Managing a SaaS Application in the Cloud Using
PaaS Policy Sets and a Strategy-Tree

Bradley Simmons, Hamoun Ghanbari and Marin Litoiu

York University, Canada

{bsimmons | mlitoiu}@yorku.ca, hamoun@cse.yorku.ca

Abstract—This paper introduces a framework and a methodol-
ogy to manage a Saa$ application on top of a PaaS infrastructure.
This framework utilizes PaaS policy sets to implement the
SaaS providers elasticity policy for its application server tier.
A strategy-tree is utilized at the SaaS layer to actively guide
policy set selection at runtime in order to maintain alignment
with the SaaS providers business objectives. Results from an
experiment conducted on a real cloud are presented in support
of this approach.

I. INTRODUCTION

Cloud computing [1-4] represents an approach to IT which
has emerged in large part due to improvements in virtualization
technologies [5, 6] and the construction and commoditization
of large data centers from which infrastructure (IaaS), platform
(PaaS) and software (SaaS) are provided on-demand to end
users over the Internet.

A PaaS provider is an enterprise that is responsible for
leasing application environment topologies to SaaS provider
clients for various durations of time. Further, they are respon-
sible for adding and removing certain component elements on-
demand to and from the client as necessary. The topologies
are built upon infrastructure purchased from various IaaS
providers upon which the middleware container instances are
run. An application environment topology is composed of a
set of system service instances S (e.g., load balancers, LDAP
servers, ...), platform service instances P (e.g., web server,
application server, database server, ...) and the set of licenses
L to support all instances in P (should they be required). The
number of instances of any platform service instance may be
increased or decreased. A SaaS provider is an enterprise that
provides a software offering that is run from within a PaaS
topology.

Consider a SaaS provider running on a cloud. This SaaS
provider leases a platform topology from a PaaS provider and
offers one application to a dynamic set of clients. Several
aspects of a platform topology may be configured dynamically
via policy. A policy can be understood to represent “...any
type of formal behavioural guide” that is input to the system
[7]. An elasticity policy governs how and when resources (e.g.,
application server instances at the PaaS layer) are added to
and/or removed from a cloud environment [8]. One way of
specifying an elasticity policy is through a set of policy rules.
It has been described previously [9] that a set of policies may

Gabriel Iszlai
IBM, Toronto Lab, Canada
giszlai@ca.ibm.com

be thought of as a strategy. Multiple strategies may be defined
to achieve the same set of objectives [10].

In this paper we introduce a framework and a methodology
to manage a SaaS application on top of a PaaS provider’s
infrastructure. This framework utilizes PaaS policy sets to
implement the SaaS provider’s elasticity policy for its ap-
plication server tier. A strategy-tree is utilized at the SaaS
layer to actively guide policy set selection at runtime in
order to maintain alignment with the SaaS provider’s business
objective, specifically to maximize profit. Experimental results
are presented that reflect positively on this approach.

The remainder of the paper is structured as follows. Sec-
tion II reviews the concept of strategy-trees. Section III intro-
duces the management architecture. Section IV introduces a
scenario. Section V presents an experiment demonstrating the
effectiveness of this approach in the context of the introduced
scenario. Section VI presents a brief discussion. Section VII
presents our conclusions.

II. STRATEGY-TREES

The strategy-tree was introduced to address a deficiency
in current approaches to distributed system’s management.
Simply put, there can exist multiple strategies to achieve a
set of objectives. These alternative strategies often incorporate
assumptions, biases and expectations within a given policy
set. Under different contexts various assumptions can be
more/less correct than others resulting in different degrees of
effectiveness for the various strategies.

In essence, a strategy-tree represents a framework for rea-
soning about the effectiveness of an active strategy. In this
sense it is a tool for meta-policy management [11]. While
everything it accomplishes might possibly be done using a set
of highly complex and convoluted policies, this abstraction
simplifies and organizes the process of evaluating the effective-
ness of a deployed policy set and switching among alternative
strategies over time in a defined, systematic and hierarchical
manner. Further, this approach provides an architecture to
facilitate this process of strategic management!. For a more
comprehensive and formal consideration of strategy-trees and
their use in policy management please refer to [9, 10, 12, 13].

I'Strategy-trees are not meant to handle asynchronous problems. Changes in
strategy are gradual and occur on scales of hours, days, weeks, months, years,
etc. (i.e., not milliseconds). It is assumed that for gross, pathological errors
there are policies defined to handle these situations. There is also overhead
associated with deploying policy sets and this should not be ignored.

Strategy—Tree @ wos [

T ;

Application
Saas Deploy Policy Set N / \

— Control Paas
-)) » ~

Policy Repository 1_4 PDP ‘) PEP bl Container

= a

Paas (

Performance
Data (e.g., cpu
utilization,
memory usage,
throughput ..)

¢ 1
N\ Monitoring K /
Subsystem N

Fig. 1: Proposed management architecture

III. ARCHITECTURE

The following section will provide an overview of our
proposed management architecture, Figure 1.

A. PaaS Layer

At the PaaS layer, we assume the traditional policy-based
management architecture (PBM) [14]. The PaaS provider has
access, via a monitoring subsystem, to numerous performance
metrics (e.g., cpu utilization, throughput). It also has access
to various OS and middleware level metrics as well. We
assume that the PaaS provider exposes these metrics to its
SaaS clients so that they may define policy rules with which
to implement their elasticity policies. Policy rules are specified
in the traditional On-event-If-condition-Then-action syntax.

B. SaaS Layer

A strategy-tree is used at the SaaS layer to dynamically alter
policy set deployment at run time based on monitored data..
The management database (MDB) is where this data is stored
(e.g., how many platform instances have been purchased,
how many sessions have been serviced). All elements of the
strategy-tree have access to the MDB.

IV. SCENARIO

Consider a SaaS provider offering a standard multi-tiered
application to a dynamically growing and shrinking set of
clients. Revenue is proportional to the number of users (ses-
sions) that utilize the service (as each user is statistically linked
to some amount of advertising dollars). Cost is impacted by the
(1) cost of purchasing the topology and (ii) additional platform
instances purchase over time. There is also a (subjective) cost
associated with the loss of future business which is a more
speculative (and varies with client response time).

The objective of this SaaS provider is to maximize profit by
both maximizing revenue and by minimizing cost. It should be
noted that maximizing revenue can have an adverse effect on
minimizing cost and vice versa. This interrelatedness greatly
complicates the achievement of the main objective. Trade-offs
must be made in the pursuit of the overall objective.

Parameter PSensitive Prolerant PAggressive
incr_val 1 2
decr_val 1 1 2
quorum 51% 51% 51%
cpu_idle_gt 45 40 50
grow_duration 7 min 7 min 8 min
cpu_idle_st 50 55 55
shrink_duration 7 min 7 min 8 min
refractory_period 8 min 8 min 6 min

TABLE I: Parameter settings defining the three elasticity policies as
used in the experiments (i.e., values related to time are scaled by one
quarter).

A. Elasticity Policy

In a production setting, the elasticity policy might be highly
complex in order to handle the numerous eventualities and
situations that are likely to arise. However, in this illustrative
scenario, several simplifying assumptions have been made in
order to streamline and focus the discussion. It is assumed
that the SaaS offering is tightly cpu-bound. This assumption
allows us to focus on the single metric, cpu_idle, which
is considered exclusively in the design of the policy set for
this scenario. Further, the policy rules defining the elasticity
policy focus only on the application server tier of the SaaS
offering. In reality, an elasticity policy is meant to govern
changes is resource allocation to all tiers of an application. A
brief overview of the elasticity policies, utilized in this work,
will now be presented (for a more complete overview please
refer to [8]).

A lower threshold (cpu_idle_gt) and an upper threshold
(cpu_idle_st) are defined on the value of cpu_idle for
a platform instance. Should the value of cpu_idle be less than
cpu_idle_gt for longer than a configured period of time
(i.e., referred to as grow_duration) then a request to grow
is made. Similarly, if the value of cpu_idle is greater than
cpu_idle_st for longer than the shrink_duration
then a request to shrink is made. At the second level of the
hierarchy, if a configured percentage (referred to as a quorum
of platform instances have indicated a request to grow (or to
shrink) and is has been at least refractory_period of
time since the last elastic action was taken, then incr_val
platform instances are added to the platform (decr_val
platform instances are removed).

Three different elasticity policies (i.e., Psensitives Prolerant
and Paggressive) Were designed, based on various heuristics,
to drive the auto-scaling actions of the application server tier.
These policy sets utilized different settings of some of the
configurable parameters mentioned above and are presented in
Table I. The SaaS provider was able to characterize the various
elasticity policies against a standard workload (i.e., trace data
that they had access to). For each policy set, the mean hourly
number of additional platform instances was computed. They
were also able to monitor the current number of sessions at
four minute intervals. On this data they performed hourly re-
gressions and partitioned the slopes into four distict categories
(indicating different degrees of increase/decrease in number of
sessions).

[

i 4
2 1
3 1
4 1

-

Fig. 2: Strategy-tree used for the experiment. Circles denote SAT-
elements. A SAT-element is where the satisfaction of a set of
objectives is periodically evaluated. This period is defined by the
node’s quantum_attribute_value which is equivalent to an epoch.
Inverted triangles denote DEC-elements. A DEC-element is where
decisions about whether to maintain the current strategy or to switch
to an alternative are made. Yellow indicates the active strategy.

B. Design of the Strategy-Tree

This section considers the development of a strategy-tree,
Figure 2, to help guide the system to achieve the objective
of the SaaS provider (i.e., maximize profit). To achieve the
objective, heuristic trade-offs between maximizing revenue
and minimizing cost are utilized. A bias which favors servicing
the maximum number of clients while attempting to limit the
number of additional platform instances purchased is applied.

1) Design of SAT-Elements: The three leaf nodes (i.e.,
nodes two, three and four) and their parent node (i.e., node
one) share a similar objective: The number of additional
platform instances purchased divided by the epoch should not
exceed the hourly mean for that particular strategy.

2) Design of the DEC-Element: In order to guide perfor-
mance toward achieving the objective (i.e., maximize profit)
it was decided that a two step approach would be utilized
when deciding whether to continue using a particular strategy
or whether to switch to an alternative. This decision would
be based first upon the detection of a trend in the number
of current sessions observed over the previous epoch. Specif-
ically, the slopes of the hourly regressions (for the previous
four hour epoch) constructed from the readings (i.e., current
number of sessions) taken every four minutes would provide
a simple heuristic for detecting a rapid increase or decrease
in the client demand on the system (and hence guide the
decision making process to use the more aggressive strategy
i.e., 82 = Paggressive)- Should no strong trend be detected,
data from the MDB, as indicated by the values of the results
list, would then be utilized in the decision making process.

V. EXPERIMENT

The following experiment is based on the scenario presented
in the previous section (i.e., Section IV) and is composed of
two parts. First, the three elasticity policies (i.e., Table I) are
characterized against a workload as described in Section IV-A.
Then the strategy-tree (i.e., Figure 2) is deployed and each
policy set and the strategy-tree are run against a novel work-
load and compared in terms of total sessions, number of

additional platform instances purchased and mean response
time as measured at the client.

A. Experimental Setup

For this experiment, Amazon (i.e., EC2, EBS) was used
as the TaaS provider. All platform instances were built atop
virtual machine instances (VMI)s running either CentOS 5.4
1386 (i.e., front end servers and application server instances) or
Ubuntu 8.04 1386 (i.e., database) and configured as m1.small
instances (i.e., 1.7 GB memory, 1 EC2 Compute Unit (1 virtual
core with 1 EC2 Compute Unit), 160 GB instance storage, 32-
bit platform and I/O Performance: Moderate).

RightScale was used as a PaaS management framework. A
standard, multi-tiered application topology was selected from
their catalog (with various modifications to suit our needs).
This platform topology consisted of two front-end servers
running Apache and HAProxy an array of Tomcat instances
and a back end database running MySQL 5.0. The concepts
of elastic scaling of a server array using alerts (based on
voting tags) employed by Rightscale allowed us to specify our
elasticity policies. We wrote lightweight Policy and PolicySet
classes that were implemented in Ruby. Once fully specified,
a PolicySet could be deployed (utilizing Rightscale’s restful
API) at which point it would result in the configuration of
the platform topology with the correct elasticity policy as
previously described.

The client is run on a separate EC2 instance and simulates
the correct number of clients as defined by the workload for
the duration of the experiment. The workloads used both to
characterize the three elasticity policies and for the actual
experiment were excerpts from the FIFA 98 workload [15]
(Figures 3a and 3d).

Experiment time was scaled by four. The monitoring system
at the SaaS provider takes a reading every minutes (i.e., four
minutes of experiment time). At the SaaS provider layer,
a simple Java-based web application was deployed on the
described PaaS topology. A client connects to the front-end,
is directed to an application server, a loop executes some pre-
defined number of times (i.e., for this work we focused on
the CPU) communication with the database tier occurs and a
response is issued. For the remainder of the paper, this will
represent a session.

B. Experimental Results

Initially, the three elasticity policies were characterized
versus a workload, Figure 3a. As described previously various
details were computed for use in the strategy-tree elements.
Notice how different the system behaves under the alternative
elasticity policies, Figures 3b and 3c.

Next, an alternative workload, Figure 3d, was selected. The
workload was pre-processed so as to stretch the y-coordinates
by a factor of 1.4 (to increase the number of clients) 2. Three
repetitions were run for each policy set, Table I, and for the

2This stretch was applied as the workload did not look very interesting
initially (i.e., its maxima were much less than the day 41 partial excerpt data
we had initially worked with)

Metric PSensitive Prolerant PAggressive ST
Tot. Ses. 811,12 346 59,10 127
Add. Tnst. 45,6 137 9,11,12 28,10

MRT 2,10,11 638,12 459 137

TABLE 1II: Placement for various approaches. Total Sessions (Tot.
Ses.), Additional Instances (Add. Inst.), Mean Response Time at the
client (MRT), and Strategy-tree (ST). There are twelve trials. For
each row, 1 denotes the best result for that metric and 12 denotes the
worst.

strategy-tree, Figure 2. An overview of the results for the
individual trials is presented in Table II. Figures 4a, 4b and 4c
present the mean total number of sessions serviced, the mean
number of platform instances purchased and the mean of the
mean response time at the client for each set of three runs for
each approach respectively. Results from one of the runs using
the strategy-tree are presented in Figures 3e and 3f.

(e) ()

Fig. 3: (a) FIFA 98, Day 41, partial excerpt. (b) Number of sessions
processed by the application in response to the workload using three
alternative elasticity policies (EP)s. (c) Additional platform instances
being added and released in response to the workload under the
three alternative EPs during characterization phase. (d) FIFA °98,
Day 43, partial excerpt (stretched by 1.40). (e) Total number of
sessions processed versus time: strategy-tree. (f) Platform instance
usage versus time: strategy-tree.

VI. DISCUSSION

The policy sets that were used were heuristic in nature with
no formal methodology utilized in their design. We intend to

160000 1400

140000 1200

§ 120000 |

100000

80000

50000

Total Number of Sessi

0000

Additional Platform Instances

20000 200

PSensitive PToterant

(@) (b)

PAggressive Strategy-Tree

Fig. 4: Mean of three trials for each elasticity policy and for
the strategy-tree (plus and minus one standard error) for (a) Total
sessions. (b) Total number of platform instances. (¢) Mean response
time as measured at the client.

investigate techniques to better determine thresholds for our
policy rules, using formal modeling techniques and building
on work done in [16]. It should be emphasized that the intent
of this paper was to explore reasoning about the performance
of the policy sets via a strategy-tree rather than focusing on
the optimal design of a specific elasticity policy. In fact, the
elasticity policies used in this paper were developed in an ad-
hoc fashion in contrast to the formal refinement approaches
such as [17-19].

One limitation of the strategy-tree presented here is that it
is only reactive in nature. Specifically, it only considers the
previous epoch’s history. This falls into the problem of local
minima/maxima (i.e., hill climbing problem) . One possible
approach to improve this limitation would be to utilize the
growing history over time. However, to truly implement good
decision making in DEC-elements prediction is required. Work
by [20] utilized signal processing techniques to detect patterns
in workloads to assist in prediction. These forms of techniques
would be interesting to apply inside the DEC-elements of a
strategy-tree.

VII. CONCLUSIONS

The work presented in this paper is an initial step toward
the realization of our business driven cloud optimization
architecture. We introduced an architecture and methodology
for managing a SaaS application on top of a PaaS provider’s
infrastructure. This framework utilizes PaaS policy sets to
implement the SaaS provider’s elasticity policy for its ap-
plication server tier. A strategy-tree is utilized at the SaaS
layer to actively guide policy set selection at runtime in
order to maintain alignment with the SaaS providers business
objectives. An experiment was presented that demonstrates the
promise of this approach and the usefulness of dynamically
switching among active strategies at runtime.

ACKNOWLEDGMENT

This research was supported by the IBM Centre for Ad-
vanced Studies (CAS), the Natural Sciences and Engineering
Research Council of Canada (NSERC), Ontario Centre of Ex-
cellence (OCE), Amazon Web Services (AWS) and Rightscale.

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

REFERENCES

B. Hayes, “Cloud computing,” Commun. ACM, vol. 51,
no. 7, pp. 9—-11, 2008.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the clouds: A berkeley
view of cloud computing,” Tech. Rep. UCB/EECS-2009-
28, EECS Department, University of California, Berke-
ley, February 20009.

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Na-
gin, I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galan,
“The reservoir model and architecture for open federated
cloud computing,” IBM Journal of Research and Devel-
opment, vol. 53, pp. 4:1 —4:11, july 2009.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic, “Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the
Sth utility,” Future Generation Comp. Syst., vol. 25, no. 6,
pp- 599-616, 2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in SOSP '03: Proceedings
of the nineteenth ACM symposium on Operating systems
principles, (New York, NY, USA), pp. 164-177, ACM,
2003.

VMWare. Available at: http://www.vmware.com. [online
April 2011].

J. O. Kephart and W. E. Walsh, “An artificial intelli-
gence perspective on autonomic computing policies,” in
POLICY ’04: Proceedings of the 5th IEEE International
Workshop on Policies for Distributed Systems and Net-
works, pp. 3—12, IEEE Computer Society, June 2004.
H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai,
“Exploring alternative approaches to implementing an
elasticity policy in the cloud,” in In Proceedings of
the IEEE Fourth International Conference on Cloud
Computing (CLOUD 2011), pp. 716=723, July 2011.

B. Simmons and H. Lutfiyya, “Strategy-trees: A feedback
based approach to policy management,” in Proceedings
of the 3rd IEEE international workshop on Modelling
Autonomic Communications Environments, MACE °08,
(Berlin, Heidelberg), pp. 26-37, Springer-Verlag, 2008.
B. Simmons and H. Lutfiyya, “Achieving high-level
directives using strategy-trees,” in Proceedings of the 4th
IEEE International Workshop on Modelling Autonomic
Communications Environments, MACE °09, (Berlin, Hei-
delberg), pp. 44-57, Springer-Verlag, 2009.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The
ponder policy specification language,” in Proceedings of

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

the International Workshop on Policies for Distributed
Systems and Networks, POLICY ’01, (London, UK),
pp- 18-38, Springer-Verlag, 2001.

B. Simmons, Strategy-Trees: A Novel Approach To
Policy-Based Management. PhD thesis, The University
of Western Ontario, 2010.

B. Simmons, M. Litoiu, D. Ionescu, and G. Iszlai, “To-
wards a cloud optimization architecture using strategy-
trees,” in I2TS 2010: 9th International Information
and Telecommunication Technologies Symposium, Rio
de Janeiro, Brazil, December 13-15, 2010. Proceedings,
2010.

B. Moore, “Policy core information model (pcim) exten-
sions, rfc 3460,” Jan. 2003.

M. Arlitt and T. Jin, “A workload characterization study
of the 1998 world cup web site,” IEEE Network, vol. 14,
pp- 30-37, May/Jun 2000.

C. Barna, M. Litoiu, and H. Ghanbari, “Autonomic
load-testing framework,” in Autonomic Computing, 2011.
International Conference on, (New York, NY, USA),
ACM, June 2011.

A. Bandara, E. Lupu, J. Moffett, and A. Russo, “A
goal-based approach to policy refinement,” in Policies
for Distributed Systems and Networks, 2004. POLICY
2004. Proceedings. Fifth IEEE International Workshop
on, pp. 229 — 239, 2004.

J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas,
and G. Pavlou, “A methodological approach toward the
refinement problem in policy-based management sys-
tems,” Communications Magazine, IEEE, vol. 44, no. 10,
pp- 60 —68, 2006.

R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman,
“Decomposition techniques for policy refinement,” in
Network and Service Management (CNSM), 2010 Inter-
national Conference on, pp. 72 =79, Oct 2010.

Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic
resource scaling for cloud systems,” in Network and
Service Management (CNSM), 2010 International Con-
ference on, pp. 9 —16, 2010.

