
A Performance and Usability Comparison of

Automated Planners for IT Change Planning

Sebastian Hagen

Technische Universität München

Department of Computer Science

85748 Garching, Germany

hagen@in.tum.de

Alfons Kemper

Technische Universität München

Department of Computer Science

85748 Garching, Germany

kemper@in.tum.de

Abstract—Change Management, a core process of the Infor-
mation Technology Infrastructure Library (ITIL), is concerned
with the management of changes to networks and services to
satisfy business goals and to minimize costly disruptions on the
business. As part of Change Management, IT changes need to be
planned for. Despite previous efforts to use planning algorithms
to generate IT change plans, it remains unknown as to which
automated planning algorithm does best solve the IT change
planning problem. To answer this question, we compare four
domain independent automated planners in the context of an
Infrastructure as a Service deployment case study of a three-
tier business application. We focus on two aspects: (1) The
scalability of the planners to large Configuration Management
Databases (CMDBs) comprising thousands of resources and (2)
their usability by a change manager, in particular how easily a
change manager can specify the planning domain and rules to
guide the search. For the deployment case study we conclude that
Hierarchical Task Network algorithms scale to significantly larger
CMDBs than all other examined algorithms. Furthermore, we
find that their way to formalize search control naturally matches
to the domain of IT change planning compared to that of others
who require change managers to have a profound knowledge of
the planning algorithm or temporal logic.

I. INTRODUCTION

The Information Technology Infrastructure Library (ITIL)

[1], a set of best practices on how to manage IT services

and operations within a company, has become an important

recommendation for the implementation of proper IT Service

Management (ITSM). Change Management [2], part of ITIL,

ensures that changes to hardware and software are managed

and conducted in a way that costs are met, risks are reduced,

and that the business needs and goals of a company are

satisfied with the highest degree of confidence and optimiza-

tion. To ensure this, ITIL proposes a Change Management

process comprising the evaluation, authorization, planning,

test, scheduling, implementation, documentation, and review

of IT changes [2].

IT Change Planning, an important step of the process, is

concerned with the generation of detailed IT change plans to

accomplish high-level Request for Changes (RFCs) [2]. It has

been subject to intensive research [3], [4], [5], [6], [7], [8],

[9]. Some works [3], [5], [6], [9] on this topic propose plan-

ning approaches that are not based on algorithms previously

discussed in the automated planning community [10]. Others

[4], [7], [8] use already existing domain independent planning

algorithms (sometimes with slight modifications) and apply

them to the IT change planning problem. Despite these works

it remains unknown as to how existing planning algorithms

compare to each other when applied to IT change planning.

In particular, the following two questions remain unanswered:

• How well do the different algorithms scale with the

number of Configuration Items (virtual machines

(VMs), physical machines (PMs), disc images) in the

Configuration Management Database to plan on?

• How difficult is it for a change manager to specify

the IT changes and the planner’s search control to

work efficiently for IT changes? Which way to specify

search control most naturally matches to the domain

of IT change planning?

To investigate which planners are most suitable for the IT

change planning problem in respect to scalability and usability,

we compare four different domain independent automated

planners [11], [12], [13], [14] in a case study. The case study

asks each planner to generate a high-level deployment plan

of a three-tier application using an Infrastructure as a Service

(IaaS) Cloud. We examine the planners scalability when it

comes to plan on large Configuration Management Databases

(CMDBs) comprising thousand of Configuration Items (CIs)

under different resource utilizations (RUs). In addition to that,

we discuss how well the different planners can be used by a

logic and algorithm-agnostic IT change manager, in particular

when it comes to specify search control knowledge to guide

each planner. To the best of our knowledge this is the first work

to examine different AI planning algorithms [10] in respect to

their applicability to IT change planning.

We find that Hierarchical Task Network (HTN) planners are

the ones to offer the best performance as they scale to much

larger CMDB sizes (up to 20,000 CIs) compared to the other

algorithms (≤ 1000 CIs) in our case study. This extends previ-

ous works [7], [8] that only argue in favor of Hierarchical Task

Network planning due to its natural fit to change planning but

not show its performance benefits on large CMDBs. Similar

to previous works [7], [8], we claim that HTN algorithms

naturally match to IT change planning. However, this is the

vm1 : VirtualMachine

id = "vm1"

state = "off"

vmem = 2048

vcpu = 1

pm1 : PhysicalMachine

id = "pm1"

state = "on"

mem = 4048

cpu = 4

ru
n

s
_
o

n

(state vm1 off)

(vm vm1 2048 1)

(state pm1 on)

(pm pm1 4048 4)

(runs-on vm1 pm1)

osim1 : DiscImage

id = "osim1"

state = "connected"

(state osim1 connected)

(bound-to osim1 vm1)

h
o

s
te

d
_

b
y

b
o

u
n

d
_

to
u
s
e
s

(image osim1)

Fig. 1. Object-oriented model instance of a Configuration Management
Database and isomorphic set of ground atoms used by automated planners.

(:action start-vm

 :parameters (?vmid ?pmid)

 :precondition (and

 (vm ?vmid ?vmem ?vcpu) (state ?vmid off)

 (runs-on ?vmid ?pmid) (state ?pmid on)

 (bound-to ?osid ?vmid) (state ?osid connected)

)

 :effect (and

 (not (state ?vmid off)) (state ?vmid on)

)

)

1

2

3

4

5

6

7

8

9

10

11

atoms of

precondition

atoms added

and deleted

Fig. 2. Description of an IT-change / planning action to start a virtual machine
written in the Planning Domain Definition Language (PDDL).

first work to support this claim by comparing alternatives to

specify search control (among them, linear temporal logic

(LTL) [13] and algorithmic specific control rules [12]) in a

change planning case study with the goal to gain experience

about their usability for change planning.

The remainder of this work is organized as follows: Section

II sets the basic terminology and introduces the case study.

Section III evaluates planning through planning graph anal-

ysis followed by an analysis of a forward chaining planner

using temporal control knowledge in Section IV. Section V

addresses planning through means-end analysis. Hierarchical

Task Network Planning is evaluated in Section VI. We discuss

related work in Section VII. Finally, Section VIII summarizes

our findings and concludes the work.

II. AUTOMATED PLANNING AND CASE STUDY

A. Automated Planning

1) The problem of plan generation: Automated planning

[10] has been an active research area within the Artificial

Intelligence community for decades. The problem of plan

generation (adapted to the IT change planning domain) is

as follows: Given the current state of a data center (i.e., the

current state of the infrastructure and software described in the

CMDB), a description of the goal to achieve, a description of

the preconditions and effects of IT changes1 / planning actions,

find a set of IT changes and a partial (sometimes total) order

among the IT changes, that, when executed in any topological

order of the partial order, the IT changes achieve the goal.

We use actions and IT changes synonymously, depending on

whether we want to highlight the IT change planning view

or the view of the planner which uses actions to describe IT

changes.

1If not noted otherwise, we consider an IT change to be one elementary,
indivisible change operation on CIs of the CMDB.

Among other criteria, three different types of planners can be

distinguished: (1) Domain-specific planners are made, tuned,

and tested for a specific domain and constraints. They do not

perform well or at all in a domain they were not engineered for.

The previous works on change planning are domain-specific

planners. (2) Domain-independent planners can be used in any

planning domain. They take a definition of the preconditions

and effects of actions for planning. Thus, if actions describe

IT changes, domain independent planners can be applied to

IT change planning. (3) Configurable planners use a domain

independent planning engine (as in (2)) and additional domain

specific search control which needs to be specified by a change

manager to control the search. All planners evaluated in this

work fall into category (2) and except Graphlan (see Section

III) they allow the change manager to specify search control

in one way or the other (category (2)). However, the planners

differ significantly on how easily search control can be written

by a change manager.

2) Transformation of object-oriented CMDBs: Tradition-

ally object-oriented (OO) models have been used to describe

the current state of infrastructure and software hosted in a data

center, e.g., in commercial CMDBs [15] or in the Common

Information Model (CIM) [16]. Automated planners [10] do

not plan on object-oriented models, but the state of the world

is described in a function-free first order language. Such a

language comprises the following concepts: (1) Constant sym-

bols: Describe objects of the planning domain. For example,

CIs (vm1,...,vm10) or their states (on, off, installed) (2)

Predicate symbols: For example state. (3) Atom: A predicate

symbol together with variables. For instance, let ?ci and ?st

be variables, then (state ?ci ?st) is an atom. An atom is

called ground if all its variables are bound to constants/objects.

For example, (state vm1 off) is a ground instance of the

state atom. It describes the fact that virtual machine vm1

is in state off. To be leveraged by automated planners, the

information stored in an OO CMDB needs to be translated to

a set of ground atoms. Figure 1 depicts a part of the object-

oriented CMDB and the analogous ground atoms view used

by all planners. To transform the OO CMDB, the attributes

of an object are described as variables of a ground atom.

For example, ground atoms (vm vm1 2048 1) and (state

vm1 off) describe all attributes of object vm1 in Fig. 1.

References are translated to binary predicates (e.g., (runs-on

vm1 pm1)). Maghraoui et al. [4] describe this transformation

process in more detail.

3) Actions and IT changes:: An action is an atom together

with a precondition and effects. Precondition and effects are

described as a set of partially ground atoms. To apply an action

all of its unbound variables need to be bound such that all

atoms in the precondition become grounded and account in

the current state of the knowledge base (KB). At each point

in time there might be multiple consistent bindings among all

variables of an action to instantiate it. For example, consider

IT-change start-vm in Fig. 2. The action has two variables

?vmid and ?pmid that need to be bound in order to apply the

action (Line 2). If we choose ?vmid:=vm1, ?pmid:=pm1, and

start-pm(pm1)bind(osim1,vm1)

start-pm(pm1)start-pm(pm1)

start-pm(pm1)start-vm(vm1,pm1)

start-pm(pm1)start-pm(pm2)

start-pm(pm1)start-pm(pm3)

start-pm(pm1)bind(osim2,vm2)

start-pm(pm1)bind(osim3,vm3)

start-pm(pm1)start-vm(vm2,pm2)

start-pm(pm1)start-vm(vm3,pm3)

start-pm(pm1)install-lb(vm3)

start-pm(pm1)install-was(vm2)

start-pm(pm1)install-db(vm1)

start-pm(pm1)start-lb(vm3)

start-pm(pm1)start-was(vm2)

start-pm(pm1)start-db(vm1)

Fig. 3. Ideal partial order plan solving the planning case study.

?osid:=osim1, then start-vm(vm1,pm1) is an applicable

action in the state depicted in Fig. 1 because all its ground

precondition atoms in Lines 4-6 account in this state under

the substitution. The effects of the action are the deletion

of ground atom (state vm1 off) from the KB and the

addition of (state vm1 on) to the KB (see Line 9).

B. Planning Case Study

1) Planning case study: The planning problem to solve

by all planners is the generation2 of a high-level deployment

plan of a 3-tier business application (database (DB), web

application server (WAS), and load balancer (LB)) making

use of an IaaS Cloud. Figure 3 depicts a partial order plan

that solves this problem on a particular instance of a CMDB.

It consists of IT changes to turn on PMs (cr1−3) and VMs

(cr7−9), to bind OS images to the VMs (cr4−6), and to

install (cr10−12) and start (cr13−15) software. Although this

plan omits more complex configuration details inherent to

applications and networks, it already causes serious trouble

for several planners when CMDBs become large. All planners

need to take the following constraints into account: (1) Images

can only be bound to one VM, (2) VMs need to run dedicated

on PMs, (3) DB, WAS, and LB are meant to run in their

own VMs, and (4) software depending on another software,

e.g., WAS on DB, cannot be installed/started without the other

one being already installed/started due to configuration and

runtime constraints.

2) Shape of CMDB used for evaluation: The algorithms

are evaluated on differently sized and shaped configurations of

the CMDBs. A CMDB, i.e., the knowledge base over which

planning is done, always consists to 1

4
-th of PMs, VMs, OS

images, and services no matter how large it is. Services consist

to 1

3
-rd of DB, WAS, and LB services. For example, a CMDB

containing 8,000 CIs comprises 2,000 PMs, VMs, OS images,

and each 666 instances of DB, WAS and LB services. The goal

to achieve is to deploy the three-tier application (see Fig. 3)

in this environment.

During the experiments the resource utilization of CIs in

the CMDB is varied. Resource utilization (RU) describes the

fraction of resources (PMs, VMs, OS images, services) that

cannot be used to properly instantiate an IT change that assigns

resources. For example, if 100 out of 300 OS images have

already been bound to a VM, then OS images have a RU

of 33% because only 66% of all OS images qualify for an

2All performance measurements are conducted on an Intel Xeon x86 CPU
with 2.8Ghz and a maximum of 1024 MB RAM available to all planners.
Planners run single threaded.

IT change to bind an unused OS image to a VM. Thus, RU

is a metric describing the number of CIs that do not satisfy

the precondition of IT changes that have to choose among

resources (e.g., placement of PMs on VMs, placement of

services on VMs, choice of OS images for VMs, etc.) because

resources are already in use.

3) Reference characteristics of case study: Our case study

is representative for IT changes because it comprises the

following cases, typically observable in the workload of IT

changes: (1) The need of IT changes to choose resources from

large CMDBs to be properly instantiated, e.g., placement IT

changes. This frequently happens for IT changes participating

in the deployment of an application. (2) State related changes

among dependent CIs [9], [7], e.g., the need to start a DB

server to start a WAS server. State-related dependencies are

typical for three tier applications when it comes to deployment,

undeployment, and migration. (3) The refinement of abstract

IT changes into more detailed IT changes [7], [17], [8]. As

we will discuss later, some algorithms better cope with the

potentially exponential increase in the search space that is

caused by an increase in the number of actions that can be

instantiated for a given CMDB configuration. It is due to this

techniques, that we can expect our results to hold for a similar

workload of IT changes that is dominated by IT changes that

need to select resources over large CMDBs.

III. PLANNING THROUGH PLANNING GRAPHS

A. The Graphlan Algorithm

The Graphlan algorithm [11] is a forward chaining search

algorithm, i.e., it starts by searching from the initial state

towards the goal state by applying actions. Graphlan takes

as input a description of each action/IT change to consider for

planning (see Fig. 2 for an example), a list of ground atom

instances accounting in the initial state, and a list of ground

atom instances that need to account in the goal state. Graphlan

creates a planning graph which consists of several levels, i.e.,

disjunct sets of ground atoms (proposition level) and ground

actions (action levels). Generally, proposition level i contains

all the ground atoms that can be achieved by applying i or

less IT changes to the initial state. Thus, proposition level

0 comprises all atoms of the initial state. To generate action

level i, Graphlan creates all possible ground instances of all

actions using all ground atoms in proposition level i. Finally,

proposition level i+1 is created from proposition level i and

action level i by adding all atoms of proposition level i to

the (i+1)st proposition level (to account for doing nothing in

the ith step/action level) together with all positive and negated

ground atoms mentioned in the effects of all actions in the ith

action level (to account for applying an IT change). Graphlan

keeps on creating proposition and action levels until it reaches

a proposition level that contains all atoms of the goal formula.

It then starts a backward search to verify whether a valid plan

exists. the backward search picks conflict-free actions from

different action levels to form a plan. Actions from the same

action level can be executed in parallel. For a more detailed

introduction to the Graphlan planning algorithm see [11].

0.01

0.1

1

10

100

1000

0 100 200 300 400 500

P
la

n
n
in

g
 d

u
ra

ti
o
n

 [
s
]

Number of CIs in CMDB

SGP 0% RU (all CMDB sizes solvable in 1GB)
TLPLAN 0% RU

SGP 40% RU (all CMDB sizes solvable in 1GB)
TLPLAN 40% RU

SGP 80%RU
TLPLAN 80% RU

SGP 99%RU
TLPLAN 99% RU

Fig. 4. Planning duration of Sensory Graphlan (SGP) and TLPlan (with
LTL search control) depending on the size of the CMDB and the resource
utilization.

B. Evaluation

1) Domain Description: With only 200 lines of code

(LOCs) we found Graphlan’s action descriptions to be easily

writable because the change manager only needs to think

about the preconditions and effects of single IT changes as

shown in Fig. 2. Furthermore, we found the idea of atoms,

which basically are tuples being added and deleted from a

tuple store, to describe the current state of the world, intuitive.

However, a change manager is likely to feel different about

this logical representation. We do not consider this to be a

big hurdle in the adoption of automated planning approaches

because the object-oriented and predicate based representation

are isomorphic which enables Domain Specific Languages for

IT changes [7] which are closer to the change manager’s

domain.

2) Performance: Figure 4 depicts the planning time of

Sensory Graphlan (SGP) [18], a LISP extension of Blum’s

original algorithm [11], for the planning case study. SGP is

preferred over Blum’s original implementation because in our

experiments it solved larger problems while being memory

constrained. The planning time increases exponentially with

the size of the CMDB. For example, for an upper bound of

100s on the planning duration and a RU of 0%, a domain

cannot be larger than 60 CIs, i.e., 15 PMs, VMs, OS images,

and services to remain solvable (see Fig. 4). For a domain

consisting of more than 84 CIs and 0% RU SGP runs out of

memory. However, if resource utilization increases to 99%, a

planning domain comprising 240 CIs becomes feasible within

100s. We conclude that the higher the RU and the smaller

the CMDB, the faster SGP becomes and the more likely it

is that SGP can solve the problem when constrained to 1024

MB of memory. All in all, the Graphlan algorithm shows an

unsatisfactory performance for our case study and can at best

be used to solve small problem instances. This is the case

because the algorithm tries to apply all instances of all IT

changes, independently of their contribution to the goal, in

a breadth-first manner at each action level. With increased

CMDB size and small RUs a larger number of CIs qualify

as valid bindings to instantiate the actions inflating the action

and proposition levels. Increased RUs and decreased CMDB

sizes lead to less ways to instantiate an action and can make

the difference between solvable and unsolvable problems.

IV. PLANNING THROUGH FORWARD CHAINING AND

TEMPORAL CONTROL KNOWLEDGE

A. The TLPlan Algorithm

Similar to Graphlan, TLPlan [13] is a forward chaining

planner but it uses domain specific search control knowledge

specified in a first-order version of linear temporal logic

to prune plans causing undesired sequences of intermediate

configurations of the CMDB. Algorithmically, TLPlan starts

with the initial CMDB and determines all applicable ground

instances of actions/IT changes that can be applied to the

current CMDB. Based on these actions all successor CMDBs

are created. TLPlan then continues in a depth-first search with

the exploration of a successor CMDB. However, TLPlan does

only further explore a CMDB configuration if the last recently

added IT change to the plan does not violate the temporal logic

control formula. Nevertheless, all successor worlds are created.

TLPlan also offers the option to directly discard CMDB states

violating the formula (leading to less memory consumption)

but we were unable, due to stability issues of the planner, to

derive a working LTL formula for this early pruning option.

1) Domain Description: For TLPlan to solve the IT change

planning case-study, the change manager has to specify a

formula in linear temporal logic to guide the search. Let’s

assume cri are IT changes, such that the sequence of IT

changes < cr1, cr2, ..., crn > is a plan to satisfy the deploy-

ment of a 3-tier application. Then, let < s0, ..., sn > be the

sequence of corresponding configurations si of the CMDB

induced by the execution of the plan (s0 initial state, sn valid

goal state, si state after the execution of cri, i ∈ {1, ..., n}).

A first-order LTL formula, evaluated over this sequence of

intermediate CMDB states, can be specified by the change

manager to prevent undesired plans. Two out of the four LTL

operators [13] used in our control rules are: (1) �f means that

f holds for the current and all future configurations (states)

of the CMDB. (2) ©f means, that f holds in the next state

of the CMDB. To focus TLPlan’s forward chaining planning

algorithm, IT changes that do not progress toward the goal

state need to be disallowed by a LTL formula. For example, it

makes sense to only turn on VMs (action start-vm, Fig. 2)

that are meant to be on in the goal state. As a LTL formula:

(� (∀ ?vmid : (vm ?vmid ?mem ?cpu)

((state ?vmid off) ∧
(© (state ?vmid on))

) → (goal (state ?vmid ?on))

))

The formula only permits sequences of intermediate CMDB

configurations (�) such that among subsequent configurations

(©) only VMs are allowed to change their state from off to on

(left side of implication) if the VM is explicitly specified as on

in the goal state (goal expression). There are several problems

with LTL formulas as a mean to formalize effective search

control for IT changes: (1) It cannot be decided any more

whether an IT change contributes to the goal state if the goal

state is partially specified. (2) The LTL formula used in the

change planning case study comprises 170 LOCs − too large

to be practically used and derived by an IT change manager.

(3) It is very unlikely that a change manager is willing and

capable to cope with LTL and its subtle semantics. (4) We

found it very difficult to write LTL formulas over a sequence

of intermediate CMDB states. Instead, given our experience,

it seems more natural to specify LTL formulas over valid and

invalid sequences of IT changes because intermediate sates are

more difficult to grasp than the constraints on sequences of IT

changes.

2) Performance: Without LTL search control and a RU

of 0%, TLPlan takes 10ms to solve the change planning

case study for 12 CIs and 833s for a CMDB comprising

24 CIs. The problem becomes unsolvable within 12h for

larger CMDBs and 1024 MB of RAM. Thus, TLPlan is

impractible to solve even small problems without LTL search

control. Figure 4 depicts the performance of TLPlan (with LTL

search control) in comparison to SGP/Graphlan depending on

the size of the CMDB and the resource utilization. TLPlan

performs better than SGP for every resource utilization and

every size of the CMDB . While SGP can only solve very

small instances of the case study when constrained to 1 GB

of main memory at RUs betweeen 0 and 60%, TLPlan does

not show this limitation. Similar to SGP, TLPlan struggles to

maintain performance with larger CMDBs. The time to derive

a plan increases exponentially with the size of the CMDB

and is slightly subdued by higher resource utilizations because

less successor CMDBs need to be managed by the planner.

Different to Graphlan, TLPlan produces totally ordered plans

instead of partially ordered plans. Note, that the performance

improvement is achieved through complex LTL formulas that

are difficult to specify.

V. PLANNING THROUGH MEANS-END ANALYSIS

A. The Prodigy Algorithm

Different to Graphlan’s and TLPlan’s forward chaining

approach, Prodigy [12] searches backwards from the goal

(backward chaining). Prodigy uses means-end analysis, i.e.,

it chooses a ground atom of the goal that has not yet been

achieved and attempts to instantiate an action in such a way

that its effects produce that atom. The atoms in the action’s

precondition that do not yet account become goal atoms that

need to be subsequently achieved by applying another action.

For example, consider the ground goal atom (state vm1

on). Action start-vm(?vmid, ?pmid) in Fig. 2 can be

partially instantiated (?vmid:=vm1) such that it produces this

atom. If atoms in the precondition of the action should not

yet account, Prodigy keeps on working on these open goals.

During planning Prodigy has several choices: (1) Which goal

to achieve first, (2) which action to use to achieve the goal and

0.1

1

10

100

0 100 200 300 400 500 600 700 800

P
la

n
n
in

g
 d

u
ra

ti
o
n
 [

s
]

Number of CIs in CMDB

TLPlan 0% RU
Prodigy 0% RU no ctrl. rule

Prodigy 0% RU
TLPlan 40% RU
Prodigy 40% RU
TLPlan 80% RU
Prodigy 80% RU
TLPlan 99% RU
Prodigy 99% RU

Fig. 5. Planning duration of Prodigy (with ctrl. rules) depending on (1) size
of the CMDB, (2) the resource utilization, and (3) the use of control rules
compared with TLPlan (with LTL search control).

how to instantiate the action, e.g., how to instantiate variable

?pmid in start-vm(vm1, ?pmid), and (3) when to apply

an action. To make the right choices, an IT change manager

can specify control rules which tell the planner on how to

make these decisions.

B. Evaluation

1) Domain Description: Prodigy takes the same domain de-

scription (besides syntactical differences) as SGP and TLPlan

for input. Thus, Prodigy’s actions can be as easily engineered

as Graphlan’s and TLPlan’s. For Prodigy to work efficiently,

control rules need to be specified. Control rules are if-then

rules. For example, one of four control rules used in the case

study reads as follows: If the planner is working on goal

(state ?vmid on) and tries to achieve it by instantiating

action start-vm(?vmid,?pmid) (consult Fig. 2 to see why

this achieves the goal), then bind ?pmid to a PM, that has

not a VM running on it. The reason for this rule is that in a

subsequent action this constraint is checked leading to costly

backtracking if the wrong decision is made when instantiating

action start-vm(?vmid,?pmid) with the wrong PM. For

change managers to write effective control rules, they are

forced to look at the debug output and need to have a

precise understanding of how the algorithm works. With search

control so closely related to the algorithm, i.e., the need

to examine the debug output of plans, we doubt that this

approach is of practical use to a change manager. However, if

actions, problems, and control rules have been carefully tuned,

Prodigy’s control rules offer effective speedup.

2) Performance: Figure 5 depicts the planning performance

of Prodigy and TLPlan (with LTL search control) depending

on the size of the CMDB, the use of control rules, and the

resource utilization. Prodigy performs better with control rules

tuned to the planning case study. For example, with time set

to 100s and 0% RU, Prodigy can solve the case study on a

CMDB comprising 350 CIs without control rules compared to

700 CIs with control rules. For small CMDB sizes, TLPlan

outperfroms Prodigy even with control rules. Beyond 24

- 36 CIs (depending on the RU), Prodigy becomes faster

than TLPlan. Thus, for realistic CMDB sizes Prodigy always

outperforms TLPlan and SGP/Graphlan. Without control rules

TLPlan manages to stay ahead of Prodigy on slightly larger

CMDBs. For example, at 0% RU the CMDB must be larger

than 60 CIs for Prodigy (without ctrl. rules) to outperform

TLPlan.

Similar to TLPlan and SGP, the higher the resource utilization,

the faster the planner. For every not yet achieved goal atom

that Prodigy decides to work on, it computes all ground

instances of all actions that can achieve this atom before it

continues planning with one instance. Thus, the larger the

CMDB and the less the resource utilization, the more CIs

qualify to instantiate an atom, increasing the computational

effort to compute all bindings for applicable IT changes. Even

without control rules Prodigy performs significantly better than

TLPlan for the deployment case study (350 CIs vs. 100 CIs

within 100s at 0% RU). Prodigy only considers the application

of actions that contribute to the goal. Differently, Graphlan and

TLPlan apply all applicable actions in each step. TLPlan then

prunes parts of the newly generated worlds using LTL search

control. Both is costly and degrades the performance.

Note, that these results differ to Blum et al. [11] who showed

that Graphlan outperforms Prodigy in two artificial planning

domains (2-Rockets domain and Link-repeat domain). How-

ever, for the IT change planning problem Prodigy wins because

when the CMDB increases linear in size, it, though it has

to potentially compute exponentially many bindings, does not

materialize all these possible future states. Instead, the proper

one is chosen and the control rules can prevent backtracking.

VI. HIERARCHICAL TASK NETWORK PLANNING

A. The SHOP2 Algorithm

Hierarchical Task Network (HTN) planners differ from the

previously examined planners in a significant way: The goal

to achieve is not specified as a set of ground atoms that

need to be satisfied by the goal state, but as an abstract task,

e.g., to deploy a three-tier application, for which the planner

needs to derive a plan. Similar to the previous approaches,

elementary IT changes are described as actions that add and

delete ground atoms to and from the knowledge base (see

Fig. 2 for an example). The domain specific search control is

described by HTN methods. Methods decompose an abstract

task, i.e., a high-level IT change, into finer grained IT changes

until IT changes are reached that can be directly mapped

to actions. Fig. 6 depicts an exemplary decomposition tree

created by an HTN planner for the abstract IT change to

deploy a database on a specific CMDB configuration. To

generate an IT change plan that solves the high-level change

deploy-db(db1), SHOP2 [14], a forward chaining partial

order HTN planner, searches for a method to decompose the

abstract IT change. A method specified by a change manager

instructs the planner to decompose cr1 by trying to achieve the

IT changes provision-vm(vm1) (cr2), install-db(vm1)

(cr6), and start-db(vm1) (cr7) in sequence (see Fig. 6).

start-pm(pm1)deploy-db(db1)

start-pm(pm1)bind(osim1,vm1)

start-pm(pm1)install-db(vm1)

start-pm(pm1)start-pm(pm1)

start-pm(pm1)provision-vm(vm1) start-pm(pm1)start-db(vm1)

start-pm(pm1)start-vm(vm1,pm1)

Fig. 6. Simplified HTN decomposition tree created by an HTN algorithm
for the deployment of a database.

Methods capture best practice problem solving strategies in-

herent to the domain. Planning is done in a first depth search

according to the order on the subtasks (see numbers of IT

changes in Fig. 6). Note, that planning terminates at the leaf

nodes of the decomposition tree, which cannot be further

decomposed and directly map to the actions also used by the

other algorithms. An HTN planner only considers to apply an

action if it is directed to do so by the decomposition tree. For

example, the planner will never try to start a VM (cr5) before

an image has been bound (cr4) because the decomposition

tree directs the planner to do it in the opposite order. The plan

returned by an HTN planner only comprises the leaf nodes of

the decomposition tree. Note, that the leaf nodes match to the

changes in Fig. 3 and their order as explored in the depth first

search is a topological order of the partial order of the plan

in Fig. 3.

B. Evaluation

1) Domain Description: The SHOP2 domain description

comprises around 700 LOCs (3.5-times the size of the other

approaches). In addition to the specification of the precon-

ditions and effects of IT changes (as needed for all other

approaches as well, see Fig. 2), refinement rules need to be

specified to tell the planner the order in which to explore IT

changes during search. Thus, it takes more effort to write and

debug such a domain. Once engineered, an HTN domain has

several advantages: (1) It is very reusable because newly added

changes can refer to already existing changes. For example,

an IT change to deploy a three-tier architecture can rely on

the change to deploy a database (see Fig. 6). (2) The idea of

abstract task refinement matches precisely to the IT change

planning problem, that, given an abstract Request for Change

[2] asks the change manager to derive a plan to implement that

change. The change manager stays within his/her domain of

thinking (refinement of IT changes) without being distracted

by LTL formulas (see Par. IV-A1) or algorithmic specific

control rules (see Par. V-B1). All in all, HTN methods, i.e.,

the refinement of IT changes, seem to be the easiest way for

a change manager to describe domain specific search control

knowledge. These findings are consistent with Cordeiro et al.

[6] who argue in favor of reusable plan templates that can be

implemented using HTN methods. While the proximity of IT

change planning to HTN planning has been noted before [7],

[8] we argue in this work that alternatives such as LTL and

algorithmic control rules are not a better solution to specify

search control.

2) Performance: Figure 7 depicts the planning duration

of SHOP2 for two different domain descriptions, one that

0.1

1

10

100

0 5000 10000 15000 20000

P
la

n
n
in

g
 d

u
ra

ti
o
n
 [

s
]

Number of CIs in CMDB

99% RU, backtracking / no ECE
20% RU, backtracking / no ECE
2% RU, backtracking / no ECE
1% RU, backtracking / no ECE
0% RU, backtracking / no ECE
0% RU, no backtracking / ECE

20% RU, no backtracking / ECE
40% RU, no backtracking / ECE
60% RU, no backtracking / ECE
99% RU, no backtracking / ECE

Fig. 7. Planning duration of SHOP2 depending on the size of the CMDB,
the resource utilization, and the type of the domain description.

avoids backtracking by means of early constraint enforcement

(ECE) in the decomposition tree and another one that only

enforces constraints in the leaf nodes. To see the difference

consider bind(osim1,vm1) (cr4) in Fig. 6. When planning

for the case study problem, a method is applied to decompose

provision-vm(vm1) (cr2) into cr3, cr4, and cr5. This

means, that appropriate OS images need to be determined

to instantiate cr4. For cr4 to be executable, its precondi-

tion checks whether the image is unbound. If the method

binds parameter ?osid in cr4 to already bound images, then

the planner will backtrack over cr4 because it is infeasible

(backtracking / no ECE in Fig. 7). Instead, we can add the

unbound image constraint to the method to avoid backtracking

because then the method only choose images that do not

lead to backtracking. This yields the ECE / no backtracking

measurements in Fig. 7.

Similar to all other algorithms, the planning time increases

exponentially with the size of the CMDB. However, the

exponential increase is much more modest than for the other

planners if early constraint enforcement is used. Thus, prob-

lems of up to 20,000 CIs − 28 times the size limit of Prodigy

and 333 times that of SGP − can be solved in 100s at

0% RU (worst case). The performance is superior because

on decomposing a change, SHOP2 computes all bindings of

variables in the subtasks but only applies one instance of an

action or method during planning. Thus, SHOP2 does not

blow up its search space by applying all unifications of an

IT change as Graphlan and TLPlan do. In addition to that, the

decomposition tree tells the planner precisely when to try an

IT change pruning large portions of the search space.

Using ECE, the runtime decreases with increased RU (simi-

lar to all other planners). In this case the runtime is dominated

by computing all ground instances of actions and methods

which is lower for higher RUs.

If backtracking is not avoided, planning takes significantly

longer than with ECE because backtracking is more costly than

enforcing binding constraints early. In this case, the runtime

0.1

1

10

100

0 200 400 600 800 1000

P
la

n
n
in

g
 d

u
ra

ti
o
n

 [
s
]

Number of CIs in CMDB

Prodigy 0%, with ctrl. rules
Shop2 0%, backtracking / no ECE

Prodigy 40%, with ctrl. rules
Shop2 40%, backtracking / no ECE

Prodigy 60%, with ctrl. rules
Shop2 60%, backtracking / no ECE

Prodigy 99%, with ctrl. rules
Shop2 99%, backtracking / no ECE

Fig. 8. Planning duration of SHOP2 (no ECE domain) and Prodigy (with
ctrl. rules)

increases with the resource utilization (exactly opposite to the

ECE case) because the higher the RU, the more frequent the

planner has to backtrack as it more often commits to unsuitable

CIs to instantiate an action or method. This yields the question

whether a Prodigy domain with control rules outperforms a

quickly written HTN domain not avoiding backtracking by

means of ECE?

Yes, but only on large CMDBs. On small CMDBs a naively

written SHOP2 domain (not avoiding backtracking) performs

better than a carefully tuned Prodigy domain with control

rules for the case study (see Fig. 8). However, with increasing

CMDB size Prodigy starts to outperform SHOP2 without ECE.

This happens the earlier the higher the resource utilization

grows (for 90% RU from 90 CIs onwards, for 60% RU from

200 CIs onwards, for 40% RU from 750 CIs onwards, see

Fig. 8) because the lower the RU, the less SHOP2 has to

backtrack making it more difficult for Prodigy to catch up.

For 0% RU, i.e., no backtracking for SHOP2, Prodigy cannot

catch up with SHOP2 any more.

VII. RELATED WORK

Several solutions [3], [4], [5], [6], [7], [8], [9], [17] have

been proposed for the (semi-)automated generation of IT

change plans. All works propose domain specific algorithms

for IT change planning and do not examine them in the context

of already existing automated planning algorithms [10].

Keller et al. [3] propose CHAMPS, a system for the planning

and scheduling of IT changes which enables a high degree

of parallelism among IT changes. The authors propose a

planning algorithm which is not based on automated planning

algorithms [10]. A performance and usability comparison to

other planning algorithms is out of the scope of that paper.

Maghraoui et al. [4] are the first to apply an automated planner,

UCPOP, to generate IT change plans. Their highly customized

version of the UCPOP algorithm is applied to a case study in

the size of a few hundred resources. Our experiences with

UCPOP for our case study are that it is even slower than

Graphlan without control knowledge. Furthermore, control

knowledge is extremely difficult to specify because it is too

close to the algorithm. A comparison to other algorithms than

UCPOP is out of the scope of Maghraoui’s work. Cordeiro et

al. [6], [17] propose ChangeLedge a system for the generation

of change plans by capturing best practices in IT change design

using change templates. Similar to CHAMPS [3], the proposed

algorithm does not reason about the preconditions and effects

of IT changes on a logical level. It remains unknown as to

how the algorithm scales and how it compares to automated

planners [10]. In another work, Cordeiro et al. [5] propose a

runtime constraint aware solution for the automated refinement

of IT changes. The proposed algorithm captures the basic idea

of preconditions and effects of IT changes as known from

automated planning [10]. It remains open, as to how their ap-

proach relates to automated planners in terms of performance

and logical soundness. In a previous work [7] we propose

to apply a hybrid HTN - state based planning algorithm to

the IT change planning problem. Similarly, Trastour et al. [8]

propose a pure HTN algorithm. Both works do not compare

the proposed HTN solutions to other already existing domain

independent planners in respect to performance and usability

as done in this work. The work herein extends these works

by providing evidence that HTN planning algorithms are the

fastest and most usable algorithms for IT change planning.

Change plan generation is closely related to plan execution,

which can be troublesome due to unpredictable failures. To

proactively avoid failures when IT changes are executed,

we present in [19] an approach to render IT change plans

feasible again if the CMDB changes between planning and

execution. The proposed solution is independent of the change

planning algorithm and we found it to be applicable to smaller

IT change plans. To avoid the adaptation of change plans

and to detect conflicting IT changes, we propose in [20] an

approach to proactively detect conflicting IT changes. These

works extend the work herein, in that all examined planning

algorithms cannot prevent conflicts among IT changes created

by different operators or runs of a planner. Others argue in

favor of risk assessment [21], [22], [23] for IT change plans

to proactively treat risks during deployment. Similar to risk

assessment, the logical soundness and completeness of the

algorithms evaluated in this work contributes to the proactive

treatment of problems because they guarantee the feasibility

of the generated plan on a logical level. If proactive solutions

should fail, Machado et al. [24], [25] propose a rollback

solution to deal with failures during change implementation

in a reactive way by undoing partially executed change plans.

VIII. CONCLUSIONS

So what is the best algorithm in terms of usability?

In terms of applicability by a change manager, planners

without any search control are easiest to use (see Graphlan,

Par. III-B1) because only preconditions and effects of IT

changes need to be specified. Unfortunately, runtimes become

very bad in this case (Par. III-B2). Among the different

ways to specify search control for IT changes, we found

that algorithm specific control rules (see Prodigy, Par. V-B1)

cannot be readily used by a change manager because profound

algorithmic understanding and plan debugging is necessary.

Although, TLPlan’s approach using linear temporal logic is

independent of algorithmic knowledge, it needs the change

manager to undergo initial training in linear temporal logic.

Furthermore, we found LTL formulas over state sequences to

be a unnatural way to specify search control for IT changes

(see Par. IV-A1). Instead, we think, that the refinement

ideas inherent in HTN methods very well match to the

refinement of Request for Changes [2] into change plans.

Such refinement rules can be written without knowledge about

the algorithm but nevertheless require additional specification

effort compared to domains without search control.

And what is the best algorithm in terms of performance?

We found that planners without search control, e.g., Graphlan

and TLPlan, can only solve problem instances of a few CIs

(Par. III-B2). TLPlan is slightly better, than Graphlan when

search control is specified. Means-end analysis works better

for the change planning case study (see Prodigy, Par. V-B2)

than an undirected forward chaining planner (Graphlan) and

a temporally controlled one (TLPlan) because it does not

instantiate all applicable actions at once and prunes larger

portions of the search space. HTN planning delivers the

best performance for the case study because its rigorous

refinement concept prunes large portions of the search space

by considering the appropriate IT changes at the right time. A

naively (algorithm agnostic) written HTN domain for the case

study is faster than Prodigy for smaller CMDBs (the extend

depends on the RU). However, for larger CMDBs Prodigy

becomes better. Nevertheless, a carefully engineered HTN

domain with early constraint enforcement still outperforms

all other algorithms by a factor of 28 to 333 at 0% RU.

For automated planning approaches to emerge from research

prototypes to commercial service management products, per-

formance on large CMDBs and usability by a change manager

are key factors of success. Given the results of the experiments

in this work, we believe that HTN algorithms possess both

characteristics.

But all that glistens is not gold. For any algorithm to scale

to large CMDBs, the domain description and search control

has to be carefully tuned. This is no show-stopper but a

great opportunity for data center management products to

distinguish themselves from each other: They could provide

a carefully tuned set of IT changes that can be efficiently

planned for on large CMDBs by means of an HTN planner.

− Something that does not seem to be farfetched considering

the results of our case study.

ACKNOWLEDGMENT

This work has been generously supported by a research

grant of the International Graduate School of Science and

Engineering (IGSSE) and the Munich Center of Advanced

Computing (MAC) of Technische Universität München.

REFERENCES

[1] Cabinet Office, ITIL Lifecycle Suite 2011 Edition. The Stationery
Office, 2011.

[2] S. Lacy and I. Macfarlane, ITIL Service Transition. The Stationery
Office, 2007.

[3] A. Keller, J. Hellerstein, J. Wolf, K.-L. Wu et al., “The CHAMPS
System: Change Management with Planning and Scheduling,” in Proc.

of 9th IEEE/IFIP Network Operations and Management Symposium

(NOMS 2004), Seoul, South Korea, Aug. 2004, pp. 395–408.

[4] K. E. Maghraoui, A. Meghranjani, T. Eilam, M. H. Kalantar et al.,
“Model Driven Provisioning: Bridging the Gap Between Declarative
Object Models and Procedural Provisioning Tools,” in Proc. of 7th
ACM/IFIP/USENIX International Middleware Conference, Melbourne,
Australia, Dec. 2006, pp. 404–423.

[5] W. L. da Costa Cordeiro, G. S. Machado, F. G. Andreis, A. D. Santos
et al., “A Runtime Constraint-Aware Solution for Automated Refinement
of IT Change Plans,” in Proc. of 19th IFIP/IEEE International Workshop

on Distributed Systems: Operations and Management (DSOM 2008),
Samos Island, Greece, Sep. 2008, pp. 69–82.

[6] W. L. da Costa Cordeiro, G. S. Machado et al., “ChangeLedge: Change
Design and Planning in Networked Systems based on Reuse of Knowl-
edge and Automation,” Computer Networks: The International Journal

of Computer and Telecommunications Networking, vol. 53, pp. 2782–
2799, 2009.

[7] S. Hagen, N. Edwards, L. Wilcock, J. Kirschnick et al., “One Is Not
Enough: A Hybrid Approach for IT Change Planning,” in Proc. of 20th

IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM 2009), Venice, Italy, Oct. 2009, pp. 56–70.

[8] D. Trastour, R. Fink, and F. Liu, “ChangeRefinery: Assisted Refinement
of High-Level IT Change Requests,” in Proc. of 10th IEEE International
Symposium on Policies for Distributed Systems and Networks (POLICY

2009), London, UK, Jul. 2009, pp. 68–75.

[9] S. Hagen and A. Kemper, “Model-based Planning for State-related
Changes to Infrastructure and Software as a Service Instances in Large
Data Centers,” in Proc. of 3rd IEEE International Conference on Cloud

Computing (CLOUD 2010), Miami, USA, Jul. 2010, pp. 11–18.

[10] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and

Practice. Morgen Kaufmann, 2004.

[11] A. Blum and M. Furst, “Fast Planning Through Planning Graph Anal-
ysis,” Artificial Intelligence, vol. 90, pp. 281–300, 1997.

[12] M. Veloso, J. Carbonell, A. Perez, D. Borrajo et al., “Integrating
Planning and Learning: The PRODIGY Architecture,” Journal of Exper-

imental and Theoretical Artificial Intelligence, vol. 7, no. 1, pp. 81–120,
1995.

[13] F. Bacchus and F. Kabanza, “Using temporal logics to express search
control knowledge for planning,” Artificial Intelligence, vol. 116, pp.
123–191, 2000.

[14] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter et al., “SHOP2: An HTN
Planning System,” Journal of Artificial Intelligence Research (JAIR),
vol. 20, pp. 379–404, 2003.

[15] A. Keller and S. Subramanian, “Best Practices for Deploying a CMDB
in large-scale Environments,” in Proc. of 11th IFIP/IEEE International

Symposium on Integrated Network Management (IM 2009), Long Island,
New York, Jun. 2009, pp. 732–745.

[16] W. Bumpus, J. W. Sweitzer, P. Thompson, A. R. Westerinen et al., Com-

mon Information Model: Implementing the Object Model for Enterprise

Management. John Wiley & Sons, 2000.

[17] W. L. da Costa Cordeiro, G. Machado, F. Daitx, C. Both et al., “A
Template-based Solution to Support Knowledge Reuse in IT Change
Design,” in Proc. of 11th IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS 2008), Salvador, Bahia, Brazil, Apr. 2008, pp.
355–362.

[18] D. S. Weld, C. R. Anderson, and D. E. Smith, “Extending Graphlan
to Handle Uncertainty and Sensing Actions,” Proceedings of AAAI, pp.
897–904, 1998.

[19] S. Hagen and A. Kemper, “Facing the Unpredictable: Automated Adap-
tion of IT Change Plans for Unpredictable Management Domains,” in
Proc. of the 2010 International Conference on Network and Services
Management (CNSM 2010), Niagara Falls, Canada, Oct. 2010.

[20] S. Hagen and A. Kemper, “Towards Solid IT Change Management:
Automated Detection of Conflicting IT Change Plans,” in Proc. of 12th
IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM 2011), Dublin, Ireland, May 2011, pp. 265–272.

[21] J. A. Wickboldt, L. A. Bianchin, R. C. Lunardi, F. G. Andreis et al.,
“Improving IT Change Management Processes with Automated Risk
Assessment,” in Proc. of 20th IFIP/IEEE International Workshop on Dis-

tributed Systems: Operations and Management (DSOM 2009), Venice,
Italy, Oct. 2009, pp. 71–84.

[22] J. A. Wickboldt, G. S. Machado, W. L. da Costa Cordeiro, R. C.
Lunardi et al., “A Solution to Support Risk Analysis on IT Change
Management,” in Proc. of 11th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2009), Long Island, New York,
Jun. 2009, pp. 445–452.

[23] L. A. Bianchin, J. A. Wickboldt, L. Z. Granville, L. P. Gaspary
et al., “Similarity Metric for Risk Assessment in IT Change Plans,”
in Proc. of the 2010 International Conference on Network and Services

Management (CNSM 2010), Niagara Falls, Canada, Oct. 2010, pp. 25–
32.

[24] G. S. Machado, F. F. Daitx, W. L. da Costa Cordeiro, C. B. Both
et al., “Enabling Rollback Support in IT Change Management Systems,”
in Proc. of 11th IEEE/IFIP Network Operations and Management

Symposium (NOMS 2008), Salvador, Bahia, Brazil, Apr. 2008, pp. 347–
354.

[25] G. S. Mechado, W. L. da Costa Cordeiro, A. D. dos Santos, J. A.
Wickboldt et al., “Refined Failure Remediation for IT Change Man-
agement Systems,” in Proc. of 11th IFIP/IEEE International Symposium

on Integrated Network Management (IM 2009), Long Island, New York,
Jun. 2009, pp. 638–645.

