
Verifying Home Network Bandwidth Sharing Plans

Dimosthenis Pediaditakis

Department of Computing

Imperial College London

London, SW7 2AZ, United Kindgdom

Email: d.pediaditakis@imperial.ac.uk

Naranker Dulay

Department of Computing

Imperial College London

London, SW7 2AZ, United Kindgdom

Email: n.dulay@imperial.ac.uk

Abstract—Experimental evidence from recent measurement
studies has shown that bandwidth bottlenecks usually reside
at the edges of the Internet, which is also true for residential
networks where users share network resources and there is a need
to regulate the usage of bandwidth. In this paper we introduce
a rule-based approach for specifying bandwidth sharing plans
for home networks which are enforced in a distributed manner
across the network. More specifically we focus on the problem of
verifying these sharing plans detecting potential inconsistencies
which may arise from the rules that are specified by users. We
describe a novel tree-based structure to model and verify the
network’s sharing scheme and support the specification of custom
conflict resolution policies.

I. INTRODUCTION

Despite faster broadband technologies, there are a number

of reasons why home users still encounter situations where

bandwidth is inadequate to meet their needs. First, service

requirements continue to grow, for example, media streaming,

online gaming, software downloads and P2P file sharing.

Second, increasing numbers of Internet-enabled devices are

being introduced into homes. Third, one or two “heavy” users’

often account for most of the total data volume [1]. Fourth,

the advertised speeds of broadband connections rarely reflect

a connection’s quality ([2], [3]). Fifth, the traffic of home

networks is often bursty and more intense than in enterprise

environments [4].

Typically, home network gateways forward packets using

best-effort schemes and aim to achieve fairness on a per packet

basis. Quality of service guarantees are only provided on a

very coarse-grained basis, using the “type of service” (TOS)

field of IP datagrams. Based on the value of the TOS field,

traffic is mapped to predefined priority classes, each reflecting

a different forwarding behaviour. Such functionality is limited

in the sense that classes are predefined and protocols are

mapped by default to a particular class. They do not support

the explicit allocation of bandwidth resources, and in practice

home users do not understand and are unable to configure this

complicated mechanism.

We believe that there is an unstated requirement for home

networks to support differentiated services on a per user, per

service or per application basis.

In this paper, we consider the problem of statically allo-

cating bandwidth resources of home networks. We do not

deal with queuing models and adaptive bandwidth control

algorithms that actively control the delays and the rates among

flows. Our intention is to apply traffic shaping in such a way

that it reflects the requirements and priorities among users. We

can cap, assure or explicitly assign to hosts and services any

given amount of bandwidth, through a simple rule language.

However, since users can create arbitrary rules, we need to

ensure that each rule is correctly specified and that rules do

not interfere with each other, both at the network level and

the host level.

The paper makes the following contributions. First, we

introduce the concept of a bandwidth sharing plan consisting

of a number of bandwidth brokering rules which are supplied

by home users. Second, we identify and define the key

properties that a bandwidth sharing plan should have in order

to be “sound”. Third, we introduce a novel tree-based structure

to model and verify that a bandwidth sharing plan is sound.

The rest of this paper is organized as follows; in section

II we describe in detail the problem of verifying bandwidth

sharing plans. In section III we formally define the desired

properties that a sharing plan should have and enumerate the

potential conflicts that may arise. Section IV outlines our tree-

based model used to represent plans and provide the details

of our verification procedure. The overall architecture of our

system and implementation details are presented in section V

along with preliminary measurements. The last two sections

discuss related work and conclude.

II. PROBLEM DESCRIPTION

A. Assumptions

Home networks demonstrate unique connectivity character-

istics [5] with substantial wireless link variations over time.

Similarly, broadband links may experience capacity variations

over time, due to a multitude of reasons, including external

sources of interference, cabling issues, high attenuation, loss

of synchronization and many more. It turns out that the

bandwidth bottlenecks tend to appear near or even inside

homes and they may “move” a few hops forward or backwards

over time ([6], [3], [7]). In this paper, we assume that the

available bandwidth (when the network is idle) is fixed and

is the same for all users, regardless of the type of connection

they have to the default gateway. We also assume that any

bottleneck is common for all users and is located at the WAN

link.

B. Bandwidth brokering rules

Bandwidth brokering rules express resource allocation tasks

and consist of three distinct clauses: Task, Subject and Service.

As an example, the rule “Cap the downlink rate of local host

10.0.1.1 at 3 Mpbs, but only for HTTP sessions with remote

host www.downloads.com”, is equivalent to the bandwidth

brokering rule:

Task {Cap, Download, 3, Mbps} Subject {IP, 10.0.1.1}

Service {host, www.downloads.com TCP, s : 80}

There are a variety of shortcuts and our tools can make

intelligent guesses for missing values, e.g. TCP s:80 would be

inferred from www.downloads.com.

Currently, we support three types of bandwidth specification

to reflect the different requirements:

• Maximum rate (dRie): This is the maximum amount

of bandwidth that a local host may use under any

circumstance. It is actually a cap-limit that prevents some

users from using the full speed of the network.

• Minimum assured rate (bRic): This is the minimum

amount of bandwidth that will be available anytime for a

local host. If the network resources are not used by the

host, other devices may “borrow” them. This particular

type of allocation rule, may sometimes introduce small

initial delays while waiting for potentially full queues to

serve again some empty slots.

• Exclusively assigned rate (‖Ri‖): This statically assigns

the specified rate to a local host. Unlike the minimum

assured rate, other hosts cannot “borrow” the unused

resources, and thus delays are considerably smaller pro-

viding better QoS support.

Assured and exclusive rate allocations are treated as two

separate co-existing bandwidth channels, and are mutually

exclusive. Both types of allocation cannot be applied on the

same managed class. However, an exclusive rate allocation for

a more specific class (e.g. protocol p for Host X) will override

and cancel assured rates which are possibly allocated to more

inclusive classes (e.g. for Host X in general). This holds vice-

versa also.

C. Verifying plans

From a usability point of view, providing users with the

ability to manage a home network’s resources is a desired

feature. In a typical scenario users may compose, add, activate,

disable and remove bandwidth brokering rules via an intuitive

user interface in order to fulfill particular needs. This however

can lead to situations where the specified rules might contain

invalid parameters, contradict each other or overwhelm the

network’s capabilities. For example, a rule which limits the

downlink rate for a host to 3 Mbps, and at the same time

another rule which provides the broadband connection an

exclusive rate of 5 Mbps might result in wasting 2 Mbps. It

is thus important to have a mechanism which can help avoid

such inconsistencies.

In this paper, we only consider the problem of assuring that

the addition of a rule to the global bandwidth sharing plan,

� � � � � � � � � 	
 	
 �Son �
 � � � � � � � � � � � � � �Gaming

� � � � � � � � � � � � � � � �Mom ! " # $ %& ' � � � � ((�) � � � � � � � � � �Dad* + , - . / 0 1 2 3
Fig. 1. A bandwidth sharing scenario

does not conflict with existing rules. Also, an early check is

performed during composition, making sure that the supplied

values fit the characteristics of a given home network.

D. Example scenario

Throughout the rest of the paper, we will use the scenario

illustrated in Fig. 1, consisting of a number of devices used

by users with different requirements. User Dad is mostly

doing office work using a remote desktop application, user

Mom is mainly using her netbook for conversations over VoIP,

Son makes heavy use of P2P file sharing applications, and

finally the gaming console is used during the weekends for

playing multiplayer internet games. Depending on the usage

profile, the QoS requirements for each user are different.

Some services are more sensitive to delays (e.g. VoIP, mul-

tiplayer gaming), while others may require certain amounts

of bandwidth for a good quality of experience. The tuples

shown under each device, represent the bandwidth brokering

rules for each user and are provided in a condensed form.

The first value represents the maximum allowed (ceiling)

rate, the second represents the minimum assured rate and the

third stands for the exclusively assigned rate. Applications

with minimum delay and bandwidth requirements are assigned

exclusive rates, while others that are more delay tolerant are

assigned minimum assured rates. X is the total available

downlink bandwidth at the main gateway.

III. DESIRED SHARING PROPERTIES

A bandwidth sharing plan consists of rules that assign rates

among hosts, subnets and services (e.g. cap Host A to Y
Mbps) but they may also specify bandwidth management tasks

that further split the shares among services for a given network

entity. This is a hierarchical split of network resources among

several network entities, each representing a particular network

or protocol. Our aim is to make sure that this “split”, which

is based on user-defined brokering rules, does not contain

inconsistencies. In this section we define the “good” sharing

properties that a plan should preserve, so that the overall

sharing plans reflect the network behaviour expected by users.

We consider home network environments where the bottle-

neck is the WAN link at anytime and the local communication

TABLE I
BANDWIDTH SHARING PLAN TERMINOLOGY

Term Meaning

RGW Total available bandwidth at the gateway

Rdef Available bandwidth for the default traffic

adef Minimum RGW fraction for the default traffic

RMIN def Minimum bandwidth for the default traffic

Subnets

N The set of all subnets in the home network

dRNje Maximum allowed (ceiling) rate for subnet Nj

bRNjc Minimum assured rate for subnet Nj

‖ RNj ‖ Exclusively assigned rate for subnet Nj

Hosts

H The set of all hosts in the home network

dRHie Maximum allowed (ceiling) rate for host Hi

bRHic Minimum assured rate for host Hi

‖ RHi ‖ Exclusively assigned rate for host Hi

Services

S The set of all services

dRSke Maximum allowed (ceiling) rate for service k

bRSkc Minimum assured rate for service k

‖ RSk ‖ Exclusively assigned rate for service k

links have a high capacity which is fixed over time. The

following properties refer to the bandwidth resources of a

home’s main gateway downlink channel, and similarly, they

can be applied on the Internet uplink channel and on local

communications.

A. Home network wide properties

The terms we use throughout this section are given in

TABLE I. Note that all terms refer to the aggregate amount

of all the bandwidth allocations that have resulted from

the bandwidth sharing rules introduced by users. They do

not reflect the amount of resources specified by each rule

separately.

Property 1: The “default traffic”, which is not subject to

any bandwidth brokering rule, should always be assigned a

non-zero rate (RMIN def). This rate is defined as a fraction

(adef) of the total available bandwidth at the network’s

gateway (RGW):

RMIN def = adef ∗RGW , 0 < adef ≤ 1 (1)

RMIN def ≤ Rdef ≤ RGW (2)

Property 2: The total amount of the minimum assured

rate (bRNjc) and exclusively assigned rate (‖ RNj ‖) for all

subnets, along with the available bandwidth for the “default

traffic”, should add up to the total available bandwidth at the

network’s gateway:

m∑

j=1

(bRNjc+ ‖ RNj ‖) +Rdef = RGW , ∀Nj ∈ N (3)

From properties 1 and 2, the total amount of the minimum

assured and exclusively assigned rates for all subnets is

always less than the total available bandwidth at the network’s

gateway:

m∑

j=1

(bRNjc+ ‖ RNj ‖) < RGW , ∀Nj ∈ N (4)

B. Subnet-level properties

Property 3: Any subnet ceiling rate (dRNje) should be no

greater than the total available bandwidth at the network’s

gateway:

dRNje ≤ RGW , ∀Nj ∈ N (5)

From equation 4 and property 3, the ceiling rate, the

minimum assured rate and the exclusively assigned rate for

any subnet dRNje, should be no greater than the gateway’s

total available bandwidth:

dRNje, bRNjc, ‖ RNj ‖ ≤ RGW , ∀Nj ∈ N (6)

Property 4: Assured and exclusively assigned bandwidth

resources for any subnet, should be utilized at their maximum

rates. In other words, for any subnet it should hold that the sum

of the minimum assured and the exclusively assigned rates is

no greater than their respective ceiling rate:

bRNjc + ‖ RNj ‖ ≤ dRNje, ∀Nj ∈ N (7)

Property 5: The sum of all the assured rates for hosts in a

subnet, should not exceed the subnet’s overall assured rate:

n∑

i=1

bRHic ≤ bRNjc, ∀Hj ∈ Nj , Nj ∈ N (8)

Property 6: The sum of all the exclusively assigned rates

to hosts in a subnet, should not exceed the subnet’s overall

exclusive rate:

n∑

i=1

‖ RHi ‖ ≤ ‖ RNj ‖, ∀Hi ∈ Nj , Nj ∈ N (9)

Property 7: The maximum cap rate of any host in a given

subnet, should be less than or equal to a subnet’s cap rate:

0 ≤ dRHie ≤ dRNje, ∀Hi ∈ Nj , Nj ∈ N (10)

From equation 6 and properties 2, 5 and 6, we get the

bounds for all host level assignments:

n∑

i=1

(bRHic+ ‖ RHi ‖) ≤ RGW −Rdef , ∀Hi ∈ H (11)

C. Host-level properties

Property 8: The equivalent of property 4, should also hold

for each host separately. For any host, the sum of the minimum

assured and the exclusively assigned rates should be no greater

than its respective ceiling rate:

bRHic + ‖ RHi ‖ ≤ dRHie, ∀Hi ∈ H (12)

Property 9: The sum of all the assured rates for services of

a particular host should not exceed the host’s overall assured

rate:
t∑

k=1

bRSkc ≤ bRHic, ∀Sk ∈ S, Hi ∈ H (13)

Property 10: The sum of all the exclusively assigned rates

for services of a particular host should not exceed the host’s

overall exclusive rate:

t∑

k=1

‖ RSk ‖≤ ‖ RHi ‖, ∀Sk ∈ S, Hi ∈ H (14)

Property 11: The maximum cap rate of any service for a

given host should be less than or equal to the host’s cap rate:

0 ≤ dRSke ≤ dRHie, ∀Sk ∈ S, Hi ∈ H (15)

Property 12: Following the same line of property 8, for any

given host the sum of the minimum assured and the exclusively

assigned rates to a service should not exceed its respective

ceiling rate:

bRSkc+ ‖ RSk ‖ ≤ dRSke, ∀Sk ∈ S, for any host (16)

IV. VERIFICATION PROCEDURE

Considering the semantics of a particular rule, we can have

clear expectations from the network behaviour, with respect to

a given user or service. At the network level however, things

get complicated. Users would expect the overall network

behaviour to comply with each of the contracts of the sharing

plan, under all circumstances. However, this is only possible if

allocations do not overwhelm the available network resources

at anytime and if the sharing plan is free of conflicts. In order

to reason about the network-level behaviour, it is important to

preserve the desired sharing properties in section III so that we

have a network with a “clean” (conflict-free) sharing model.

Whenever a user requests to activate a bandwidth brokering

rule, a verification procedure is triggered to sanity check

the rule and check for conflicts with the existing rule-set. If

verification is successful, the rule’s definition is handed to a

distributed enforcement service, otherwise, the actions taken

depend on the system’s conflict-resolution policy.

A. The tree based model

We employ a tree-based structure to model the home

network’s bandwidth sharing plan (Fig. 2). Normally there are

three distinct trees, one for Internet uploads, one for Internet

downloads, and one for LAN communications. In this paper

we only consider the tree for Internet downloads but similar

techniques apply to the other trees. Network traffic which is

subject to any type of contract (maximum, assured or exclusive

rate) is referred to as managed; the remaining traffic is referred

to as default or unmanaged. Each tree level maps to a different

network view. Nodes nearer the root are more generic; they

get more specific as we move away from the root. We use

two types of nodes, the structure nodes which are intermediate

nodes (rectangular) and the outer-leaf nodes (circular).

Downlink

X Mbps

Default Traffic

<X, , >

Managed Traffic

<X, Y=Y2+Y4, Z=Z3+Z6+Z7>

*
<X, Y2, >

Subnet A

<X, Y4, Z3>

Subnet B

<X3, , Z6+Z7>

*
<X, , Z3>

Host A

<X5, Y4, >

Host B

<X3, , Z6>

Endpoint A

<X, Y2, >

Endpoint B

<X3, , Z6>

Proto A

<X1, Y2, >

Proto B

<X, , Z3>

S2:D2
<X5, Y4, >

S3:D3
<X3, , Z6>

*
< X, , >

*
<X5, Y4, >

*
<X, , Z3>

Proto D

<X3, , Z6>

Proto C

<X5, Y4, >

R1 R3 R4 R6R5 R7R2

<X1, , > < , Y2, > < , , Z3> <X5, , >< , Y4, >

Host C

<X3, , Z7>

< , , Z6> < , , Z7>

R7

<X3, , >

Fig. 2. The tree model for download

Structure nodes represent a logical mapping between band-

width shares and network elements. Structure nodes at depths

from 0 (root) to 6 represent the available bandwidth for

downloads, the overall managed traffic, source subnets, source

hosts, destination hosts (Internet endpoints), protocols and

source-destination port numbers respectively. Structure nodes

at depth 1 and higher, are aggregates of the bandwidth sharing

rates. These nodes, do not represent actual rules, but keep

track of the bandwidth allocations of the sub-trees attached to

them, and also the cap limits of their ancestors. They maintain

a triplet of values for the maximum, aggregate assured and

aggregate exclusive rates. These values are updated whenever

a new rule is attached to the tree. Structure nodes are created

dynamically, the time a rule is successfully activated by the

user. In Fig. 2 you can observe that some special nodes are

labeled with “*”; these represent all possible instances of

elements at the current depth for the given subtree they belong.

For example, the node labeled with “*” on the left of “Host

A”, represents all the nodes in “Subnet A”, and the node below

that represents all potential endpoints.

The second type of nodes are “outer nodes” which hold the

actual bandwidth brokering rules. They are always leaf-nodes,

attached under the appropriate structure node. Depending on

the semantics of the rule definition, the appropriate path of

ancestor structure nodes is created if it does not already exist.

Attaching outer nodes on the tree usually affects the overall

bandwidth sharing model, propagating changes up to the root

if necessary.

B. Verification procedure

If a user requests to activate a particular rule (R) given a

snapshot of the tree model (T), the Verify procedure (Fig.3) is

triggered and if successful, the rule is added as an outer node

in the model. A distributed enforcement service then takes

over, distributing and applying the rule’s management action

on the appropriate network device(s). Traversal and conflict

checking procedures are explained in the following sections.

Algorithm 1 The Verify procedure
.

1: procedure Verify (R, T) {R: rule definition, T: tree model}
2: begin

3: tmp := traverse(T,R)
4: switch tmp.type
5: case Max: cnf := checkMax(R, tmp, T)
6: case Assure: cnf := checkAssured(R, tmp, T)
7: case Exclusive: cnf := checkExclusive(R, tmp, T)
8: endSwitch {cnf: returned conflicts}
9: if cnf 6= NIL then {no conflicts}

10: discardChanges(T)
11: resolveConflict(R, cnf, T) {Resolve conflicts}
12: commitChanges(T)
13: end

Fig. 3. Top-level verification procedure

Algorithm 2 The checkMax procedure
.

1: procedure checkMax (R, n, T)
{R: rule definition, n: starting node, T: tree model}

2: begin

3: if R.max > root(T).rate then {Check-1}
4: return root(T) {Unreasonable cap}
5: if R.max > n.max then {Check-2}
6: return findRule(Max, n)
7: if R.max < n.assured then {Check-3}
8: return findRules(Assured, n)
9: if R.max < n.exclusive then {Check-4}

10: return findRules(Exclusive, n)
11: if R.max < n.assured + n.exclusive then

12: foreach i in children(n) do

13: tmp := checkMax(R, i, T) {Recursion}
14: if tmp 6= NIL then

15: return tmp {Subtree conflict}
16: endForeach {No subtree conflict detected}
17: return n {Flag joint conflict here}
18: n.tmp.max := R.max {Temporary change}
19: return NIL {No conflicts found}
20: end

Fig. 4. The procedure that checks conflicts for maximum rates

C. Tree traversal

Given a rule definition (R) and a tree model instance (T),

the traverse procedure creates an outer node based on R and

finds the appropriate structure node to attach it. The tree is

built dynamically. If a proper structure node for rule R does

not exist, the traversal creates the missing nodes. All changes

made to the model are temporary and get committed when the

appropriate checks are passed. The procedure finally returns

the temporary outer node which contains the rule specification

and waits to be verified against the rest of the model.

After traversal finishes, the verification procedure (Fig. 3)

checks whether the new rule violates any of the properties

described in section III. This check is done recursively in both

directions (towards the root and towards the leaves), starting

from the node returned by “traverse”. At each depth, the rule is

checked against the aggregated information in structure nodes.

If a disagreement is identified, a conflict is flagged, otherwise,

the current structure node is updated appropriately, and the

recursion continues upwards. If no conflicts are detected, the

outer node is permanently attached to the tree and any changes

made to the aggregates in structure nodes get “committed”.

Algorithm 3 The checkAssured procedure
.

1: procedure checkAssured (R, n, T)
2: begin

3: {R: rule definition, n: starting node, T: tree model}
4: directRule := getRule(Assured || Exclusive, n)
5: if directRule 6= NIL then {Check-1}
6: return directRule {Any directly attached rule conflicts}
7: cnf := checkSubtreeAssured(R,n) {Check-2: subtree}
8: if cnf 6= NIL then

9: return cnf {starvation conflict is detected}
10: if R.assured + n.assured ≥ T.root.rate then {Check-3}
11: return T.root {Overwhelming allocation}
12: extra := R.assured− n.assured
13: return AllocateAssured(extra, n, T) {Check-4: availability}
14: end

15: procedure checkSubtreeAssured (R, n)
16: begin

17: if R.assured ≥ n.assured then

18: return NIL {No starvation detected}
19: directRule := getRule(Assured, n)
20: if directRule 6= NIL then {Always NIL for subtree’s root}
21: if R.assured < directRule.assured then

22: return directRule {Starvation: directly attached rule}
23: foreach i in children(n) do

24: tmp := checkSubtreeAssured(R, i) {Recursion}
25: if tmp 6= NIL then

26: return tmp
27: endForeach

28: return n {Combined starvation at node n}
29: end

30: procedure AllocateAssured (allocReq, n, T)
31: begin

32: if n = T.root then

33: return NIL {Allocation is successful}
34: totalAlloc := allocReq + n.assured+ n.exclusive
35: if totalAlloc ≥ n.max then

36: return findRule(Max, n) {Cap lower than allocations}
37: if parent(n) = T.root then {Global Managed Traffic node}
38: if totalAlloc > T.root.rate−MinBWDefault then

39: return T.root {Conflict: not enough bandwidth}
40: n.tmp.assured := n.assured+ allocReq
41: return AllocateAssured(allocReq, parent(n), T)
42: end

Fig. 5. The routine that checks conflicts for assured rates

D. Checking maximum rate contracts

Depending on the type of bandwidth brokering rule, the

checking procedure at a structure node differs. The procedure

for checking maximum rate cap limits is listed in Fig. 4. First,

any cap limit values over a gateway’s available bandwidth are

discarded (Check-1). If the current structure node “n” has a

cap rate lower than the rule, then some existing rule along

the path towards the root has introduced that limit (Check-

2). Cap limits are inherited from a parent node to the whole

subtree under it. Procedure “findRules” returns the outer node

containing the rule that introduced the maximum rate. Checks

3 and 4 test whether properties 4, 8 and 12 (see section III) are

violated. All the conflicting outer nodes are returned. Finally,

Check-5 repeats the procedure recursively for the subtree

under node “n”. If no conflicts are detected, then the temporary

changes in the node’s maximum cap rate are made permanent

(line 18).

In Fig. 6 we show the tree model after applying the rules

for the example scenario (section II-D). Rules “R1” and “R2”

are of type maximum cap rate. Observe that their activation

is successful because their specified rates do not exceed the

values of Son and “Console” host nodes which were inherited

directly from “Managed Traffic” via “Subnet A”.

E. Checking assured rate contracts

Checking a request for the allocation of an assured rate is

more complex than checking maximum rates. The procedure is

shown in Fig.5, and consists of one main procedure which calls

two recursive sub-procedures. Check-1 checks for directly

attached outer nodes (bandwidth allocation rules) which by

definition will conflict with the activated rule, since they refer

to the same managed object. If the procedure continues with

Check-2, then the current node’s assured rate value, is due

to some allocation in the subtree under node “n”. Procedure

“checkSubtreeAssured” locates the conflicting rule(s), return-

ing as much specific information as possible. The conflict

with the subtree may be because of a number of accumulated

allocations (line 23). Assured rates in structure nodes are

aggregates of subtree allocations and of directly attached rules

(outer nodes). Continuing, line 10 is reached if no conflicts

have been detected so far. At this point, it is important to make

sure that there are adequate bandwidth resources to perform

the new allocations. Checks 3 and 4 perform this test by

propagating recursively the allocation request up to the root of

the tree. The “checkAssured” procedure detects any potential

violation of properties 2, 4, 5, 8, 9 and 12 (see section III).

An example of assured rate allocation, is Dad′s rule (R2)

(see Fig.6) for the remote desktop application. Clearly, there

are plenty of resources available to cover the allocation of X/6
of total bandwidth. The rule is directly attached (as an outer

node) under structure node “3389:*” and the assured rate is

propagated up to the “Managed Traffic” node.

F. Checking exclusive rate contracts

The procedure for activating rules for exclusively assigned

rates is omitted because it is almost identical with the one for

assured rates. The reason is that the two types of allocation

are treated as separate channels. However, a common check is

performed for both (line 34 in Fig.5), to preserve properties 2,

4, 8 and 12. In our example scenario, Mom′s host requests an

exclusive rate of X/8 for VoIP, because it requires minimum

delay and a small amount of assured bandwidth. Again, the

request can be performed (Fig.6), since there are enough

resources both for R2 and R5 allocations.

G. Disabling a rule

Disabling a rule is not as straight-forward as removing the

respective outer node from the tree model. Depending on the

rule’s type, different actions are performed. When disabling

maximum rate rules, first the outer node is marked for removal,

second the attached structure node’s accounting for max rate is

updated based on parent’s value, and third, the second step is

repeated recursively for each node of the subtree. On the other

hand, when evicting assured and exclusive rate allocations, first

*
<X, , >

Subnet A

<X, X/6, X/5+X/8=13X/40>

*

<X, , >

Son

<X/3, , >

R1

<X/3, , >

Dad

<X, X/6, >

R2

< , X/6, >

3389:*

<X, X/6, >

*
<X, X/6, >

TCP

<X, X/6, >

Console

<X/2, , X/5>

R3

<X/2, , >

R4

< , , X/5>

Mom

<X, , X/8>

R5

< , , X/8>

*
<X, , X/8>

UDP

<X, , X/8>

Downlink

X Mbps

Default Traffic

<X, , >

Managed Traffic

<X, Y=X/6 , Z=13X/40>

Fig. 6. The tree model for the example scenario

the rule’s outer node is marked for removal, second, structure

node’s accounting for assigned rates are updated with just

the sum of ancestors’ values, and finally, the second step is

performed recursively on each node upwards towards to the

root. In both cases, any change in the model is marked in

order to keep track of the rules “affected” from this process.

This information is used by the enforcement service which

may need to update the configuration on the actual network.

H. Resolving conflicts

We currently employ a simple conflict resolution policy

which cancels the activation of a rule and provides the user

with details about the conflict (line 11 in Fig. 3). We plan

to extend this to support a richer set of conflict resolution

policies, such as “keep existing”, “replace with new”, “remove

both”, “allow conflicts”, as well as interaction with users.

V. IMPLEMENTATION DETAILS

Making a request to activate a new rule triggers the process

of verification which may detect and resolve conflicts or it may

find no inconsistencies. Once checked, a new rule definition

must be delivered to the appropriate enforcement point based

on the contents of the subject, service and task definitions.

After distribution, rules are translated into reconfiguration

commands which are invoked on the system. Our prototype

design is platform independent and can be easily extended to

support a variety of platforms (e.g. CISCO IOS, DummyNet

[8], NOX [9] [10] etc) rewriting only the interpreter module.

Currently, our prototype generates Linux “tc” [11] com-

mands. The Linux traffic shaping subsystem, consists of three

different elements: filters, classes and queuing disciplines [12].

Linux network administrators build their custom structures

using these components aiming to achieve the desired shap-

ing behaviours for various types of traffic. We employ the

hierarchical token bucket (HTB) queuing discipline (qdisc) at

the root of our outgoing interfaces for hosts. Filters redirect

*

1:311111

HTB
1:0

root

1:1

Exclusive

1:2

Assured

1:3

Default

1:4

HTB
11:0 Subnet A

1:31

pfifo

Console

11:2

pfifo

Mom

11:1

pfifo sfq

Filters

Son

1:42

Default

1:41

3.25:10 3:6.75
3.75:6.75

3:6.75
0.5:3.33

1.25:10 2:10 3:6.75

10:10

3.25:6.75

3389:*

1:311121

TCP

1:31112

*

1:3111

Dad

1:311

pfifo

3:6.75

2:6.75

2:6.75

*

1:31111

1:6.75

1:6.75

pfifo

Fig. 7. The resulting Linux “tc” hierarchical queueing model

outgoing traffic to the appropriate queues, and HTB classes

control in a hierarchical manner the usage of bandwidth re-

sources from these queues. Unfortunately, the HTB has certain

shortcomings that required us to create qdisc hierarchies which

under certain circumstances could be slightly different from for

the desired ones. For instance, in tc it is not possible to express

only maximum cap rates but it is always required to specify

an assured rate. Also, explicit class borrowing policies cannot

be specified but instead, these policies are implied from the

combination of hierarchy topology and rate/ceiling parameters.

In Fig. 7 we illustrate the resulting hierarchical tc queuing

model given the tree structure in Fig. 6, for the home network

case scenario we have used throughout the paper. In our

example, we have also included an extra rule which assigns

33% of gateway’s total downlink bandwidth (X) to all traffic

towards Dad′s host. We have done so, in order to demonstrate

the hierarchical sharing model in tc for assured rates. We

assume that total bandwidth at gateway (X) is equal to 10
Mbps.

One of the key components in tc are filters because they

redirect traffic to the appropriate classes. We filter traffic at the

root of the tc model, based on the rule definitions contained in

outer nodes (R1, R2, R3, R4, R5) of Fig. 6. Filters are applied

once, and traffic can only be redirected to a specific class,

which means that we need a mechanism to distinguish specific

traffic from more generic. In order to achieve this we mark

filters with priorities; the more generic the rules are, the

lower the priority of their corresponding filter is. Using this

prioritisation technique, we can classify traffic in a hierarchical

manner.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the accuracy and the consistency

of our system. We aim to verify that the resulting behaviour of

the network reflects the semantics of a sharing plan’s contracts.

We use “iperf” to generate artificial tcp and udp traffic and

“tcptrace” to analyse the traffic at the flow level. To avoid

the performance fluctuations induced by the wireless link, we

rely solely on switched Ethernet. For the gateway we use an

Asus WL-500gP flashed with OpenWrt (v10.03), and installed

the modules for supporting hierarchical token bucket queue

scheduling. The background traffic was directed to a separate

client host in the local network.

In Fig. 8a we show the result of enforcing rule R1, that

limits the total download rate of Son′s host to X/3 (∼ 3.5

Mpbs). All flows have the same destination (Son). Between

seconds 90 and 150, where R1 is active, we observe a sharp

drop in the rate of Son′s flows, which share the remaining

resources left by the greedy udp flow. The fluctuations in the

download rates, are mainly because we’ve used pfifo as our

queuing mechanism, that serves traffic on a per-packet best

effort basis. Over the long term, both flows download equal

data volumes.

Our second experiment evaluates the correct enforcement of

an assured rate contract. More specifically rule R2 (Fig. 8b),

is active for 50 seconds (from 95 to 145) and assigns Dad′s
host with a rate of X/6 (∼ 1.6 Mbps). Note that the default

(unmanaged) traffic consists of 8 tcp flows, which along with

the two flows of Dad′s host share the available bandwidth

on a fair basis (roughly 1 Mbps each). The extra 0.6 Mbps

which gets the traffic to port 3389 during R2 is equally

distributed among the rest 9 flows. This explains why the drop

in the tcp:5001 flow is not noticeable. Also, another interesting

observation is that if stochastic fair queuing (sfq) is used, the

bandwidth is equally assigned to each individual flow of the

default traffic.

Bandwidth sharing contracts also have an impact on the

mean queuing delays. This is because each class of traffic

has its own queues, and thus, the packets belonging to an

exclusive/assured class, tend to experience less delays in

the presence of heavy cross traffic. Figure 8c describes the

experimental scenario we’ve run for identifying the delay

characteristics among the different classes of traffic. We have

assigned “HostA” with an assured rate of 2 Mbps and an

exclusive rate of 2 Mbps for traffic destined to ports 5001

and 5002 respectively. The background traffic to “HostB”

is constant throughout the whole duration of the experiment

(three tcp flows). For each class of traffic (Default[udp:5000],

Assured[udp:5001], Exclusive[udp:5002]) towards “HostA”

we run three rounds of udp iperf flows, lasting 20 seconds

each. The results are shown Fig. 8d are averaged over the

three rounds. The delay jitter is substantially lower for the

assured and exclusive classes, but between them, the difference

is nearly negligible. This is an artifact of Linux’s tc design,

because assured rates have only a small initial delay when

the HTB class has lent transmission tokens to another class

(probably the default one). After that initial delay, the jitter

characteristics are similar to the that of the exclusive class.

Finally, at second 160, the default traffic’s download rate

seems not to be affected by the udp flows. This happens

because default and exclusive classes do not share common

resources: the exclusively assigned 2 Mbps stays unused until

second 160.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

M
e

a
s
u

re
d

 D
o

w
n

lo
a

d
 R

a
te

 (
M

b
p

s
)

TCP flow A

TCP flow B

UDP flow @ 2Mbps

Rule R1

(a) Applying rule R1 to cap Son′s download rate (pfifo)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

M
e

a
s
u

re
d

 D
o

w
n

lo
a

d
 R

a
te

 (
M

b
p

s
)

TCP flow port 3389

TCP flow port 5001

Default (x8 flows sum)

Rule R2

(b) Applying rule R2 to assign Dad′s host with assured rate

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

M
e

a
s
u

re
d

 D
o

w
n

lo
a

d
 R

a
te

 (
M

b
p

s
)

Backg. TCP flows (3x)

Default UDP 1x@1.5Mbps

Assured UDP 1x@1.5Mbps

Exlusive UDP 1x@1.5Mbps

(c) Experiment for comparing delay jitter among different contracts

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

M
e

a
s
u

re
d

 D
e

la
y
 J

it
te

r
(m

s
e

c
)

Default traffic

Assured rate

Exlusive rate

(d) Measured delay jitter for traffic under different contracts

Fig. 8. The effect of sharing plan rules on bandwidth resources

VII. RELATED WORK

Home network management is starting to draw the attention

of the research community, both for infrastructure support and

HCI [13]. [14] and [15] aim to facilitate management tasks

through smart service discovery. They adopt OSGi [16] but

don’t support the dynamic aspects of home networking like

bandwidth sharing. In [17], [18] a policy based architecture

is proposed to facilitate quality of service extensions and

security management, but lacks an implementation. An elegant

information plane architecture is used in [19] to support

management and novel new user interfaces. The architecture

uses a high-performance stream database, and could readily be

used to trigger our bandwidth sharing plans. A very different

approach is proposed in [20] where management tasks are

outsourced to cloud services. This has potential, but we think

that local and ISP-level management will be more effective in

the short-term.

In the context of bandwidth management, HomeMaestro

[21] advocates the notion of “application fairness” based on

a user feedback and application-specific weights. In [22] a

dynamic resource allocation scheme is described that tries

to optimize allocations across wireless and wired devices in

a weighted fair manner. As in HomeMaestro, applications

may have different weights, and based on this prioritisation

scheme, the system performs host coordinated rate control to

optimize the network’s overall performance. These approaches

complement our goals by introducing the ability to prioritize

traffic, although their models do not reflect network’s overall

hierarchy and management actions are only applied on a

per-connection (and per-application) basis. Finally, finite state

machines are used in [23] to enforce low-level adaptive net-

work behaviors such as wireless channel selection to mitigate

interference and increase capacity.

VIII. SUMMARY

There is a need in many homes to be able to define a

bandwidth sharing plan for the users, services and applica-

tions of the home network. This is a difficult task requiring

abstractions and user interfaces that are easy to understand

by home users. A key aspect for any home management

system supporting bandwidth sharing is to be able detect

conflicts and errors in plans. Such verification can be used

to inform the user and/or trigger a resolution strategy. In

this paper, we have described our approach for modelling

and for detecting conflicts and errors in bandwidth sharing

plans consisting of a number of bandwidth brokering rules.

If no errors are detected, our bandwidth brokering rules are

translated to system specific traffic shaping commands, and

enforced on appropriate devices in the network. For our future

work we are looking at integrating with a novel new user

interface from the University of Nottingham based Comic

Strips and deploying the resulting system in a number of real

homes.

ACKNOWLEDGMENT

This research was supported by UK EPSRC research grant

EP/F06446/1 (Homework).

REFERENCES

[1] K. Cho, K. Fukuda, H. Esaki, and A. Kato, “The impact and implications
of the growth in residential user-to-user traffic,” SIGCOMM Comput.

Commun. Rev., vol. 36, pp. 207–218, August 2006. [Online]. Available:
http://doi.acm.org/10.1145/1151659.1159938

[2] “Uk broadband speeds: The performance of fixed-line broadband deliv-
ered to uk residential consumers,” Ofcom, Tech. Rep., 2010.

[3] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu,
“Characterizing residential broadband networks,” in Proceedings of

the 7th ACM SIGCOMM conference on Internet measurement, ser.
IMC ’07. New York, NY, USA: ACM, 2007, pp. 43–56. [Online].
Available: http://doi.acm.org/10.1145/1298306.1298313

[4] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant
characteristics of residential broadband internet traffic,” in Proceedings

of the 9th ACM SIGCOMM conference on Internet measurement

conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 90–
102. [Online]. Available: http://doi.acm.org/10.1145/1644893.1644904

[5] K. Papagiannaki, M. Yarvis, and W. S. Conner, “Experimental char-
acterization of home wireless networks and design implications,” in
INFOCOM 2006. 25th IEEE International Conference on Computer

Communications. Proceedings, April 2006, pp. 1–13.

[6] X. Xing and S. Mishra, “Where is the tight link in a home wireless
broadband environment?” in Proc. IEEE Int. Symp. Modeling, Analysis

& Simulation of Computer and Telecommunication Systems MASCOTS

’09, 2009, pp. 1–10.

[7] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang, “A measurement study
of internet bottlenecks,” INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings

IEEE, vol. 3, pp. 1689 – 1700 vol. 3, march 2005.

[8] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput.

Commun. Rev., vol. 40, pp. 12–20, April 2010. [Online]. Available:
http://doi.acm.org/10.1145/1764873.1764876

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, pp. 105–110, July 2008.
[Online]. Available: http://doi.acm.org/10.1145/1384609.1384625

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun.

Rev., vol. 38, pp. 69–74, March 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[11] W. Almesberger, E. Ica, J. H. Salim, A. Kuznetsov, and I. Moscow, “Dif-
ferentiated services on linux,” in in GLOBECOM: General Conference,
1999, pp. 831–836.

[12] B. Hubert, T. Graf, G. Maxwell, M. Oosterhout, P. Schroeder, J. Spaans,
and P. Larroy, “Linux advanced routing and traffic control howto,” Lartc,
Tech. Rep., 2005.

[13] J. Yang, W. K. Edwards, and D. Haslem, “Eden: supporting home
network management through interactive visual tools,” in Proceedings

of the 23nd annual ACM symposium on User interface software and

technology, ser. UIST ’10. New York, NY, USA: ACM, 2010, pp. 109–
118. [Online]. Available: http://doi.acm.org/10.1145/1866029.1866049

[14] S. Zeadally and P. Kubher, “Internet access to heterogeneous home area
network devices with an osgi-based residential gateway,” Int. J. Ad

Hoc Ubiquitous Comput., vol. 3, pp. 48–56, December 2008. [Online].
Available: http://portal.acm.org/citation.cfm?id=1356244.1356249

[15] P. Bull and M. Harrison, “Managing broadband home networks,”
BT Technology Journal, vol. 24, pp. 79–85, 2006, 10.1007/s10550-
006-0023-z. [Online]. Available: http://dx.doi.org/10.1007/s10550-006-
0023-z

[16] OSGi Alliance. (2007) Osgi service platform release 4. [Online]. Avail-
able: http://www.osgi.org/Main/HomePage. [Accessed: Jun. 17, 2009].

[17] A. Rana and M. Foghlu, “New role of policy-based management in
home area networks - concepts, constraints and challenges,” in New

Technologies, Mobility and Security (NTMS), 2009 3rd International

Conference on, 2009, pp. 1 –6.

[18] A. I. Rana and M. O. Foghlú, “Policy-based network
management in home area networks: interim test results,”
in Proceedings of the 3rd international conference on New

technologies, mobility and security, ser. NTMS’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 334–336. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1790343.1790407

[19] J. Sventek, A. Koliousis, N. Dulay, D. Pediaditakis, T. Rodden, T. Lodge,
O. Sharma, M. Sloman, B. Bedwell, K. Glover, and M. Richard, “An
information plane architecture supporting home network management,”
in Proceedings of the 12th IFIP/IEEE International Symposium on

Integrated Network Management, 2011.
[20] C. Gkantsidis and H. Ballani, “Network management as a service,”

Microsoft Research, Technical Report MSR-TR-2010-83, 2010.
[21] T. Karagiannis, E. Athanasopoulos, G. Christos, and P. Key, “Home-

maestro: Order from chaos in home networks,” Microsoft Research,
Technical Report MSR-TR-2008-84, 2008.

[22] C. Gkantsidis, T. Karagiannis, P. Key, B. Radunovic, E. Raftopoulos,
and D. Manjunath, “make a wireless networks,” in Proceedings

of the 5th international conference on Emerging networking

experiments and technologies, ser. CoNEXT ’09. New York,
NY, USA: ACM, 2009, pp. 265–276. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658970

[23] D. Pediaditakis, L. Mostarda, C. Dong, and N. Dulay,
“Policies for self tuning home networks,” in Proceedings

of the 10th IEEE international conference on Policies for

distributed systems and networks, ser. POLICY’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 29–32. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1812664.1812671

