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Abstract—The economic stakes of advertising on the Internet -
and in particular, of auctions for keywords in search engines- are
enormous and still increasing. We focus in this paper on situations
where bidders (advertisers) on sponsored search auction systems
have a limited budget, so that they may not be able to afford to
participate in all auctions.

Using a game-theoretical model of the strategic interactions
among advertisers, we analyze the equilibrium strategies in terms
of bidding frequencies, in the case of one monopoly search
engine and when two search engines are in competition. Our
results exhibit the importance for search engines to develop their
attractiveness to customers, due to the impact this has on auction
revenues.

Index Terms—Sponsored auctions, Budget limit, Game Theory

I. INTRODUCTION

While the Internet continues to soar in terms of available
bandwidth and number of users, the economics of online
services has evolved so that more and more services are
proposed for free, the providers basing their business models
on advertising. The most famous example is Google, that
offers a multiplicity of free services (e-mail, data storage,
website hosting, ...) and yet raised US$10 billion in 2006 in
advertising revenues [1].

For search engines, a large part of those revenues comes
from the so-called sponsored search auctions, or adword
auctions, that are auctions run among advertisers to have their
ad displayed next to -or above- the normal (called organic)
results of the user search for some given search words [2],
[3]. Indeed, advertisers expect that ads related to the searched
words are likely to interest the user and lead to a sale; they
are therefore willing to pay to have their ad appear in a
good position on the screen, and/or get clicked, when users
search for particular keywords. Since the economic stakes
of adword auctions are enormous, it can be expected that
advertisers rationalize their strategies, possibly taking into
account the competitors decisions. Therefore, game-theoretic
models and tools [4] seem (highly) appropriate to analyze
the strategic decisions of interacting advertisers, and several
models have been developed for that context (see [5] and
references therein).

Nevertheless, the case when advertisers have a limited
budget to devote to advertising is often difficult to analyze,

and only few papers consider that constraint. We focus on
that issue in this paper, and on its effect on the bidding
strategies of advertisers. In particular, we investigate how the
budget limit affects advertisers depending on their willingness-
to-pay to have their ad displayed. We consider that advertisers
know only the distribution of the willingness-to-pay of their
competitors (but not the exact values), and that they use that
knowledge to anticipate the bidding behavior of the other
advertisers as well as to determine their own bidding strategy.
Both the case of one search engine and several competing
search engines are considered.

The remainder of this paper is organized as follows. Sec-
tion II presents our general model in terms of auction rules,
advertiser valuations, and knowledge. The equilibrium bidding
strategies are analyzed for the case of a single search engine
in Section III, while the case of two competing search engines
is treated in Section IV. Section V draws our conclusions and
suggests directions for future work.

II. THE MODEL

Table I provides an overview of the notation used in this
paper. Note that the last four variables in the table will
be indexed by the search engine when we consider several
competing search engines.

λ Arrival rate of user search requests
K Total number of advertisers
Bi Budget of advertiser i
f Probability density of valuation repartition among advertisers
q Click-Through Rate of the search engine

p(v) Probability of participating in an auction when one’s valuation
is v

H(v) Probability of winning an auction with bid v
E(v) Expected price paid per auction with bid v

Table I
MAIN VARIABLES AND NOTATIONS, FOR THE CASE OF ONE SEARCH

ENGINE.

A. Auction model

In the first part of this paper, we consider only one search
engine. We also consider searches for a single keyword along



the paper, user requests on the search engine occurring with
an average frequency of λ requests per time unit.

To simplify the analysis, we assume as in [6], [7] that only
one slot is available to display ads in the search engine inter-
face. The auction mechanism considered is called Generalized
Second Price [8]: advertisers submit bids, which are ordered
according to a ranking rule, and the ad of the highest ranked
bidder is displayed in the ad slot of the search engine. The
price that the winner then has to pay is charged only when
the ad is clicked on by the user who performed the search,
and equals the minimum bid that the winning advertiser could
have set to keep his position in the ranking.

Remark that the ranking can be based on the bid value only,
or can involve the probability of the ad being clicked on,
called its click-through rate (CTR). In the model presented
in this paper, we assume that the ads of all advertisers have
the same click-through rate q, so that bid-based and revenue-
based rankings are equivalent: the advertiser with the highest
bid wins the slots, and pays the value of the second-highest
bid when the ad is clicked on.

When only one slot is available to display ads, the General-
ized Second Price mechanism is equivalent to the well-known
Vickey-Clarke-Groves mechanism [9], [10], [11], that is in-
centive compatible (i.e., truthfully bidding one’s value for the
good -here, the ad slot- is a dominant strategy) and individually
rational (i.e., when bidding truthfully the price paid is always
below the value for the good). As a result, it is expected that
advertisers always participate in the auctions and declare the
value that the slot has to them. Nevertheless, in our context
auctions occur repeatedly over time, and advertiser classically
have a limited advertising budget so that participating to all
auctions is not always feasible.

B. Bidders (advertisers) model

We consider a set K of K advertisers interested in a given
keyword. Each advertiser i knows the value of his ad being
clicked on by a customer: this is classically estimated as the
probability of the user ending up buying the product proposed
by the advertiser, multiplied by the average benefit on that
sale. That value is denoted by vi for each advertiser i ∈ K.
We assume that it is a private knowledge of each advertiser.
However, we consider that advertisers have some knowledge
regarding their opponents, as formalized below.

Assumption A: All advertisers know the total number K of
advertisers interested in the considered keyword. Moreover, all
advertisers assume that the valuations of their competitors are
drawn from a probability distribution that is common knowl-
edge, with cumulative distribution function F and density f ,
whose support is denoted by SF .

Due to the incentive compatibility property of the auction
scheme, we assume that each advertiser i ∈ K bids truthfully,
i.e., declares his valuation vi, when he decides to participate
in an auction. The bidding strategy of an advertiser then
consists in decisions regarding whether to participate or not
in any auction when the keyword is searched for by a user.
The objective of each advertiser will be to participate in

the maximum number of auctions (because of the individual
rationality property) while not spending more on average that
his budget limit Bi per time unit.

Remark that the more advertisers participate in a given
auction, the fewer chances they have of winning the auction
and the more likely the winner is to pay a high charge.
Therefore advertisers should try to participate in different
auctions when it is possible, and thus a strategy consisting
in participating to all auctions until the budget is spent is
clearly not optimal. Since advertisers are not supposed to
be able to coordinate their actions so as to minimize the
price paid, the most natural way for them is to randomize
their participation: at each auction, each provider i ∈ K
chooses to participate with probability pi, and stays out of
the auction with probability 1 − pi. The strategic variable of
each provider i ∈ K is then his bidding probability pi, that
has to be computed so as to satisfy the budget constraint.
That bidding probability should depend on the value vi of a
clicked ad, and on the budget Bi of the advertiser. However, to
simplify the analysis we do not consider that latter parameter,
by considering advertisers with equal budgets.

Assumption B: All advertisers have the same budget limit
B. Formally, ∀i ∈ K, Bi = B.
Even if this assumption restricts the model, it still allows to
highlight the impact of other parameters in a strategic game
among advertisers, such as for example the click-through-rate,
the purpose of this paper.

III. EQUILIBRIUM STRATEGIES OF THE AUCTION GAME

A. Bidding function

In our model, advertisers differ only by their valuation vi,
so that the bidding probability should be a function of vi. We
denote by p that function: ∀i ∈ K, pi = p(vi).

In the rest of this section, we derive conditions for p to be
an equilibrium bidding function, and we prove its existence.

B. Expected distribution of competitor bids

We consider an advertiser i ∈ K, with valuation vi. From
his point of view (i.e., given the information he has), all
K − 1 competitors are identical in distribution: each one has
a valuation v taken from the distribution F and participates in
each auction independently with probability p(v).

So advertiser i could reason by conditioning for a given
auction: a given competitor will a priori

• not participate in the auction, with probability

N :=

∫
v

(1− p(v))f(v)dv = 1−
∫
v

p(v)f(v)dv (1)

• participate in the auction with a bid in the interval [v, v+
dv] with probability p(v)f(v)dv.

Each advertiser can then compute the a priori cumulative
distribution H of the bid of one particular competitor, H(v)
being the probability that the competitor does not bid, or bids
a value below v:

H(v) = N+

∫ v

u=0

p(u)f(u)du = 1−
∫
u>v

p(u)f(u)du (2)



C. Expected winning probability and price paid per auction

An advertiser i ∈ K bidding vi in a given auction will win
the auction if all of his K − 1 competitors:

• either do not bid in that auction,
• or (non-exclusively) have a valuation below vi.
Given the information available to advertiser i, each com-

petitor submits a bid below vi or no bid at all with probability
H(vi), independently of each other. The a priori probability
Pwin(vi) of i winning an auction where he bids vi is thus

Pwin(vi) = H(vi)
K−1 =

(
1−

∫
v>vi

p(v)f(v)dv

)K−1

. (3)

We now compute the price that advertiser i expects to pay
when bidding vi. To do so, we compute the distribution of
the maximum value among the K − 1 potential bids from the
competitors. That cumulative distribution is simply

Hmax(v) := (H(v))K−1. (4)

Indeed, the maximum of the potential bids of competitors is
smaller than v if and only if all bidders place a bid below v
or do not participate.

Finally, an advertiser is charged only if he wins the auction
and the user clicks on the ad. Therefore the price E(vi) that
advertiser i expects to pay when bidding vi in an auction is

E(vi) = q

∫ vi

v=0

vdHmax(v) (5)

= q

∫ vi

v=0

(K − 1)(H(v))K−2vh(v)dv, (6)

where h(v) is the right derivative of H at v, and equals
p(v)f(v) from (2).

Note that E(vi) can be written only in terms of the number
K of advertisers, the bidding function p, and the density f of
the valuation distribution:

E(vi) = q(K−1)

∫ vi

v=0

(
1−
∫
u>v

p(u)f(u)du

)K−2

vp(v)f(v)dv.

(7)

D. Equilibrium condition

We now express the condition for p to be an equilibrium
bidding function, i.e., for each advertiser i ∈ K with valuation
vi to choose to participate in each auction with probability
p(vi) if he knows that his competitors apply the same strategy.

Recall that there are on average λ auctions per time unit,
and that when advertiser i bids his valuation vi on a given
auction, he expects to pay E(vi) on average as expressed
in (7); consequently his average budget spent per time unit
is λpiE(v) if advertiser i bidding probability is pi.

Now, if advertiser i wants to bid as often as possible while
conforming to his budget constraint B, his bidding probability
should be

pi = min

(
B

λE(vi)
, 1

)
, (8)
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Figure 1. Equilibrium bidding strategies.

which should also equal p(vi) if p is an equilibrium bidding
function. Formally, the equilibrium condition is thus expressed
by the following (functional) fixed point relation:

∀v, p(v) = min

(
1 ,

B/(λq(K − 1))∫ v
w=0

(
1−

∫
u>w

p(u)f(u)du
)K−2

wp(w)f(w)dw

)
(9)

Under mild assumptions, such a bidding function exists.
Proposition 1: Assume that the valuation distribution F

admits a density f and has a finite mass, i.e.
∫
f(v)dv < +∞.

Then there exists an equilibrium bidding strategy function p(·).
Due to space limitations, the proof is omitted here. The

interested reader can find it in [12].

E. Numerical analysis

We present here some numerical results that have been ob-
tained for a uniform distribution of valuations over the interval
[0, 1]. Starting with an initial bidding strategy function, we
successively computed the corresponding best-reply functions
(the functions p(v) that maximize the utilities), applying the
right-hand side of (9), until the bidding function stabilizes.That
algorithm converged to the same function for all the initial
conditions we tried, thus although we were not able to prove
the uniqueness of the equilibrium bidding strategy function,
our results suggest that the equilibrium is unique, or at least
that there is a unique stable equilibrium.

Figure 1 displays that equilibrium bidding function when
advertisers have a budget limit B = 1, λ = 10 user searches
for the considered keyword occur on average per time unit,
with users clicking on the ad with probability q = 0.5.

We remark that low-valuation advertisers bid more often
than high-valuation advertisers, since the latter are more likely
to win the auction and to spend their whole budget within few
auctions. For valuations below a given threshold, advertisers
simply participate in all auctions since they do not manage
to spend their whole budget. This for two reasons: first, since
GSP auctions ensure that the price paid is below the valuation,
then advertisers with valuation v will expect to pay less than
λqv per time unit; thus if v < B/(λq) then on average it is
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Figure 2. Winning probabilities at equilibrium (knowing that the player bids).

impossible to spend the budget B. Second, as highlighted in
Figure 2 the probabilities of winning the auction are extremely
small when submitting a low bid.

Interestingly, we note in Figure 1 that equilibrium bidding
functions are not monotone in the number K of players (here,
advertisers): for example advertisers with valuation in the
interval [0.43, 0.7] bid more often when K = 10 than when
K = 5, while it is the opposite for advertisers with valuation
above 0.7. This can be interpreted as follows: when the number
of bidders is small, then high-valuation advertisers are almost
sure to win the auction they participate in, but they face few
other bids, whose maximum (the corresponding charge for the
winner) is more likely to be small. Therefore to spend the
whole budget those advertisers may have to bid more often. On
the contrary, for medium-valuation advertisers the difference in
the probabilities of winning the auction (the more competitors,
the fewer chances of winning) overcomes the effect of the
number of competitors on the price paid per auction won
(which diminishes when the winner has a low valuation).

Finally, Figure 3 displays the price E(v) that an advertiser
expects to pay each time he bids v. In accordance with the
observations from Figure 1, low-valuation advertisers pay less
per auction when the number of competitors increases (since
they have fewer chances to win the auction), while high-
valuation advertisers will pay more (since they still frequently
win the auctions they participate in, but tend to face higher
bids).

IV. BUDGET REPARTITION BETWEEN TWO SEARCH
ENGINES

We now consider that two search engines (e.g., Google and
Yahoo!) run auctions among advertisers for the considered
keyword, and we investigate the budget repartition of adver-
tisers between those two search engines.

A. Model

As in the previous section, we analyze the symmetric case
in terms of budgets and click-through rates: all advertisers are
assumed to have the same total budget B, and the same click-
through rate q` on search engine `.
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Figure 3. Expected price Ev [c] paid by an advertiser who bids v.

Consequently, at an equilibrium (if any), all advertisers will
apply the same bidding strategy (that will be a function of their
valuation v). Note that we implicitly make the assumption here
that advertiser valuations are identical on both search engines,
i.e., the probability of a click on the ad to lead to a sale is
independent of the search engine chosen by the user.

Both search engines differ by their success that is charac-
terized by the number of requests per time unit λ`, and by
the probability q` of users clicking the ad. Actually only the
product λ`q` matters: it indeed represents the average number
of clicked ads per time unit, which is what advertisers want
to “buy” through the auction.

Each advertiser i has a total advertising budget B to spend,
and decides, depending on his valuation, how to spread that
budget between the two search engines. Equivalently, that
budget repartition decision can be interpreted in terms of
bidding probabilities p`,i on each search engine ` = 1, 2.

B. Equilibrium analysis
Using the same principles as before, we denote by p`(v) the

probability that an advertiser with valuation v bids, on each
auction of search engine `, for ` = 1, 2.

Then for a given search engine `, the probability H`(v)
that some (random) advertiser does not bid or bids below the
value v can be computed following (2). Likewise, when there
are K advertisers, the probability Pwin,`(v) that an advertiser
bidding v wins the auction is (H`(v))

K−1 , which is also the
distribution of the maximum bid among the K−1 competitors.

Consequently, the expected price E`(v) that an advertiser
pays when he decides to bid v on search engine ` while
his competitors follow the strategy p` can be computed as
described in (7). The expected cost per time unit of the bidding
policy (p1, p2) is therefore

C = λ1p1(v)E1(v) + λ2p2(v)E2(v). (10)

When all advertisers have the same total budget B per time
unit, they should fix their bidding strategy so as to maximize
the expected payoff under the constraint that C ≤ B. For an
advertiser with valuation v, that expected payoff is

P := λ1p1(v)(vq1Pwin,1(v)− E1(v))

+λ2p2(v)(vq2Pwin,2(v)− E2(v)). (11)



The question becomes how to distribute the budget among
the two search engines: if for an advertiser with valuation v
an optimal solution is such that p1(v) > 0 and p2(v) < 1,
then this means that transferring one infinitesimal amount of
budget from search engine 1 to search engine 2 could only
decrease the payoff. From (10), to represent the same total
budget such a change in the budget repartition should translate
into probability changes dp1 < 0 and dp2 > 0 such that

dp2λ2E2(v) = −dp1λ1E1(v).

From (11), the optimality of (p1, p2) thus implies that such
a change would correspond to a revenue decrease:

0 ≥ dP = λ2dp2

(
(vq2Pwin,2(v)− E2(v))

−(vq1Pwin,1(v)− E1(v))
E2(v)

E1(v)

)
,

which gives

E1(v)(vq2Pwin,2(v)−E2(v)) ≤ E2(v)(vq1Pwin,1(v)−E1(v)),

i.e., E1(v)
q1Pwin,1(v)

≤ E2(v)
q2Pwin,2(v)

. This is natural, since the ratios
compared are the average prices for a won (clicked) auction: if
it is cheaper to have a customer click one’s ad on search engine
1 than on search engine 2, then transferring some budget from
SE1 to SE2 is not beneficial. Inverting the roles of the search
engines, we obtain the following optimality conditions, that are
necessary conditions for (p1, p2) to describe an equilibrium:

p1(v) > 0, p2(v) < 1 ⇒ E1(v)

q1Pwin,1(v)
≤ E2(v)

q2Pwin,2(v)
,(12)

p1(v) < 1, p2(v) > 0 ⇒ E2(v)

q2Pwin,2(v)
≤ E1(v)

q1Pwin,1(v)
.(13)

We can therefore infer the behavior (p̄1(v), p̄2(v)) of a
profit-maximizing advertiser with total budget B that assumes
that the opponents follow the bidding strategy (p1(v), p2(v)).
Based on the expected costs E1(v) and E2(v) computed ac-
cording to (7), and the winning probabilities on both auctions
with bid v:
• if λ1E1(v) + λ2E2(v) ≤ B then set

p̄1(v) = p̄2(v) = 1. (14)

• else if E1(v)
q1Pwin,1(v)

< E2(v)
q2Pwin,2(v)

set p̄1(v) = min
(

1, B
λ1E1(v)

)
p̄2(v) = max

(
0, B−λ1E1(v)

λ2E2(v)

) (15)

• else if E1(v)
q1Pwin,1(v)

> E2(v)
q2Pwin,2(v)

set p̄1(v) = max
(

0, B−λ2E2(v)
λ1E1(v)

)
p̄2(v) = min

(
1, B

λ2E2(v)

) (16)

• else if E1(v)
q1Pwin,1(v)

= E2(v)
q2Pwin,2(v)

, select any p̄1(v) such that

max

(
0,
B − λ2E2(v)

λ1E1(v)

)
≤ p̄1(v) ≤ min

(
1,

B

λ1E1(v)

)

(17)
and set p̄2 =

B − p̄1λ1E1(v)

λ2E2(v)
(18)

Relation (14) corresponds to the case where the advertiser
budget is large enough to participate in all auctions. On the
other hand, (15)-(18) give the best-reply strategy when the
budget does not allow to always bid: advertisers then prefer the
most efficient search engine in terms of the metric E`(v)

q`Pwin,`(v)
.

For the special case when both search engines have the exact
same value of the efficiency metric, then any splitting of the
budget B among the two search engines is a best reply.

Now, applying iteratively that best-reply algorithm to a
given starting bidding strategy does not converge in general.
Indeed, (17)-(18) describe an infinity of best replies, while the
choice of one of those best-replies affects the next iterations
of the algorithm, provoking oscillations.

Therefore, we look for symmetric equilibrium strategies,
i.e., equilibrium strategies (p1, p2) that verify the property
p1 = p2: each advertiser bids on both auctions with the
same probability. Indeed, such strategies will ensure that
E1(v)

q1Pwin,1(v)
= E2(v)

q2Pwin,2(v)
, which means that each advertiser

is indifferent between both search engines, but conforms to
(p1, p2) so that his competitors are also indifferent between
the search engines (typical of mixed equilibrium outcomes).
Furthermore, with the model we have defined it is natural to
look for symmetric strategies since search engines only differ
by their numbers of requests per time unit, and the click-
through rate on the ads they display: because only clicked
ads are charged, advertisers can consider that there are a total
of λ1q1 + λ2q2 clicked ads per time unit to compete for.

Remark that based on those arguments, the results presented
here can easily be generalized to the case of more than two
search engines in competition.

C. Numerical results

We present here the results that have been obtained when
applying successive (symmetric) best-replies to an initial sym-
metric bidding strategy (p1, p2) = (p, p). The curves displayed
here are for the set of parameters λ1 = λ2 = 10, q1 = 0.8,
q2 = 0.5, B = 1 and valuations uniformly distributed on [0, 1].
The results are shown in Figures 4 to 6.

Note that the shapes of the bidding probability functions,
the winning probabilities, and the expected price paid per bid,
are similar to what we obtained for the case of a single search
engine. This is because from a mathematical point of view only
the total number of clicked ads per time unit has changed (it
was λq = 5 in Section III, and now equals λ1q1 + λ2q2 =
13). Since that number has increased, advertisers tend to bid
less frequently on each auction. Also, note that the expected
prices paid per auction on both search engines only differ by
proportionality coefficients that are their click-through rates,
in accordance with (7). The budgets spent by advertisers on
both search engines differ as well by the same coefficients.

We finally observe the effect of those coefficients, by
studying the impact of some variations in the click-through
rate of search engine 2, while the other parameter values are
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Figure 4. Equilibrium bidding strategies at each SE.
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Figure 5. Winning probabilities at equilibrium (knowing that the player bids)
at SE i.

unchanged (λ1 = λ2 = 10, q1 = 0.5, and B = 1). The
expected revenue of search engine 2 is plotted in Figure 7.
Interestingly, that total revenue appears to be a concave
nondecreasing function of its click-through rate. Similarly, it
would also be a concave nondecreasing function of its user
request frequency since advertisers are only sensitive to λq.

This suggests that, when search engines can improve their
request rates (and possibly CTR) through some investments
to attract more customers and/or to target specific consumer
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Figure 6. Expected price E1(v) paid by a user who bids v on SE 1 (multiply
by q2/q1 to get E2(v)).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

CTR of search engine 2

E
xp

ec
te

d
re

ve
nu

e
of

SE
2 K = 5

K = 10

K = 20

K = 50

K = 100

Figure 7. Expected revenue of search engine 2, per time unit, per advertiser.

segments, anticipating the advertisers’ reaction should be taken
into account to make the optimal investment decisions.

V. CONCLUSIONS AND FUTURE WORK

Based on a game-theoretic model to analyze the bidding
decisions of information-limited and budget-limited advertis-
ers, we have shown that a bidding strategy equilibrium exists,
where each advertiser participates in each auction with a fixed
probability that depends on his valuation. When several search
engines run auctions to make revenue, we have observed that
the expected profit of a search engine is a nondecreasing
concave function of its number of requests per time unit, and
of the click-through rate on its ads. Consequently, a higher-
level game played among search engines who would anticipate
advertiser bidding strategies would be interesting to analyze.

Other directions for future work include relaxations of some
of the assumptions made in this paper: advertiser budgets could
differ among advertisers, and the case of several displayed ad
slots could be studied. The model could also be extended to
consider advertiser-related click-through rates, which would
moreover add another strategic decision for search engines,
that is to base their ranking scheme on bids only or on the
products bid×CTR (the so-called revenue-based mechanism).
Analyzing the game then played between search engines, as
has been done in [7], [13] for different advertiser models,
would be of interest.

Finally, we have assumed that advertisers bid truthfully,
based on the incentive properties of the (one-shot) auction
scheme. Nevertheless, here we have repeated auctions, which
opens the possibility for advertisers to bid below their valua-
tion so as to reduce the price paid when they win an auction.
Advertisers may have an interest to follow such a strategy
when their budget limit does not allow them to bid truthfully
on all auctions. That approach deserves some attention.

ACKNOWLEDGMENTS

This work has been partially funded by the EuroNF NoE and
by the French Agence Nationale pour la Recherche through
the CAPTURES project.



REFERENCES

[1] D. Liu, J. Chen, and A. B. Whinston, “Ex ante information and the
design of keyword auctions,” Info. Sys. Research, vol. 21, pp. 133–153,
March 2010.

[2] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra, “Sponsored search
auctions,” in Algorithmic Game Theory, N. Nisan, T. Roughgarden,
E. Tardos, and V. Vazirani, Eds. Cambridge University Press, 2007,
ch. 28, pp. 699–716.

[3] H. Varian, “Position auctions,” International Journal of Industrial Or-
ganization, vol. 25, pp. 1163–1178, 2005.

[4] M. J. Osborne and A. Rubinstein, A Course in Game Theory. MIT
Press, 1994.
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