
Integrated management of network and security devices in IT infrastructures.

Bart Vanbrabant, Wouter Joosen
{bart.vanbrabant, wouter.joosen}@cs.kuleuven.be

DistriNet, Dept. of Computer Science,
K.U.Leuven, Belgium

Abstract—IT infrastructures just needs to work and at the
same time adapt to changing requirements. A significant amount
of their downtime is caused by configuration errors and be-
cause all other subsystems depend on the network, network
errors there have a big impact. Configuration errors are often
caused by parameters that are inconsistent because changing one
parameter often requires updating multiple other parameters.
The configuration of a network is mostly determined by the
physical connections and by the subsystems that use the network.
Therefore a lot of configuration parameters are derived from
other parameters, which increases the risk of inconsistencies. In
this paper we present ISIM, a configuration tool for managing a
network and its security devices. A first contribution of ISIM is
its model with relations between configuration parameters over
abstraction and subsystems. This ensures that each parameter
only has to be provided once in a configuration and it reduces
the work needed to manage a network. The second contribution
is a domain model for the network and implementations for
this domain model. Other implementations can be added without
changing existing configuration code. This enables configuration
code reuse. The third contribution is validating the configuration
input of ISIM using the types and constraints in the domain
model. It reduces the risk of misconfigurations and inconsisten-
cies in the configuration input.

I. INTRODUCTION

Configuring and managing IT infrastructures is a complex
problem. The scale of infrastructures keeps increasing and
more heterogeneous devices and platforms are added to in-
frastructures every day. System administrators are faced with
an increasing challenge to ensure that all services work as
expected. This fact is supported by research that indicates that
a significant amount of downtime is attributed to errors caused
by human mistakes [1], [2]. Therefore system administrators
start to use system configuration tools that automate configu-
ration and management tasks.

It is important for IT infrastructure to always function as
intended because most organisations rely heavily on their
IT infrastructure. There is no room left for error because
downtime is expensive [3], yet IT infrastructures need to
evolve constant. Errors are often caused by inconsistencies
in the configuration. All instances of a configuration pa-
rameter need to be updated and relations between services
need to be kept up to date whenever one changes. System
configuration tools keep parameters and relations consistent
by using parameterised templates [4]. Templates work fine for
relations between configuration parameters that are at the same
abstraction level. But in computer science abstractions are use
to hide complexity and this is no different in IT infrastruc-
tures. Relations between configuration parameters span over
abstraction levers and parameters at lower abstraction levels

are derived from relations at higher abstraction levels [5],
[6]. Explicitly modelling all relations removes duplication of
configuration parameters, ensuring that a configuration is con-
sistent even when it is frequently updated. It also reduces the
amount of work required to manage an IT infrastructure [7].
Unfortunately relations between services spanning multiple
abstraction levels cannot be modelled in existing management
tools [8].

The networking subsystem of an infrastructure is required
by most other services. As a consequence the configuration
parameters of the network are determined by the subsystems
that use the network and by the physical connections in the
network. Only a few parameters can be determined freely
by the network administrator. Due to these dependencies an
infrastructure can only function correct if the network is secure
and functional. Therefore the network needs to be consistent
with the services that run on top of it. Network management
tools have to be integrated with the tools to manage servers and
desktops, so all relations between the network configuration
and the configuration of other subsystems can be modelled.

We developed a generic framework for system configuration
tools that manage an entire infrastructure. ISIM is a first tool
we developed with this framework. It focuses on configuring
and managing the network of an infrastructure. In particular,
the network configuration of servers and desktops, switches,
routers and firewalls. A first contribution of ISIM is configur-
ing the network subsystem using configuration information of
other subsystems. It uses the modelling language of our frame-
work to create a configuration model that contains abstractions
and relations between these abstractions. This model and the
relations in it reduces the number of network parameters that
need to be explicitly configured and ensures that the network
configuration is consistent with other configuration parameters
in the infrastructure. The second contribution is facilitating the
reuse of partial configuration models. A configuration model
can be factored into modules that separate a configuration
model in reusable configuration modules. The third contribu-
tion of ISIM is a network domain model that allows verifying
the correctness of a configuration model. The domain model
contains constraints and types that are used to check if the
input model is correct and consistent.

The remainder of this paper is structured as follows: sec-
tion II provides background on our framework. Section III
explains the ISIM tool. ISIM is evaluated in section IV in
a realistic network environment. After this section related
and future work is discussed in section V and section VI.
Section VII concludes this paper.



II. CONFIGURATION AND MANAGEMENT AUTOMATION
FRAMEWORK

Our framework supports configuration tools that manage
an entire IT infrastructure. It provides a powerful modelling
language with mechanisms to create reusable configuration
abstractions that hide the complexity and heterogeneity of the
infrastructure. Each abstraction defines an API that is enforced
by the framework. The modelling language can be extended
with function plug-ins and the language can use templates
to generate configuration files. Export plug-ins are available
to interface with existing deployment agents or management
interfaces. These artifacts can be grouped in reusable modules.
The modelling language defines a domain model and instanti-
ates a configuration model in terms of the domain model in the
same model. Both are integrated to improve the understanding
of the entire infrastructure by the system administrator [9].
Templates and function plug-ins transform the input model to
a model that can be deployed. Export plug-ins are used to
deploy the final configuration model. A conceptual diagram
of these components is shown in figure 1.

configuration and management tool framework

Exporter

P
lu

gi
n

P
lu

gi
n

P
lu

gi
n

Compiler

M
od

ul
e 

lo
ad

er

P
ar

se
r

Runtime

Function 
plugins

Template 
engine

Type and
constraint
checker

P
lu

gi
n

P
lu

gi
n

P
lu

gi
n

Te
m

pl
at

e

Te
m

pl
at

e

Fig. 1. The components of the framework for developing system configura-
tion tools.

The modelling language is declarative and uses concepts
from object orientation [10]. Object orientation is chosen
because of its emphasis on modelling the real world and
because it is a programming paradigm most IT professionals
are familiar with. An example of a model is shown in figure 2.
The language contains constructions to model entities using
interfaces, relations between entities and instances of these
entities. Heterogeneity and complexity are encapsulated inside
a construction that is called a class. When an interface is
instantiated an implementing class is chosen at runtime.

The modelling language can constrain and validate the input
model. There are several mechanisms available to do this in
the input model: all data is typed, relations are also typed
and have a multiplicity, unique indexes on attributes and
relations in an interface and assertions check conditions using
Boolean expressions. The most powerful option are plug-ins
that register with the runtime to run during the validation
phase.

The configuration of most services is done using text
files that contain configuration statements. These files exist
in all flavours: from simple key-value pairs to xml files or
even files that contain commands that are executed. These

1 typedef mode_t as number matching self >= 0 and self <= 0777
2
3 # generic file
4 native interface File:
5 string path
6 string content
7 string owner
8 string group
9 mode_t mode

10 end
11
12 interface Host:
13 string hostname
14 string type
15 end
16
17 Host host [1] -- [0:] File files
18
19 index File(host, path)
20
21 typedef ConfigFile as File(owner = "root", group = "root", mode = 0644)
22
23 class PosixHost implements Host
24 select: type = "posix"
25 is:
26 # this is a posix host
27 end
28
29 test_host = Host(name = "test.example.com", type = "posix")
30 motd_file = ConfigFile(path = "/etc/motd",
31 content = template("motd.tmpl"), host = test_host)

Fig. 2. An example listing of a configuration model in the modelling language

configuration files are generated using templates that can query
the configuration model. Whenever the template engine is
not powerful enough to generate complex configuration files
from the configuration model the runtime can be extended
using plug-ins. These plug-ins can be used to transform the
configuration model or to interface with existing management
interfaces to enforce the configuration in the infrastructure.
Partial configuration models are distributed in modules to-
gether with the templates and plug-ins it uses. Modules can
be shared or distributed to stimulate configuration code reuse.
The module mechanism is also useful to split a configuration
model up in modules that only contain a domain model and
modules with the implementations for this model.

III. NETWORK MANAGEMENT USING ISIM
ISIM is a system configuration tool to configure and manage

a network and its security devices. In real networks only
a small number of configuration parameters of the network
can be freely determined by the network administrator. Most
parameters are already determined by the physical network
connections, the properties of the equipment and the require-
ments of other subsystems in the infrastructure that use the
network. ISIM derives the network related configuration from
the configuration model of the entire infrastructure. ISIM
consists of modules that contain:

• a domain model and the plug-ins that generate configu-
ration parameters from this domain model

• implementation specific modules for specific operating
systems or devices

Both types of modules are developed using our framework.
Therefore each module consist of input models, templates and
plug-ins written in Python.

A. Domain model

Most network configuration parameters are determined by
the physical connections and the services that use the network.



The domain model that ISIM provides contains the entities re-
quired to model the physical connections, the entities that can
be configured by the system administrator and the necessary
entities for other tools or modules to model how they use the
network.

The types in the domain model related to the physical net-
work provide the interfaces and relations to model the devices
(routers, switches and servers), network interfaces and the
cables between each interface. The physical links in the model
are used by the switch configuration to automatically configure
virtual lans. This submodel models the extra parameters that
are required to generate a complete network configuration.
Most parameters are related to configuring the IP layer of the
network. ISIM provides several interfaces to let other modules
model how they use the network. For example, interfaces to
model network servers and clients. Client and servers connect
to each other using a relation. Higher level services use these
interfaces to model how they use the network. The domain
model also support entities called virtual servers and clients
that are only identified with an IP address, IP subnet or IP
range. These interfaces are used to complete the configuration
model without having to model the entire internet.

Network security policies are modeled in this domain model
using a role based model. The policy in ISIM needs to
explicitly list all network traffic that is allowed; all other
network traffic is denied. Each rule consists of source and
destination roles, a service type (protocol and ports) and the
direction of the traffic. The input model defines roles that can
be linked with interfaces, hosts, IP subnets and the quantifiers
used to determine virtual clients and servers. The domain
model of this security policy is quite compact and shown in
figure 3.

1 typedef direction as string matching self == "one" or self == "both"
2
3 interface Role:
4 string name
5 end
6
7 Role roles [0:] -- [0:] ip::Network networks
8 Role roles [0:] -- [0:] net::DefaultVlanInterface interfaces
9 Role roles [0:] -- [0:] std::Host hosts

10 Role roles [0:] -- [0:] ip::Ip ips
11 Role roles [0:] -- [0:] ip::services::VirtualSide virtual
12
13 interface Policy:
14 string name
15 direction direction
16 end
17
18 typedef DPolicy as Policy(direction = "one")
19
20 Policy policies [0:] -- [1:] ip::Service services
21 Policy source_policies [0:] -- [1:] Role source
22 Policy destination_policies [0:] -- [1:] Role destination

Fig. 3. Domain model for security policies. An excerpt from the fw module.

B. Implementation

ISIM does not only provide a domain model but also
implementations for this domain model. In this paper the
implementations are limited to Cisco routers and switches and
servers running CentOS 5. New implementations can be added
by adding extra modules to the search path of ISIM, without
modifying existing modules.

The firewall module verifies if the configuration model
complies with the security policy. It also contains the necessary
functions to generate rules that can be used by other modules
to generate firewall rules for specific firewall implementations.
ISIM includes implementations for iptables on CentOS servers
and routers and for extended access lists on Cisco routers.

Each service that uses the network has to include the servers,
the clients and the connections between them in their model.
The firewall module verifies if each connection is allowed
according to the firewall policy. If a connection is not allowed;
a compilation error is issued. The model verification does not
check if a route exists between the server and the client. This
is an additional verification step that we would like to include
in the future versions of ISIM. ISIM contains the templates
and helper functions to generate firewall rules for Linux
iptables and Cisco IOS extended access lists. If an instance
of Firewall is instantiated on a device an implementation for
that platform is selected and firewall rules are generated. ISIM
generates firewall rules for incoming, outgoing and forwarded
connections. Devices that are not configured as router will
reject or drop forwarded connections.

ISIM supports Cisco switches that run IOS. The configura-
tion for each switch is generated by checking the connections
from each port on the switch. Depending on the configuration
on the other end, the port is configured as a trunk port or access
port depending on the configuration of the connected device.
As a result the configuration of ports on a switch is entirely
derived from the configuration of the devices connected to that
port. Only management information such as an IP address or
time-servers has to be configured explicitly.

C. Higher level services

ISIM also includes modules to manage higher level network
services such as DNS. These services are configured transpar-
ently based on the network configuration model. The DNS
module generates forward and reverse DNS zones for the IP
addresses configured in the network configuration model. Each
DNS zone is assigned to one DNS server that acts as master
and multiple DNS servers that function as slaves for this zone.
ISIM generates the master/slave configuration transparently.

IV. EVALUATION

In this section we evaluate ISIM by managing a network
setup with it. The setup is representative for a network
used for hosting a large website. The network contains 15
servers, 2 firewalls, 2 routers and 3 switches. We compare its
performance against manually managing the infrastructure by
writing the configuration files from scratch and making manual
changes. However the network is designed that multiple fire-
walls are located between different types of services. This is a
practice will only be used in networks that have high security
demands because of its high maintenance cost. To evaluate the
improvements of ISIM over manual configuration we defined
metrics based on the lines of code. We compare the lines of
code required to manage that infrastructure described using
ISIM and the number of lines needed to manually configure



Scenario initial adding 4 webservers
Written by user
Site specific ISIM model 546 558 (+12)
Manual configuration
Unix config files 5291 5801 (+510)
Cisco config files 894 894
total lines 6185 6695 (+510)

TABLE I
LINES OF CODE IN EACH SCENARIO

the infrastructure. The results are provided in table I. The
first column contains the numbers for the initial configuration.
The second column are the numbers for a change where four
machines that already had a basic configuration are configured
as webserver and added to the cluster.

ISIM requires significant less “configuration code” com-
pared to the case where everything is managed manually.
Another advantage of using ISIM is that the full configuration
is available centrally, instead of having to make changes to
the configuration on each machine. Adding four webservers
to the cluster makes the advantage ISIM even more apparent.
This reduces the effort to make changes and makes it easier
to maintain an overview of the infrastructure [9].

V. RELATED WORK

The related work for ISIM is both firewall management
tools, and network or generic configuration management tools.
In “A survey of system configuration tools” [8] we evaluated
a set of commercial and often cited generic and network
management tools. We identified that the current state-of-the-
art provides very little abstraction mechanism and do not allow
to model all relations in an infrastructure.

PRESTO [11] is a system configuration tool that focuses on
greenfield configuration of very large scale ISP infrastructures.
They never model an entire infrastructure but manage each
customer separately. Relations over abstractions and over the
entire ISP infrastructure cannot be modeled thus creating the
risk of inconsistent parameters.

Firmato [12] models the firewall policy of a network and
generates firewall configurations for routers in a network. It
also provides a tool to visualize firewall rules. FIREMAN
[13] also models a security policy and verifies single or
distributed firewalls against it. This approach detects anomalies
and misconfigurations in the rules of each individual firewall.
They both are limited to firewalls and do not integrate with
the configuration of the network or the entire infrastructure.

Network configuration management via model finding [14]
models the network in a formal model. ISIM uses an object
oriented configuration language for this. The main difference
is that their approach fills in missing parameters to generate
a valid configuration. ISIM will only signal the user that the
input model is not complete. ISIM will compile most cases in
seconds or in extreme cases minutes. The small example from
the paper already [14] requires several hours to compile.

VI. FUTURE WORK

ISIM is a first step to integrated management of an en-
tire infrastructure. ISIM only manages network and firewall
configuration but is built on a framework that can support
an integrated management approach. A next step is extending
ISIM to manage an entire infrastructure or integrate it in a
more generic tool and see how well it scales.

On the network management side ISIM should support rout-
ing. Firewall rules are generated without checking if routing
is possible. Additionally only static routing is supported and
no validation of these routing rules is included. A related
improvement is optimising firewall rules and deploying them
in an intelligent fashion. Each firewall rule is included in all
firewalls, however an internal router possibly cannot support
all rules. Instead of deploying no firewall at all, maybe only
a limited set of rules could be deployed without creating
backdoors.

The metrics used in this limited evaluation have to be
extended and measured in multiple change scenarios. An
extensive evaluation should also include metrics about the time
required to deploy changes, the number of changed lines in an
update. Those metrics should also be used to compare ISIM
with existing system configuration tools.

VII. CONCLUSION

ISIM is a tool for managing the network in an infrastructure.
Additionally it provides a domain model for other management
tools to model how other services use the network. The
framework on which ISIM is developed is more generic.
Because ISIM consists of only a set of modules for this
framework it can be easily integrated in a tool that tries
to manage an entire IT infrastructure. Therefore ISIM is a
first step to integrate network and firewall management into
a generic system configuration tool. This integration ensures
that firewalls and network equipment functions exactly how
the higher level services expect it to function, resulting in
fewer misconfigurations and thus downtime. ISIM reduces
inconsistencies by modelling all possible relations between
configuration parameters. These relations ensure that if a
parameter is updated, all related parameter are also updated.
Secondly ISIM separates domain modelling and platform spe-
cific implementations. This stimulates reuse of configuration
modules and allows for new platforms to be supported without
having to make changes to existing configuration libraries. The
third contribution of ISIM, is using a typed domain model and
constraints to validate the configuration before it is deployed.

VIII. ACKNOWLEDGEMENTS

This research is partially funded by the Agency for Inno-
vation by Science and Technology in Flanders (IWT), by the
Interuniversity Attraction Poles Programme Belgian State, Bel-
gian Science Policy, and by the Research Fund K.U.Leuven.



REFERENCES

[1] D. Oppenheimer and D. A. Patterson, “Studying and using failure data
from large-scale internet services,” in EW10: Proceedings of the 10th
workshop on ACM SIGOPS European workshop, ACM. New York,
NY, USA: ACM, 2002, p. 255–258.

[2] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USITS’03: Proceedings
of the 4th conference on USENIX Symposium on Internet Technologies
and Systems, USENIX Association. Berkeley, CA, USA: USENIX
Association, 2003, p. 1–1.

[3] D. A. Patterson, “A simple way to estimate the cost of downtime,” in
Proceedings of the 16th USENIX conference on System administration,
USENIX Association. Berkeley, CA, USA: USENIX Association,
11/2002 2002, p. 185–188. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1050517.1050538

[4] P. Anderson, Short Topics in System Administration 14: System Config-
uration, Berkeley, CA, 2006.

[5] P. Anderson and E. Smith, “Configuration tools: Working together,”
in Proceedings of the 19th Large Installations Systems Administration
(LISA) Conference. Berkeley, CA, USA: USENIX Association, 2005,
pp. 31–38.

[6] T. Delaet and W. Joosen, “High-level system configuration,” The Riseand
Riseof the Declarative Datacentre, pp. 21–22, 2008.

[7] T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of
network management,” in Proceedings of the 6th USENIX symposium
on Networked systems design and implementation, USENIX Association.
Berkeley, CA, USA: USENIX Association, 2009, p. 335–348.

[8] T. Delaet, W. Joosen, and B. Vanbrabant, “A survey of system config-
uration tools,” in Proceedings of the 24th Large Installations Systems
Administration (LISA) conference, Usenix Association. San Jose, CA,
USA: Usenix Association, 11/2010 2010.

[9] R. Barrett, P. P. Maglio, E. Kandogan, and J. Bailey, “Usable autonomic
computing systems: The system administrators’ perspective,” Advanced
Engineering Informatics, vol. 19, no. 3, pp. 213 – 221, 2005, autonomic
Computing. [Online]. Available: http://www.sciencedirect.com/science/
article/B6X1X-4H758D1-5/2/d6932f83c00847b605187b2694da2b1a

[10] T. Delaet and W. Joosen, “Podim: a language for high-level configuration
management,” in LISA’07: Proceedings of the 21st conference on Large
Installation System Administration Conference, USENIX Association.
Berkeley, CA, USA: USENIX Association, 2007, p. 1–13.

[11] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,
S. Rao, and W. Aiello, “Configuration management at massive
scale: system design and experience,” in 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual
Technical Conference, USENIX Association. Berkeley, CA, USA:
USENIX Association, 2007, p. 6:1–6:14. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1364385.1364391

[12] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A
novel firewall management toolkit,” ACM Trans. Comput. Syst.,
vol. 22, p. 381–420, November 2004. [Online]. Available: http:
//doi.acm.org/10.1145/1035582.1035583

[13] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” in Proceedings
of the 2006 IEEE Symposium on Security and Privacy, IEEE Computer
Society. Washington, DC, USA: IEEE Computer Society, 2006, p.
199–213.

[14] S. Narain, “Network configuration management via model finding,” in
Proceedings of the 19th conference on Large Installation System Admin-
istration Conference - Volume 19, ser. LISA ’05, USENIX Association.
Berkeley, CA, USA: USENIX Association, 2005, p. 15–15.


