
Dynamic Service Adaptation for Plug and Play
Device Interoperability

Charbel EL KAED
France Telecom R&D
Grenoble University

charbel.elkaed@orange-ftgroup.com

Yves DENNEULIN
Grenoble University

yves.denneulin@imag.fr

François-Gaël OTTOGALLI
France Telecom R&D

francoisgael.ottogalli@orange-ftgroup.com

Abstract—Advances in embedded systems, plug-n-play pro-
tocols and software architectures bring the ubiquitous system
vision to the near future. Home devices supporting such protocols
can be automatically discovered, configured and invoked for a
given task. Smart applications are shaping the home into a
smart one by orchestrating devices in an elegant manner. Several
protocols coexist in smart homes but interactions between devices
cannot be put into action unless devices are supporting the same
protocol. Furthermore, smart applications must know in advance
services names hosted by devices to interact with. However,
such names are often semantically equivalent but syntactically
different among devices, needing translation mechanisms. In this
work we present how ontology alignment techniques assisted with
pattern detection rules are used to find such correspondences
between equivalent devices. Once the mapping is validated we
apply a code generation technique to reach a dynamic service
adaptation. We validated the approach on an HP Printer.

Index Terms—OA, Home Devices, plug-n-playOA, Home De-
vices, plug-n-playS

I. INTRODUCTION

Ubiquitous systems imagined by Mark Weiser in [1] are
emerging thanks to the development of embedded systems
and plug-n-play protocols like the Universal Plug aNd Play
(UPnP)[2], the Intelligent Grouping and Resource Sharing
(IGRS)[3] and the Device Profile for Web Services (DPWS) [4].
Such protocols follow the service oriented architecture (SOA)
paradigm and allow automatic device and service discovery in a
home network. Once devices are connected to the local network,
applications deployed for example on Set Top Boxes, discover
the plug-n-play devices and act as control points. The aim of
such applications is to orchestrate the interactions between
devices (lights, TV, printer) and their corresponding hosted
services. For example a Photo-Share application automatically
detects an IP digital camera device and, on user command,
photos are rendered on the TV and those selected are printed
out on the printer. The configuration is completely transparent
to the user who deploys the application on his home gateway.

Devices supporting a plug-n-play protocol announce their
hosted services each in its own description syntax. A UPnP
light for example hosts a SwitchPower service with a
Switch(true/false) action to control the light while
a DPWS light[5] uses the semantically equivalent action
SetTarget(On/OFF). The syntactic heterogeneity along
with the protocols layers diversity, prevent applications to use
any available equivalent device on the network to accomplish
a specific task. Designing applications to support multiple
protocols is time consuming since developers must implement
the interaction with each device profile and its own data
description. Additionally, the deployed application must use

multiple protocols stacks to interact with the device.

UPnP as a Common Application Layer

IGRS NAS

IGRS NAS
Client

UPnP NAS

UPnP TV DPWS Printer

DPWS Printer
Client

UPnP Printer

DPWS Light

DPWS
Light Client

UPnP Light

UPnP clock

Other Protocols

Fig. 1. UPnP as a Common Application Layer

Application vendors and telecom operators need to manage
and orchestrate devices through a common application layer
[6], independently from the protocol layers and the device
description. To accomplish interoperability between plug-n-play
devices, we propose to use the UPnP profile description
and stack as a common pivot, due to its wide acceptance
among device manufacturers and vendors. Moreover, a large
set of tools and applications targeting UPnP devices already exist.

Our approach consist in generating proxy modules published
as UPnP standard devices and to control non-UPnP devices. In
Fig. 1, the proxies allow applications to interact with non-UPnP
devices as standard UPnP devices. A UPnP-DPWS Proxy Light
for example is exposed as a UPnP Standard Light and controls a
DPWS Light through a DPWS client. When the UPnP Switch
(boolean true/false) action is invoked on the proxy, it will
translate the call and invoke the equivalent action SetTarget
(String ON/OFF) on the DPWS Light. Using UPnP as a
common model allows developers to focus only on implementing
applications that use the UPnP interaction model.

Ontology
Generation

Ontology
Alignment

Alignment
Validation

Pattern
Detection

Alignment
Adaptation

Proxy
Generation

Fig. 2. Steps of the approach

To automatically generate proxies, our approach consists of six
main steps as shown in Fig. 2: the first is to automatically
generate ontologies from a device description. ”An ontology
is an explicit representation of a shared understanding of the
important concepts in some domain of interest” [7]. In our work,
the domain is the home network and concepts of the ontology are
devices, services, actions and parameters. Each device is modeled

with an ontology reflecting its specific information.
The second step consists in applying ontology alignment
techniques[8] to semi-automatically find correspondences be-
tween equivalent devices. The alignment [8] is the process of
finding a set of correspondences between two ontologies, for
example finding equivalent services, actions between UPnP and a
DPWS Light. The alignment is based on heuristic techniques that
needs an expert validation (step 3). Thus, the step four, assists the
expert during the validation. We propose a pattern detection rules
to automatically classify the actions that are fully compatible
and those that the expert would try to adapt. The adaptation is
performed in step 5, by referring to the specifications: default
values, data and code adaptation.

The final step automatically generates proxies using
the validated ontology alignments which represent the
transformation rules to go from a UPnP standard device
description to a non-UPnP device description. This step is
based on the Model Driven Engineering (MDE) software
development methodology. The MDE is based on different
levels of abstraction aiming to increase automation in program
development. The basic idea is to abstract a domain with
a high level model then to transform it into a lower level
model until the model can be made executable using rules and
transformation languages. In our approach, we abstract the
domain using ontology representation, the transformation rules
are the ontology alignments used to generate executable proxies.

The remainder of the paper is organized as follows. We
first overview the related work. Next, we present our ontology
generation and the alignment approach. Then, we describe the
pattern recognition and the code generation. Then we detail the
implementation and its evaluation. Finally, we conclude with a
discussion and outline future works.

II. RELATED WORK

UPnP[2], IGRS[3] and DPWS[4], cohabit in home networks
and share a lot of common features. Their protocol layers
support: discovery, description, control and eventing. They
also target similar device types: multimedia devices are
shared between UPnP and IGRS while the printing domain
(printing, scanning) is dominated by UPnP and DPWS. Each
protocol defines standard profiles with required and optional
implementation that manufacturers need to support.
Even if those protocols have a lot in common, devices cannot
cooperate due to two main differences: the service description
and the protocol layers. They all use SOAP for interaction, UPnP
and IGRS use SSDP for discovery and GENA for eventing,
while DPWS uses a set of standard web services protocols.
To solve the networking heterogeneity, the Z2Z project [9]
proposed a solution to generate protocol proxies. Other SOA
frameworks like OSGi proposed a centralized approach using
specific protocol proxies to hide the diversity. Such protocol
proxies are called Base Drivers[10], they are defined as a set of
bundles capable of representing devices with specific network
protocols as local services on the SOA framework. The device
reification is dynamic, it reflects the actual state of the device
on the framework. Base drivers also expose local plug-n-play
devices as real devices on the network. Since the distributed
architecture is an SOA one, base drivers solve the networking
layers heterogeneity but the device description remain.

Different approaches have been developed to solve the inter-
operation problem, it can be put in three major categories:

• Common Ontology: Paolucci [11], EASY [12] and MySIM
[13] worked on the service substitution. They model the
domain in a common ontology holding all the services

and properties relating them. The services are manually
classified hierarchically and semantically, for example Wifi
is a sub concept of Wireless which is a sub concept of
Network. Thus, the service description should be exposed
using the same concepts from the common ontology. A
service is then substitutable only with a compatible service
from the ontology. They apply modifications on the service
registry used to search or publish a service. In MySIM a
dynamic adaptation is performed by either a redirection
or a replication of the OSGi bundles bytecode.
Imposing to competitors such as manufacturers and
standardization committees a common ontology is too
optimistic[14], there had never been a unified description
in the proposed standard profiles (UPnP, DPWS and
IGRS) for the same device type. Annotating the description
manually can be difficult and error prone. Adding a
new device to the common ontology is done manually by
adding new concepts and connecting them to other existing
entities. Therefore, the update can produce an incoherent
ontology since a new type can have common semantics
with more than one existing concept[14]. In our approach,
instead of manually building a common ontology with well
defined concepts and semantics, independent ontologies
are automatically generated from the device description.
Then, correspondences between ontologies are calculated
semi-automatically using alignment techniques.

• Abstract Representation: The second category models the
domain with an abstract ontology : DogOnt in DOG[15]
and an extension of the SOUPA[16] ontology in [17]. In
both works, similar device types and actions are modeled
with abstract ontology concepts, (light device, dimming
action, switch on/off) as well as their interoperation
messages and notifications (a light device is connected to a
switch device). The abstract ontology is queried to generate
interoperation rules, when an ”off” message is received by
the framework, the interoperation rule route the message
to the target device using its own commands. The mapping
between the abstract model and the specific model is done
manually, meaning when adding a new device, the abstract
ontology must be updated with abstract concepts, then, the
interoperation between abstract and specific commands
need to be hard coded. Their abstract ontology holds a
lot of information, specially interoperation associations
(light-switch) which makes it complex even for simple
devices. Both approaches deal with relatively simple devices
like lights with similar actions and parameters. However
the abstraction of complex devices like printers with a
2000 lines of description is not trivial specially when an
action on one device is equivalent to one or more actions
on another device. In our approach, UPnP is chosen as
a common model and ontologies reflecting UPnP and
non-UPnP devices are automatically generated. Then, we
apply semi-automatic techniques to find correspondences
between ontologies which are used to generate proxies by
filling template code. Our templates are manually written
once but used with any device alignment holding the
transformation rules between devices.

• Common Language: The third category uses a common
language to describe devices with the same semantics,
Moon provides the Universal Middleware Bridge[18] which
proposes a Unique Device Template (UDT) for describing
devices. They maintain a table containing correspondences
between the UDT and the Local Device Template (LDT).
Miori et al. [19] define the DomoNet framework for domotic
interoperability based on Web Services. They propose Do-

moML a standard language to describe devices. Then Tech-
Managers translate device capabilities as web services. The
mapping is done manually and no adaptation and generation
mechanism are proposed. The HomeSOA[10] approach uses
base drivers to reify devices locally as services then another
layer of refined drivers abstract service interfaces per device
types as a unified smart device. For example, a UPnP
and DPWS light dimming services are abstracted with a
DimmingSwitch interface then it is up to the developer
to test the device type and invoke the underlying specific
action. This category is dependent on the manual annotated
mapping between the different descriptions.

III. PROPOSAL

Our approach[20] is overviewed in Fig. 2 and detailed in Fig. 3.
The first (MDE) M0 layer in Fig. 3 represents the heterogeneous
plug-n-play devices descriptions expressed in different formats:
UPnP uses an XML format while DPWS and IGRS use the
standard Web Service Description Language (WSDL). Each
description uses different semantics: UPnP uses devices, services,
actions and state variables while the WSDL uses services, port
types, operations and messages.
The automatic generation of ontologies lifts the device description
from the M0 layer to the M1 layer, see Fig 3, a arrows.
Each ontology represents a device using unified concepts in
conformance to the meta model based on UPnP in the M2 layer.
The meta model[20] defines the concepts as follows: every device
has one or more service, every service has one or more action
and each action has variables.
To resolve the heterogeneity in the M1 layer, semi automatic
alignment techniques are applied to find the correspondences
between equivalent ontologies, Fig. 3, b. The alignment is heuristic
based, therefore an expert has to validate the correspondences.
Thus, rules are applied on the alignment to detect patterns in
order to assist the expert during the validation. Finally, based on
the alignment, the automatic code generation techniques allow
to go from an independent technology representation in the M1
layer to an executable proxy in the M0 layer, Fig 3, c. The
proxy exposed as a standard UPnP device transfers the received
invocations to non-UPnP devices, Fig. 3, d.

Device
Meta
Model

DPWS
Device

DPWS
Ontology

Ontology
Alignment

Transformation
Model

UPnP
Device

UPnP
Ontology

(b)

Conforms to

DPWS

Implemen-
tation

Proxy

Implemen-
tation

UPnP

Implemen-
tation

(a)(a) (c)
Code Generation

(d)(d)

Meta
Model(M2) :
Meta Device
Ontology

Model
(M1) :
Device
Ontology

Instance(M0) :
.Class
Java/OSGi

Fig. 3. Overview of the approach

A. Automatic Generation of Ontologies
Since the plug-n-play devices announce their description on

the network, software entities (UPnP, DPWS OWL Writers)
scanning the local network automatically generate ontologies
(M1 layer) conformed to the meta-model to represent the device.
The ontology is represented using the Ontology Web Language
(OWL)[21]. Each ontology describes a device, its hosted services
and actions along with the variables and their types, see Fig. 4-
a, describing a part of a light ontology. An OWL writer also
generates ontologies from device files description.

B. Ontology Alignment
Now that the M1 models are generated and are conformed

to the M2 layer, we apply transformation techniques to go from
a model to the other in the MDE M1 layer. Transformation
models in the Model Driven Engineering aim to build bridges
linking entities between two existing models. In our approach, the
translation between equivalent devices is given by the ontology
alignment (see Fig. 3, M1 Layer, b).

Fig. 4-b, shows an automatically calculated alignment using the
SMOA[22] method between a UPnP and DPWS light ontologies.
The matching between entities is expressed using a normalized
similarity value within an R+[0,1] interval showed on the lines.
The alignment takes two ontologies O1 and O2, then, applies basic
matching techniques described in [8] such as Leveinshtein, SMOA
and others. Such techniques are heuristic based and match two
actions like ”SetLevel” 6= ”GetLevel”, therefore, we enhanced the
SMOA[22] technique into SMOA++ using wordNet[23] to detect
antonyms (Set 6= Get) and synonyms (clock ∼= timer). We also
applied a similarity propagation on the structure between entities,
for example, we enhance two services similarity if their actions
have strong similarities. A trimming is applied on the alignments,
i.e. only matchings having a similarity value above a defined
threshold t are kept. The result is expressed in an alignment
format[24] with tuples (leftEntity, rightEntity, similarity) which
can be saved in a data base. The matching between SetTarget
and Switch added by the expert has a similarity set to 1 to
avoid its removal when the trimming is applied.

Since the alignment is heuristic based, an expert intervention
is needed to validate the mappings which is done in two steps.
First the expert edits, removes or adds a matching, for example,
SetTarget ≡ Switch, Fig. 4, (b). However, a matching between two
actions is not enough to presume that they are compatible, their
input/output parameters need to be considered. Therefore, the
second step consists in using patterns to detect compatible actions
based on their input/output matched parameters. The alignment
step and the expert validation is performed using ATOPAI [25]
our Aligning and Annotation Framework for Plug-n-Play Device
Interoperability.

IV. PATTERN RECOGNITION

The pattern recognition is ”as a classification of input data
via extraction of important features from a lot of noisy data”
[26]. In our approach, we use patterns to automatically classify
the alignments in order to detect valid matchings between
actions and let the expert focus only on non valid actions. The
expert can make two actions valid by adding default values or
adaptation code by referring to the specifications. In simple
cases we have one-to-one mapping actions, Switch(true/false)
≡ SetTarget(ON/OFF) with one parameter. However, on the
standard UPnP and DPWS printers [2], [27], the UPnP action
CreateURIJob is equivalent to the association of two DPWS
actions CreatePrintJob and SendDocument and a large number
of parameters. Therefore, the detected patterns guide the expert
on the remaining actions to adapt. The rules are expressed in
the Ontology Pre-Processing Language[28] (OPPL). Another rule
language can be also be used instead. For space limitation we
detailed only one rule in OPPL.

A. The Patterns
Once the ontology alignment is performed and validated, we

apply rules to detect patterns and add new information to the
ontology. The following paragraph presents some definitions:

Definition 1 (y = f(x)).

∀x, y ∈ P/ P set of parameters, f ∈ A/ A set of actions

Thing

UPnP Device

BinaryLight

UPnP Service

SwitchPower

UPnP Action

SetTarget

UPnP Variable

Target

Thing

DPWS Device

SimpleLight

DPWS Service

SwitchPower

DPWS Action

Switch

DPWS Variable

Power

0.69

1

Added by Expert = 1

Added by Expert = 1

Fig. 4. (a) Part of a Generated UPnP Light Ontology (b) Part of a UPnP (left) and DPWS (right) Light Alignment

y = f(x) ⇐⇒ f hasInput x and hasOutput y

Definition 2 (f≡ g).

∀f, g ∈ A, f ≡ g ⇐⇒ (f, owl:equivalentTo, g)

The actions f and g are related in the ontology with the
OWL object property owl:equivalentTo.

The patterns used in our approach are the following:
1) Direct Mapping is a pattern between two classes, having a

one-to-one simple mapping. For simplicity of presentation,
two equivalent parameters will have the same name. This
property has the following three sub-properties:

a) Direct Mapping Input: two actions having at least one
matching of input parameters, f(x) ≡ g(x). For
example, Switch(true/false) ≡ SetTarget(ON/OFF).
Listing 1 shows the OPPL Rule used to detect this
pattern.

? f :CLASS, ?g :CLASS, ?x1 :CLASS, ?x2 :CLASS
// Select a UPnP action (f) having an input some variable x1
SELECT ? f subClassOf has UPnP Input some ?x1 ,
// Select a DPWS action (g) having an input some variable x2
?g subClassOf has DPWS Input some ?x2 ,
// The actions and the variables must be equivalent
? f equ iva len tTo ?g , ?x1 equ iva lentTo ?x2
BEGIN //if selection not empty add property between actions
ADD ? f subClassOf DirectMappingInput some ?g

Listing 1. OPPL Direct Mapping Input Rule

a) Direct Mapping Output: two actions having at least
one matching of output parameters. For example,
(Power=GetStatus()) ≡ (Status=GetStatus()).

b) Direct Mapping Input Output: is the association of
the previous patterns.

2) Union Mapping: an action equivalent to two or more
actions with no predefined order. One-to-N:

f(x, y) ≡ Union to n

{
g(x)

h(y)

For example, SetClock(hour, date) is equivalent to the
union of SetHour(hour) and SetDate(date).

3) Sequential Union: is a union mapping with predefined
order between actions. One-to-N:

(y = f(x)) ≡ Sequential to n

{
(1) a = g(x)

(2) y = h(a)

When an application invokes y = f(x), the proxy first
invokes a = g(x) then y = h(a) and returns y. We detected
this pattern on the standard Printer devices CreateURIJob

≡ Union Mapping (CreatePrintJob, SendDocument). In
order to detect the sequential union mappings, we first
detect the union mapping then the sequential dependency
(has Next) between actions on the same device. has Next
is a binary relation defined as follows:
Definition 3 (has Next). ∀f, h ∈ A,
f has Next h ⇐⇒

(1) f 6= h and Output(f) ∩ Input(h) 6= ∅
and Output(h) ∩ Input(f) = ∅

(or)

(2) ∃ g ∈ A /f has Next g and g has Next h

We detect this pattern by applying 3 rules, the first rule
detects the first clause of the has Next definition. The
second rule is used to detect a cycle between two actions,
(g has Next h ∧ h has Next g). Then, the expert validating
the ontology is notified and the cycle is broken by removing
the has Next properties. The third rule is used to detect the
transitive clause. Fig. 5 shows a complex mapping between
an action f and a set of union and sequential actions. The
has Next relation is modeled with a DAG Directed Acyclic
Graph: G. Since has Next is a partial order relation:
irreflexive, asymmetric and transitive. G is sorted to an
ordered graph (Fig. 5) using a sorting algorithm[29] during
the code generation.

f g

i

h

k

j

m

n

Union has Next
f g h i

jkmn

Fig. 5. (a) Complex Mappings (b) Possible Solution

The patterns N-to-One and N-to-M are ignored for now, since
the invocation is unpredictable. The two actions are mapped to
a single action, there is no guarantee that the application will
invoke both actions g and h.{

g(x)

h(y)

}
≡ Union to n f(x, y)

B. The Matching Concept
Based on the equivalent input and output parameters along

with the previously detected mapping patterns relating two (sim-
ple) or more actions (union or sequential), we can automatically
decide if the mapping is valid or needs to be adapted by the
expert. Therefore, we define the matching concepts but first we
will go through some definitions.

Definition 4 (Matching Definitions).

• ∀a ∈ A, npInput(a) is the number of parameters the action
a has as input.

• ∀ a, b ∈ A, nbEqualInput(a, b) is the number of equivalent
input parameters between actions a and b.

• npCommon(a∩b) = number of common parameters between
actions a and b.

• S is a set of actions, ∀n ∈ N+∗ number of actions, ai ∈ A,
San : {a1, a2, . . . an}.

The MConceptInput takes two sets of actions San , Sbm (see
tab. II) and returns a value in R+[0,1] based on the equivalence
of their actions and input parameters.

Definition 5 (The Matching Concepts).

∀San , Sbm/ ai, bj ∈ A, n,m ∈ N+∗,

MConceptInput(San , Sbm) =
nbEqualInput(San , Sbm) ∗ 2
ParametersInput(San , Sbm)

• nbEqualInput(San , Sbm) =∑n
i=1

∑m
j=1(nbEqualInput(ai, bj)).

• ParametersInput(San , Sbm) = npInput(San) +
npInput(Sbm)− npCommon(San)− npCommon(Sbm).

• npInput(San) =
∑n

i=1 npInput(ai).
• npCommon(San) = npCommon(∩n

i=1ai).
MConceptInput(San , Sbm) = 1. If Sa, Sb have only outputs.

We extend Paolucci’s[11] four matching degrees between
matched services: Exact, PlugIn, Subsumes and Fail, are applied
on concepts that belong to the same ontology to detect compatibil-
ities between services. Paolucci uses a reasoner to determine the
compatibility between concepts based on the manual hierarchical
classification in the common ontology. In our approach, we only
have the equivalent relations provided by the alignment and the
patterns. Therefore, we redefine the following matching degrees
between two sets of actions Sa, Sb, as follows:

• ExactMatchInput(Sa, Sb): for each input parameter of Sa

there is an equivalentTo relation with each input parameter
of Sb. For example, f(x,y) and g(x,y). The ExactMatch
applies if MConceptInput(Sa, Sb) = 1.

• PlugInInput(Sa, Sb): for each input parameter of Sb there
is an equivalentTo relation with some input parameters of
Sa. For example f(x,y,z) ≡ g(x,y). The parameter z can be
ignored during the invocation since there is no equivalence
on the action g. The PlugIn applies if:
{(MConceptInput(Sa, Sb) 6= 1) ∧ (npInput(Sb) =
nbEqualInput(Sa, Sb)) ∧ (npInput(Sa) > npInput(Sb))}.

• SubsumeInput(Sa, Sb): for each input parameter of
Sa there is an equivalentTo relation with some input
parameters of Sb. For example, f(x,y) ≡ g(x,y,z). The
Subsume matching degree do not guarantee a successful
translation between actions, since some values of Sb are
missing. The parameter z cannot be ignored, g is expecting
a value. Therefore, it is up to the expert validating the
alignment to verify the specifications and check if the
parameter z can have a default value or other adaptation
operations using ATOPAI. The Subsume applies if:
{(MConceptInput(Sa, Sb) 6= 1) ∧ (npInput(Sa) =
nbEqualInput(Sa, Sb)) ∧ (npInput(Sa) < npInput(Sb))}.

• UnknownInput(Sa, Sb): for some input parameters of Sa

there is an equivalentTo relation with some parameters

of Sb and does not verify any previously defined matching
concept. For example, f(x,y,z) ≡ g(x,b,c).

Table I is used to decide if the mapping between actions is
a success (the translation between actions is satisfied), a failure
or an undefined (the decision x/? is harder to adapt since the
adaptation depends on the output parameters). Table II, shows
the decision returned to the expert by ATOPAI [25]. Since, the
first two actions are successful, the expert focuses then only on
the undefined decisions to check if it can be turned to success.
The CreateURIJob mapping (Table II) is turned to success by
setting the LastDocument to true as a default value of the action
SendDocument. The GetPrinterAttributes (Table II) is turned to
success by setting the PrinterStatus as default input of the action
GetPrinterElements. All the successful mappings are used for the
code generation and the failures are ignored.

TABLE I
DECISION TABLE, (X:SUCCESS, X:FAIL, ?:UNDEFINED)

(Sa, Sb) ExactIn PlugInIn SubsumeIn UnknownIn

ExactOut X X ? ?
PlugInOut x/ ? x/ ? x/ ? x/ ?
SubsumeOut X X ? ?
UnknownOut x/ ? x/ ? x/ ? x/ ?

TABLE II
EQUIVALENT ACTIONS FOR UPNP-DPWS STANDARD PRINTERS

UPnP Action (Sa1) DPWS Actions (Sbm , m = 1,2) Matching Decision
CancelJob CancelJob Ex.In, Ex.Out X
GetJobAttributes GetJobElements Ex.In, Sub.Out X
CreateURIJob Seq.(CreatePrintJob,SendDocument) Sub.In, Ex.Out ?
GetPrinterAttributes ∪(GetPrinterElements,GetActiveJobs) Sub.In, Sub.Out ?

C. Expert Adaptation
Rules automatically detect patterns, however, not all the

correspondences between actions are simple and can be resolved
only by linking the entities. The adaptation might need data
conversions and loops, for example a temperature conversion,
◦C = (5/9)(◦F − 32). We detail in the following paragraph a
use case where the alignment is insufficient and adding code is
necessary. Since, the UPnP and DPWS APIs require an advanced
knowledge in the protocols, we offer the expert a simple high level
Adaptation API[25] to add the conversion operations which
are injected in the templates in specific call points during the
code generation.
Use Case: let an ontology O1 representing a device D1, with an
action a1. An ontology O2 representing a device D2, with the
actions a2, a3 and a4 which increases/decreases the volume value
only by 1 unit.

(a1) SetV olume(newV ol) ?


(a2) vol = GetV olume()

(a3) V olumeUp()

(a4) V olumeDown()

The action a1 SetVolume has no direct equivalence with the
actions a2, a3, a4, however the following adaptation is possible.
In our approach, the generated proxy is exposed as a device
D1 and interacts with a device D2. When the SetVolume
is invoked, the proxy first retrieves the newVol value, (See
Listing 2, line 2) then invokes the GetVolume and retrieves the
current volume level vol on the D2, (lines [3,4]). Then based
on the difference between the newVol and the vol, the proxy
should increment or decrement the volume value on D2. The

expert can also invoke external services on the OSGi framework
using ExtService[25].

1DPWSAction a2 = g e t R i g h t A c t i o n (”GetVolume”) ; . . .
2i n t v1 = (I n t e g e r) t h i s . ge t InputValue (”newVol”) ;
3a2 . invoke () ; // Retrieves the current volume on D2
4i n t d i f f = v1 −(I n t e g e r) a2 . getRetValue (” v o l ”) ;
5i f (d i f f >0) { f o r (i n t j =0; j<d i f f ; j ++) a3 . invoke () ;}
6e l s e { f o r (i n t j =0; j<−d i f f ; j ++) a4 . invoke () ;}

Listing 2. Adaptation Code

V. RUNTIME CODE GENERATION

To automatically generate a proxy for each equivalent non-
UPnP device based on the alignment ontology, we propose
DOXEN, a Dynamic Ontology-based proXy gENerator, installed
on a SetTopBox for example. The alignment contains the UPnP
and DPWS device descriptions and the mappings between equiv-
alent entities (devices, services, actions and variables). Therefore,
we can generate using predefined templates a proxy exposed as a
UPnP and has DPWS client to interact with real devices having
the same description.

Non-UPnP
Device

Identify
Device

Init Proxy
Bundle

Generation

Proxy
Exist?

Start Proxy
Bundle

Load
Alignment

Ontology
Alignment

Install
Proxy

Bundle

Fill Java
Templates Compile Package

Jar/OSGi

(1)

(2)

yes
no

(3)

(4)

(5)

(6) (7)

(8)

(9)

Fig. 6. Proxy Generator Diagram

DOXEN parses a configuration file containing information
about the equivalent devices, the alignment file and the repository
to download additional alignments. DOXEN is notified by the
OSGi framework on the arrival of non-UPnP devices (Fig. 6)
(step (1)), then it checks (2) the device type (”Light”, ”Printer”,
etc), the version number and its hosted services. Based on such
information, DOXEN loads the alignment ontology file (4) and
fills (5) the pre-written Java templates based on the matched
services, actions and variables in the alignment. Once the Java
files are generated, DOXEN compiles the files (6) and builds an
OSGi/Jar bundle (7) at runtime. Then it installs (8) and starts
(9) the new generated bundle which corresponds to a UPnP
proxy for the non-UPnP device. The proxy requests the general
device information (manufacturer, model, friendly name, ID, etc)
from the non-UPnP device and publishes the same retrieved
information during its annunciation on the network. The user
or the application identifies the proxy using the type and the
friendly name, for example, ”HP Printer”. As soon as the non-
UPnP device leaves the network, the proxy OSGi bundle goes
from ”Start” state into ”Installed”. When the non-UPnP device
re-appears, DOXEN starts the proxy bundle again.

VI. GLOBAL ARCHITECTURE

The previously detailed modules are used as follows in the
global architecture (see Fig. 7). OWL Writers can be deployed
at the operator’s or the client’s site to generate and upload
ontologies when a non identified device is discovered.
On the operator site, the expert retrieves the generated
ontologies from a Data Base to align and validate using ATOPAI
(2). The alignment is then deployed (3) on the home network,

Operator or Service Vendor

Data
Base

(2) ATOPAI

Home Network

OS
Gi

DPWS Printer

UPnP Printer

UPnP
Printer

CP

DPWS Base Driver

UPnP Base Driver

DOXEN

.owl

OWL Writers

UPnP Proxy
Printer Bundle

Internet

UPnP
Proxy
Printer

DPWS
Printer

(3)
Deploy

(4)Discover
(5)Reify

(6) Generate

(1) Upload Ontology

(7) Publish

(8)Reify(9)Export

Print UPnP

Print DPWS

Installed Bundle

Generated Bundle

Service Provides
Requires

Fig. 7. Global Architecture

where DOXEN is installed. DOXEN can also be installed at
the operator’s site, then the automatically generated proxies
(bundles) will be remotely installed in home networks.

In Fig. 7, when a DPWS device appears on the network, the
DPWS Base Driver (BD) discovers (4) and reifies (5) the device
as an OSGi DPWS Printer Service. DOXEN detects the OSGi
DPWS Printer Service, checks the list of the equivalent DPWS
devices, then, generates (6) a UPnP Proxy Printer (OSGi) bundle
which publishes (7) the OSGi UPnP Proxy Printer Service. The
UPnP BD reifies (8) the new UPnP Service and exposes it (9)
as a UPnP device on the network. Any invocation on the UPnP
exposed device is handled by the UPnP Proxy Printer OSGi
Service and forwarded to the OSGi DPWS Printer Service. The
invocation on the OSGi DPWS Service is reified by the DPWS
BD to the DPWS Printer.

When a new device type appears, the correspondent OWL
Writer generates and sends the ontology to the operator. Once
matched and validated with an existing equivalent UPnP device,
the alignment is deployed in the home network. If the non-UPnP
device does not have an equivalent UPnP device, then, there is
no need for adaptation. In this case, there would not be a UPnP
application searching to interact with such device type.

VII. IMPLEMENTATION

To implement our approach, we used the UPnP Felix Apache
[30] and the DPWS SOA4D[5] base drivers. We developed
the OWL Writers on a Felix/OSGi [30] framework using the
OWL API 3[21]. We implemented ATOPAI [25] to help the
expert during the alignment validation. ATOPAI is based on
the Alignment API 4[24] and exposes a GUI based on the
Swing API, it allows to load ontologies, compute and validate
alignments, detect patterns and insert adaptation code. The
expert adds an alignment by selecting two entities and using
the new cell button. To remove an alignment, the expert removes
the line between the two entities. ATOPAI supports the SMOA
and SMOA++ alignment techniques, additional techniques can
be added through the Alignment API [24], it allows to use an
external dictionary and to select the trimming threshold.

We implemented DOXEN using the FreeMarker 1 template
engine to generate the proxy Java code and Janino2 to compile
at runtime. Currently we generate proxies at runtime using an
alignment ontology for devices such as a DPWS light[5], a WS4D

1http://freemarker.sourceforge.net
2www.janino.net

3 clock, a DPWS Standard printer. We also validated the code
injection and the external OSGi calls.

Android/UPnPUPnP Printer

UPnP-DPWS
Printer Proxy

DPWS Printer

Fig. 8. Android/UPnP Control Point

We implemented a ”Home Controller” Application on a Samsung
GalaxyS Android (2.1) smart phone which interacts only with
UPnP standard Lights, Clocks and Printers. On the GalaxyS,
we only deployed a UPnP Cybergarage[31] stack and deployed
on a SodaVille (Set-Top-Box) an OSGi/Felix Framework with
DOXEN along with the UPnP and DPWS Base Drivers. On the
appearance of the DPWS light [5], the DPWS WS4D clock or
the DPWS HP 4515x Printer, DOXEN generates at runtime a
UPnP-DPWS proxy for each device. The application controlled
all the DPWS devices through the generated UPnP proxies which
transfer the invocations to the real DPWS devices. On the HP
printer, we are successfully able to print a file(pdf, txt, ps), cancel
a job, retrieve the job and the printer status.

VIII. EVALUATION

We tested our approach on an Intel x86 Centrino Duo Core PC,
with 2 GHz clock frequency and 1 GB RAM capacity. The OWL
Writers generated ontologies for Lights, Clocks and Printers see
Table III, shows the time in seconds for the ontology generation
per device type, the lines of code (LoC) of the ontology and
LoC of description file of each device. The difference in the
building time is due to the following: first, DPWS devices have
a larger description files (DPWS Printer 2237 LoC vs UPnP
Printer 610 LoC) and complex hierarchical parameters [27]. Base
drivers[30] (BD) represent real devices as local OSGi services,
the UPnP BD represents all the device description on OSGi.
However, the SOA4D DPWS BD only represents the device and
service information ignoring the operations and the parameters.
Consequently, the DPWS OWL Builder retrieves the WSDL files
embedded on the real DPWS device, then, generates the ontology,
while the UPnP OWL Writer has access to the information from
the UPnP BD. An enhancement in the DPWS BD reduces the
difference in the generation time.

TABLE III
GENERATED ONTOLOGIES ON THE PC

Device Type Time (seconds) Description (LoC) OWL (LoC)
UPnP Printer 0.5 610 1573
DPWS Printer 187 2237 9082
UPnP Light 0.2 51 365
DPWS Light 0.8 213 245
UPnP Clock 0.05 49 161
DPWS Clock 0.25 48 123

We tested the alignment on different devices using our imple-
mented method and algorithm SMOA++. Table IV resumes the
alignment evaluation on three device types using the SMOA[22]
matching technique and our proposed algorithm SMOA++. It
exposes the method used, the alignment time in seconds, the
success percentage for a threshold S.(t1=0.63) and S.(t2=0.25)
as well as the number of false matches f.(t1) and f.(t2) detected
as positive correspondences. The SMOA++ method uses SMOA
with an external semantic dictionary WordNet to align entities. It
also applies a structure enhancement and takes into account the
parameter types and range. The alignment methods detect up to
78% of the correct mappings, then it is up to the expert to update

3Web Service for Devices: http://www.ws4d.org/

the alignment using ATOPAI. SMOA++ has a higher calculation
time due to the access and search in the semantic dictionary
WordNet[23] and the structural enhancing. The difference in time
remains acceptable since the alignment is treated off line at the
operator platform. SMOA++ has an overall better performance
than SMOA, the successful detected correspondances are higher
and the false detected correspondances are generally lower. A
detailed alignment evaluation of the ontologies can be found at
[25].

TABLE IV
ALIGNMENT EVALUATION ON THE PC

Type meth. time S.(t1=0.63) f.(t1) S.(t2=0.25) f.(t2)

Printer smoa++ 824 71% 2 78% 8
smoa 77 71% 6 75% 11

Light smoa++ 7.3 50% 1 66% 3
smoa 1.5 50% 4 66% 4

Clock smoa++ 2.5 50% 1 66% 1
smoa 0.4 50% 1 66% 1

Table V resumes the time spent by DOXEN to generate and
install a proxy, the lines of code of the generated Java files and
the Jar bundle size. The table also shows the number of Java
template files and lines of code (LoC) used. We evaluated DOXEN
on the PC and a SodaVille Set-Top-Box (STB) with an Intel Atom
1.2 GHz, 384 MB of RAM and an open-JDK 6 implementation.
DOXEN spends less than 2 seconds on a PC and 10 sec on the
STB to parse the alignment and generate a UPnP-DPWS proxy
for complex standard printers interoperability. The Jar size can
be reduced if another optimized compiler is used instead.

TABLE V
GENERATED PROXIES

Proxy Time (sec) STB Time (sec) PC Java files LoC Jar(KB)
Templates – – 8 1112 –
Printer 10.1 1.7 31 3325 67
Light 4.7 0.94 15 1812 37
Clock 3.7 0.85 9 1151 22
UC [TV] 3.4 0.77 9 1198 25

Table VI shows the invocation time of a DPWS Client invoking
directly the actions on the HP 4515x Printer and of a UPnP
Client invoking through the generated UPnP Proxy. The (UPnP,
DPWS) clients and the generated proxy where deployed on the
same STB and connected to the printer through the local wireless
network. The clients printed the same file. The results show a
small difference in the invocation time due to the translation cost.

TABLE VI
PRINTER ACTION INVOCATION TIME (SECONDS)

Actions DPWS Client UPnP Client
(CreatePrintJob, SendDocument) 0.84 1.14
CancelJob 0.4 0.57
(GetPrinterElements, GetActiveJobs) 0.33 0.58
GetJobElements 0.36 0.48

IX. DISCUSSION

To achieve semantic interoperability using ontologies, there is
two main types of approaches in the literature:
Integrated[32]: A global ontology is used to represent other
domains (UPnP, DPWS, other). Correspondences between the
global ontology and such domains are established manually.
The main challenge remains in the construction which is an
iterative task[32] since common and unified semantics need
to be found to represent heterogeneous resources. However, a

central ontology will never be large and compatible enough to
include all concepts of interest of every domain[14], so it will
have to be updated, modified, extended and even matched with
another ontology[14]. Each new extension will be different and
can create conflicts between predefined concepts and semantics
resulting with an inconsistent ontology[32]. Besides, an update
in any domain requires an update of the global ontology.

Federated[33]: No common ontology is used, only
correspondences between different ontologies are established
using ontology alignment techniques. The challenge consists in
finding correspondences between the pivot and each domain.
The alignment techniques are semi-automatic and are based
on the syntax, the semantics and the structure[8]. A human
intervention is needed to validate the detected correspondences.
Since the mappings are independent, an update in a domain
requires an update of the concerned mappings. If the pivot was
updated then all the mappings will be updated. There is also
the Unified method combining both approaches and inheriting
their challenges.

In the related works, the integrated approach with a common
ontology is applied on relatively simple devices consequently
ontologies proposed in their approach are relatively simple
comparing to printers with a description of 2237 lines of code
(LoC). Therefore the manual construction of large ontologies is
time consuming and error prone regarding its complexity.
In our approach, devices announce their description, thus OWL
Writers generate ontologies conformed to a meta-model. Even
though, 187 sec (≈ 3 minutes) Table III is spent to generate
complex DPWS Printer ontology and 824 sec (≈ 13 min) to
align the printers (see Table IV), it remains acceptable and fast
rather than manually building a common ontology of relatively
complex devices as suggested in the related works. Using a
common ontology for devices seems to be too optimistic[14]
among competitors such as manufacturers and standardization
committees, there had never been a unified description for the
same device type. Imposing the use of a common ontology is
similar to imposing a unified standard profile.

To our knowledge, we are the first to resolve heterogeneity
between two standard profile printers using ontology alignment
techniques and applying interoperability on a real DPWS printer.
The specifications are protocol and technology independent,
therefore, the expert performing the validation off line on the
operator site using ATOPAI can be a technician or a domain
expert. For the printers validation, the authors validated the
mappings by referring to the standard printers profiles[27],
[34]. The validated alignment can then be deployed on the
client gateway so it can be used later by DOXEN. The main
advantages of this approach are the following: first, already
installed applications (Fig. 8) which targets only standard UPnP
devices can now interact with other non-UPnP devices thanks
to the dynamically generated proxy. The Home Application
on the smart phone interacts with a DPWS HP Printer as a
standard UPnP Printer. Second, there is no need to add additional
networking stacks to support other protocols on devices hosting
applications. The same UPnP stack already deployed is used to
interact with other devices supporting a different protocol via
the proxy. We only deployed a UPnP stack on the smart phone,
there is no need to deploy a DPWS stack to interact with DPWS
devices. Third, the proxy is automatically generated in a less than
a minute without a human intervention. All the code generation,
compilation and installation is automatic and transparent to
the user and applications. And finally, The construction process
of ontologies is relatively simpler and faster than building a
global common ontology specially when dealing with complicated

devices like printers. The ontologies can also be reused if another
protocol is chosen as a pivot. The expert validating the alignment
using our ATOPAI needs only to remove or add lines between
two equivalent entities and can add default values or adaptation
code using a high level API.

X. CONCLUSION AND FUTURE WORKS

In this article we propose an approach based on code
generative and ontology alignment techniques to bridge device
and service heterogeneity. First, we automatically generate for
each device type an ontology conformed to a meta model, then
we apply ontology alignment techniques to semi automatically
retrieve correspondences between equivalent devices. Then an
expert validates the alignments assisted with pattern recognition
techniques to classify equivalent actions and compositions. The
validated alignment is a set of transformation rules used to
generate on the fly specific proxies from existing templates. The
proxy generation is triggered on the device appearance. The
specific proxy is exposed as an equivalent standard UPnP device
and when an action is invoked, the proxy transfers the invocation
to the correspondent device using its own semantics and syntax.
We choose to expose non UPnP plug-n-play devices as UPnP since
it is the most mature protocol so far. We tested the approach on
an HP 4515x Printer. The solution should work on IGRS devices
since it uses the same layers as UPnP and exposes the devices in
WSDL. We are working on the enhancement of the alignment
and exposing DPWS devices as UPnP Manageable Devices[2] for
monitoring operations. We are also working on the verification
of the expert code and the evaluation of DOXEN at the operator
and home network sites.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., 1999.

[2] UPnP, http://www.upnp.org/.
[3] IGRS, http://www.igrs.org/.
[4] OASIS, “Devices profile for web services, 2009,” http://docs.oasis-

open.org/ws-dd/ns/dpws/2009/01.
[5] SOA4D, https://forge.soa4d.org/.
[6] T. Spets and A. Fedosseev, “Common application layer,” Broadband

Forum, Home Working Group, 2010.
[7] Y. Kalfoglou, “Exploring ontologies,” Software Engineering and

Knowledge Engineering, 2001.
[8] J. Euzenat and P. Shvaiko, Ontology Matching. Springer, 2007.
[9] Y. Bromberg, L. Réveillère, J. Lawall, and G. Muller, “Automatic

generation of network protocol gateways,” ser. Middleware ’09.
[10] A. Bottaro and et al, “Home soa facing protocol heterogeneity in

pervasive applications,” in ICPS, 2008.
[11] M. Paolucci and et al, “Semantic matching of web services capa-

bilities,” in ISWC, 2002.
[12] S. Ben Mokhtar, A. Kaul, and N. Georgantas, “Efficient semantic

service discovery in pervasive computing environments,” in Middle-
ware’06, 2006.

[13] N. Ibrahim, S. Frénot, and F. L. Mouël, “User-excentric service
composition in pervasive environments,” in Proceedings of the
2010 24th IEEE International Conference on Advanced Information
Networking and Applications, ser. AINA ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 682–689. [Online].
Available: http://dx.doi.org/10.1109/AINA.2010.129

[14] N. F. Noy, “Semantic integration: a survey of ontology-based
approaches,” SIGMOD, 2004.

[15] Domestic-OSGi-Gateway, http://elite.polito.it/dog-tools-72.
[16] H. Chen, T. Finin, and A. Joshi, The SOUPA Ontology for Pervasive

Computing. Springer, 2005.
[17] T. Coopman, W. Theetaert, and D. Preuveneers, “A user-oriented

and context-aware service orchestration framework for dynamic
home automation systems,” in Ambient Intelligence and Future
Trends - International Symposium on Ambient Intelligence., 2010.

[18] K. Moon, Y. Lee, and C. Lee, “Design of a universal middleware
bridge for device interoperability in heterogeneous home network
middleware,” in Transactions on Consumer Electronics, 2005.

[19] V. Miori, L. Tarrini, M. Manca, and G. Tolomei, “An open standard
solution for domotic interoperability,” Transactions on Consumer
Electronics, 2006.

[20] C. El Kaed, Y. Denneulin, F.-G. Ottogalli, and L. F. M. Mora,
“Combining ontology alignment with model driven engineering
techniques for home devices interoperablity,” in Proceedings of the
8th IFIP WG 10.2 international conference on Software technologies
for embedded and ubiquitous systems, ser. SEUS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 71–82.

[21] “The owl api,” http://owlapi.sourceforge.net/.
[22] S. Giorgos, “A string metric for ontology alignment,” International

Semantic Web Conference, 2005.
[23] C. Fellbaum, “Wordnet: An electronic lexical database.” Cambridge,

MA: MIT Press, 1998.
[24] “Alignment api,” http://alignapi.gforge.inria.fr.
[25] “Atopai,” http://sites.google.com/site/doxenatopai/.
[26] M. Gonzalez, R.C.Thomas, Syntatic Pattern Recognition:an Intro-

duction. Addison Wesley,Reading,MA, 1978.
[27] Microsoft, “Standard dpws printer specifications,” 2007.
[28] Egaa, Stevens, and Antezana, “Transforming the axiomisation of

ontologies: The ontology pre-processor language,” in Proceedigns of
OWLED DC OWL, 2008.

[29] N. Frank and et, Structural Models: An Introduction to the Theory
of Directed Graphs. John WileySons, 1966.

[30] “Upnp base driver,” http://felix.apache.org/.
[31] “Cybergarage,” http://www.cybergarage.org/.
[32] H. Wache and U. Visser, “Ontology construction - an iterative and

dynamic task.” FLAIRS 2002.
[33] N. Noy and D. McGuinness, “Ontology development 101: A guide

to creating your first ontology, knowledge systems laboratory,”
Stanford University, CA, 2001.

[34] UPnP, “Standard upnp printer,” October 28 2006.

