways to
the various devices belonging to them individually, then the

Algorithm 4 refineList(Ps, CI, R)
1: if empty(Ps) then
2: return ()
3: else
4: P ← head(Ps)
5: if isConcrete(P) then
6: if empty(tail(Ps)) then
7: return (P)
8: else
9: L← refineList(tail(Ps), CI, R)

10: if ¬empty(L) then return (P) · L
11: else return () end if
12: end if
13: else if P is an authorization policy then
14: for all r ∈ R do
15: M ← refineSingle(P, CI, {r}); L← L ·M
16: end for
17: else
18: L← refineSingle(P, CI, R)
19: end if
20: if empty(L) then return () end if
21: L′ ← refineList(tail(Ps), CI, R,O)
22: if empty(L′) then return () end if
23: return L · L′
24: end if

Algorithm 5 refineSingle(P, CI, R)
1: for all r ∈ R do
2: L← decompose(P, r)
3: L← operationalize(L, CI)
4: if ¬empty(L) then
5: L← refineList(L, CI, R)
6: if ¬empty(L) then return L end if
7: end if
8: end for
9: return ()

policy refinement process might begin in a shared fashion,
applying to cross-organization units, but then be shipped to
a refinement module for each organization. This is clearly
realistic if the organizations are unwilling to pool sensitive
information about their resources. It is straightforward to adapt
Algorithm 4 to take account of this. Line 5 is replaced by a
test examining whether the policy is ready to be shipped to a
different refinement point, and if so, then Line 7 sends P to
it. Similar alterations are made to the rest of the algorithm.

It is of course also necessary to consider what happens
when the instance repository changes, and refinements must
be reconsidered. Changes can be of four kinds: (i) a new
object is introduced (with new associations) of an existing
class; (ii) an existing object is removed, or some of its
associations cease; (iii) a new class of objects is added,
with associated decomposition rules for their actions, together
with some instances; (iv) a class of objects is removed, with

the decomposition rules relating to them. For example, (i)
corresponds to a new server of a known type being added to
the network; and (iii) corresponds to a new type of server
being added, which supports different low-level operations,
together with the rules that relate those low-level operations
to those at a higher level of abstraction.

We re-refine policies in response to domain changes as fol-
lows. When refining a policy initially, we record information
about intermediate stages of refinement in a refinement tree.
The nodes are semi-refined policies, and the edges are steps
of decomposition or operationalization. To each edge is linked
the information used in the refinement process to make the
corresponding refinement step. For decomposition steps, this
is the decomposition rule used; for operationalizations, it is the
various facts from the instance repository used. This enables us
to associate objects, and classes of objects in the domain, with
the semi-refined policies which have depended on them for
their refinement. When new instances are added to the domain
of classes that already exist (our case (i), above), it is possible
to check whether the new object’s class (whether explicitly
named, or inherited transitively using the isa relationship)
is one that was used in the refinement of existing policies.
If so, we can take those semi-refined policies’ nodes in the
refinement tree, and refine from that point again, noticing
whether the new instances added to the domain produce new
policies. In the case of authorization policies, these can be
enforced; in the case of obligation policies, they may be
alternatives to existing refinements, and an engineer can then,
supported by policy analysis techniques, decide whether to
adopt the new refinement or not.

In the case of the three other possible types of change,
different points in the refinement tree are affected. The most
complicated case is that of (iii), where a new class and related
decomposition rules are added. The most straightforward
way to treat this is to re-refine from the highest level of
abstraction—to perform a completely new cycle of refinement.
We are currently investigating ways to improve this, and to
optimize other aspects of the re-refinement process.

We have a prototype implementation, written in Prolog.
It takes policies to refine, a class definition, a history of
the instance repository, and a specification of when policies
are enfoceable. Policies are decomposed and operationalized
automatically, and Prolog’s built-in backtracking enables the
selection of alternative decomposition rules and operational-
izations. We have designed the tool to be compatible with
our policy analysis implementation, based on the abduction
in constraint logic programs [9], [10]. The emphasis in the
current paper is on the formal account of the algorithms and
structure of the refinement process, however; more details on
the implementation will be given in future work.

VII. RELATED WORK

There has been increasing interest in the automation of
policy refinement in recent years, although with few distinctive
and thorough approaches—partly due to the inherent difficulty
of formalizing the problem. [13] uses decomposition patterns

formalized in the Event Calculus, with an abductive reasoning
method for deriving refinements from goals. The work was
based on the KAOS [14] approach to requirements engineer-
ing, and used planning to go from goals to implementable
actions. Our approach is basaed on data integration methods
for refinement and uses a UML specification of the domain
model. It also caters for multiple levels of refinement. [1]
compares different paradigms for a policy transformation
module, and presents experimental results for one particular
implementation. [5] applies concepts from planning to gener-
ate implementable tasks from requests, and though this work
is relevant to policy refinement, it is not applied to it by the
author. [4], [15], [2], [3] treat other aspects of the problem.

In our own work [7] we have used ideas from data integra-
tion in the formulation and application of decomposition rules.
In [8] we explored the decomposition of policies further. The
current paper modifies the rules (while still basing them on the
same form), extends the approach to include a full treatment
of operationalization, and shows how the two are linked in
a total refinement procedure. [6] takes a similar approach,
confined to authorization policies. The authors also represent
domains in a logic-programming formalization of UML, with
transformation rules to map policies from a high to lower
level, and present examples drawn from distributed firewalls
in MANETS.

VIII. CONCLUSION

We have presented a refinement process for authorization
and obligation policies that has iterated phases of decompo-
sition and operationalization as its core. The method has as
input a formalization of UML information on the objects to
be regulated by policies, a high-level policy, and decompo-
sition rules that relate actions and objects at higher levels of
abstraction to those at lower levels. We described in detail how
these inputs are used by the various phases of refinement to
produce increasingly concrete policies.

There are many avenues for future work. We want to explore
optimizations in our approach to re-refinement. As mentioned
elsewhere in the paper, we are merging our refinement proce-
dures with the policy analysis framework in [9]. This will
let the possible refinements of a new policy be compared
with existing policies, to see whether there are conflicts or
redundancies; analysis can in this way be used to guide
the refinement process. We also want to relax some of the
syntactical restrictions we imposed in the current paper, so
that the refinement process can treat a more expressive class
of authorizations and obligations. Two obvious ways to this
are to allow negative literals in the bodies of policies, and
recursive dependencies amongst policies.

Acknowledgment Research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement W911NF-
06-3-0001. The views and conclusions in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government.

REFERENCES

[1] M. Beigi, S. B. Calo, and D. C. Verma, “Policy transformation tech-
niques in policy-based systems management,” in POLICY. IEEE
Computer Society, 2004, pp. 13–22.

[2] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A functional solution for goal-ooriented policy refinement,” in POLICY.
IEEE Computer Society, 2006, pp. 133–144.

[3] S. Davy, B. Jennings, and J. Strassner, “Conflict prevention via model-
driven policy refinement,” in DSOM, ser. Lecture Notes in Computer
Science, R. State, S. van der Meer, D. O’Sullivan, and T. Pfeifer, Eds.,
vol. 4269. Springer, 2006, pp. 209–220.

[4] G. Campbell and K. Turner, “Goals and policies for sensor network
management,” International Conference on Sensor Technologies and
Applications, pp. 354–359, 2008.

[5] D. Trastour, R. Fink, and F. Liu, “ChangeRefinery: Assisted Refinement
of High-Level IT Change Requests,” IEEE International Symposium on
Policies for Distributed Systems and Networks, pp. 68–75, 2009.

[6] H. Zhao, J. Lobo, A. Roy, and S. Bellovin, “Policy refinement of network
services for manets,” in IM2011, 2011 (to appear).

[7] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Security policy
refinement using data integration: a position paper,” in SafeConfig ’09:
Proceedings of the 2nd ACM workshop on Assurable and usable security
configuration. New York, NY, USA: ACM, 2009, pp. 25–28.

[8] ——, “Decomposition techniques for policy refinement,” in CNSM.
IEEE, 2010, pp. 72–79.

[9] R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu, A. Bandara, S. Calo,
and M. Sloman, “Expressive policy analysis with enhanced system
dynamicity,” in ASIACCS. ACM, 2009, pp. 239–250.

[10] R. Craven, E. Lupu, J. Lobo, A. Bandara, S. Calo, J. Ma, A. Russo, and
M. Sloman, “An expressive policy analysis framework with enhanced
system dynamicity,” Technical Report, Department of Computing, Im-
perial College London, 2008.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in POLICY, ser. LNCS, M. Sloman, J. Lobo,
and E. Lupu, Eds., vol. 1995. Springer, 2001, pp. 18–38.

[12] OASIS XACML TC, “extensible access control markup language
(XACML) v2.0,” 2005. [Online]. Available: http://xacml-2.notlong.com

[13] A. K. Bandara, E. Lupu, J. D. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in POLICY. IEEE Computer Society,
2004, pp. 229–239.

[14] R. Darimont and A. van Lamsweerde, “Formal refinement patterns
for goal-driven requirements elaboration,” SIGSOFT Softw. Eng.
Notes, vol. 21, pp. 179–190, October 1996. [Online]. Available:
http://doi.acm.org/10.1145/250707.239131

[15] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284, 1991.

