
Distributed Workload and Response Time

Management for Web Applications

Shengzhi Zhang∗, Haishan Wu†, Wenjie Wang‡, Bo Yang†, Peng Liu∗, Athanasios V. Vasilakos§

∗The Penn State University, University Park, PA, USA
†IBM Research - China, Beijing, China

‡Shanghai Synacast Media Tech. (PPLive) Inc. China
§National Technical University of Athens, Greece

Email: suz116@psu.edu, wuhais@cn.ibm.com, wenjiewang@pplive.com,

boyang@cn.ibm.com, pliu@ist.psu.edu, vasilako@ath.forthnet.gr

Abstract—Managing workload for large scale web applications
is a fundamental task for satisfactory quality of service, low
management and operation cost. In this paper, we present
SCOPS, a system of distributed workload management to achieve
service differentiation and overload protection in such large scale
deployment. Our system splits the workload management logic
into distributed components on each back-end server and front-
end proxy. The control solution is designed to protect the back-
end server from overloading and to achieve both efficient usage of
system resource and service differentiation by employing a unique
optimization target. The control components are automatically
organized based on the flow of workloads, such that management
overhead is minimized. SCOPS is extremely flexible because it
requires no source code changes to host OS, application servers,
or web applications. Additionally, the distributed design makes
it scalable and robust for cloud scale server deployment. Exper-
iments with our implementation confirm SCOPS’s performance
with dynamic heavy workload, incurring neglectable runtime
overhead. More importantly, SCOPS also ensures fault-tolerance
and fast convergence to system failures.

Keywords-Admission control; service class differentiation; dis-
tributed computing; cloud

I. INTRODUCTION

With the rapid expansion of cloud offerings, more appli-

cations are hosted in clouds for the benefit of scalability

and cost saving. Thus, managing workload with satisfactory

quality of service for large scale server deployment becomes

a fundamental task to reduce management and operation cost.

Large scale server farm usually consists of multiple tiers of

servers, e.g., HTTP servers in the front tier, proxy servers in

the middle tier, and application servers (usually with database

servers) in the back-end tier. The HTTP server tier filters

out invalid/malicious requests and forwards legitimate ones

to the proxy tier, which in turn routes these requests to the

corresponding application servers. In this paper, we focus on

the workload management between the proxy tier and back-

end server tier.

Workload management has been widely studied in the liter-

ature of application servers load balancing, where centralized

controllers have been used to manipulate the traffic going

through proxies [8], [15], [22], [11], and [5]. A central “hub”

collects and audits the workload arrival rate and processing

time, then regulates the workload queuing time and forwarding

path accordingly. In some cases, the management decision is

made in a centralized fashion, but executed distributively by a

number of proxy-tier servers. A common practice to improve

the scalability of such centralized solutions is to group proxies

and application servers into small clusters, which unfortunately

increases management overhead and causes resource under-

utilization in case of load imbalance among clusters.

In this paper, we propose a fully decentralized workload

management system, named SCOPS (Sub-Controller On Prox-

ies and Servers), to achieve load balancing, overload pro-

tection, and QoS differentiation in cloud-based server farms.

SCOPS splits the controlling functionality into two sets of

components, and distributes them among all involved servers.

Specifically, a sub-controller on each back-end server monitors

local resource usage and applies an application-characteristics-

free approach to estimate the maximum request rate that this

server may handle. Then it dynamically allocates the max-

imum rate among control components located on the proxy

tier (named proxy dispatcher) as quotas. Based on the limited

quotas, each proxy dispatcher accordingly controls workload

of different priorities using a carefully-designed optimization

target that concerns both resource utilization maximization and

service differentiation.

In summary, we make the following contributions:

1) An effective distributed controlling framework. The pro-

posed design is based on quite some realistic deployment

scenarios. It is simple and effective to meet the scalability

and robustness requirements of large scale server deployment,

e.g., clouds.

2) Light-weight and adaptive controllers. Our solution in-

volves no changes to the source code of web applications,

server software, nor operating systems, thus easing deploy-

ment effort. Our approach avoids accurate modelling or deep

instrumentation of the controlled system, and produces a very

adaptive solution. Furthermore, our evaluation shows that the

management overhead is negligible for large scale server

deployment.

3) Implementation and evaluation of the system. We have

implemented the whole SCOPS solution and evaluated it in
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Fig. 1. An example of Workload Distribution and Resource Sharing in Cloud

a heterogeneous server environment. We confirm that over-

load protection and service classification can be achieved

effectively with our distributed design. The results show that

SCOPS is robust and reliable, which can tolerate system

component failures very well.

The rest of this paper is organized as follows. We introduce

the server deployment scenario and overview SCOPS system

in Section II. The details of our control components are

presented in Section III and Section IV, respectively. We

show our performance evaluation in Section V and discuss the

related work in Section VI. Section VII concludes the paper.

II. SYSTEM AND DESIGN OVERVIEW

In this section, we start with the description of general

application server deployment scenario. Then we present the

overview of our decentralized design, with control function-

ality spreading among sub-controllers and proxies. Last, we

describe the extendibility of SCOPS.

A. Scenarios and Requirements

Resource sharing is a common practice for efficient usage of

cloud facilities. We recognize three levels of resource sharing

in general application server deployment: application instance

sharing, application server sharing, and server node sharing,

sorted from the top application level to the bottom physical

level. That is, multiple application servers (e.g., JVM inside

one virtual machine) could run on a physical server (server

node sharing), while different application instances1 are run-

ning in an application server (application server sharing). The

sharing of upper level resource also indicates the sharing of

lower level resource.

Fig. 1 shows a typical example of the recognized resource

sharing in general application server deployment, which we

determine as our design scenario. The proxy dispatcher serves

as a router, forwarding service requests2 to the corresponding

application instances. An application instance can be “shared”

1We refer to the presence of an application on an application server as an
application instance.

2We use the term workload and request interchangeably based on context.

by several proxy dispatchers, for instance, both Proxy I and

Proxy II can route workload to the application instance a on

server node C. Additionally, Proxy I and Proxy II share the

same application server on server node A, and proxy II and

III share the same physical server A.

There is resource competition even within the same resource

sharing level. For example, the requests of the same applica-

tion may have different quality of service (QoS) requirements,

usually stated in the Service Level Agreement (SLA). In this

paper, QoS requirements are defined to be the combination

of preferential fairness and average response time. The shared

resources are more likely to be given to workload with high

priority.

The combination of preferential fairness and average re-

sponse time reflects the management principles of QoS assur-

ance in practice, particularly for the enterprise private cloud.

Instead of dedicating abundant amount of resources to the high

priority workload and starving the low priority one, certain

degree of degradation in response time can be tolerated in

exchange for continuous service among all workload. The

service providers configure the degree of tolerance by means

of business importance for different workload.

B. Design Overview

We propose a decentralized workload management solution

named SCOPS with three key functionalities: load balanc-

ing, overload protection, and QoS differentiation. For both

scalability and fault tolerance, SCOPS spreads the resource

management and traffic control functionalities among a set of

control components located on each system component. The

connection and collaboration among these control components

are designed to be simple and “soft”, i.e., without tight

integration or dependency, such that failure of one component

does not severely affect the others. We define two control roles

in our system: sub-controller attached to each back-end server

and proxy dispatcher attached to each front-end proxy.

1) Sub-controller: The design of sub-controller follows a

few principles, locality and externality. The sub-controller only

measures local resource consumption of the back-end server.

It is dedicated to protect local server from overloading solely

based on local information. This locality policy avoids the

pitfalls of scalability and efficiency problems that may be in-

troduced by remote communication and external dependency.

The sub-controller runs externally outside the application

server, either in virtual machines or physical servers. No

integration with legacy applications greatly improves the flex-

ibility of the controller and eases its deployment. In our

implementation, we prototype the sub-controller as a stan-

dalone, server startup script. It automatically joins the server

farm and starts managing the resources of the local servers.

The sub-controller employs an improved Proportional-Integral

controller, to periodically calculate and adjust the maximum

allowed request rate that a server can support. With this

adaptive method that the maximum rate is adjusted based

on internal feedback loops, the sub-controller does not have
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Fig. 2. System Diagram

to spend time learning the exact load characteristics of the

workload in an accurate model.

2) Proxy dispatcher: The proxy dispatcher regulates the

requests to each back-end server based on the resource quota

allocated from the corresponding sub-controller. In our design,

the proxy dispatcher only receives resource quotas from the

sub-controllers that it directly forwards workload to. This

greatly reduces the communication traffic among our system.

The dispatcher also makes the rate regulation decision among

different service classes only based on the resource quota

received from these limited number of controllers. This makes

the system quite robust and extremely resilient to component

failures.

In order to assure service differentiation and QoS, the proxy

dispatcher consists of two major components, a token-bucket-

based queuing model and a system optimization model with a

penalty-based utility function. The utility function allows the

proxy dispatcher to effectively map the importances of service

classes to their dispatch rate. The queuing model associates the

dispatch rate of different service classes to their QoS in terms

of average response time.

3) Control Component Communication: Fig. 2 illustrates

the collaboration between sub-controllers and proxies to

achieve admission control and service classification at run-

time. The sub-controllers dynamically distribute the available

capacity based on local information and the request profiles

from the proxies. Meanwhile, the proxies that share resources

on this particular server node (by means of forwarding requests

to the application instances running on this server) send back

their own request arrival rates and queuing profiles at the end

of each control cycle. The sub-controller automatically learns

the existence of proxies and distributes the rate quota among

them. The proxies respect the rate quota received from each

sub-controller, thus achieving the overall traffic control during

overload in the cloud.

4) Extendibility: There are two key advantages of SCOPS

framework in its extendibility. One is that it can be easily

applied to any scenario with notions of workload management.

For example, it can be used to perform workload management

among the application server tier and the database tier in

the server farm. The other advantage of SCOPS framework

is that the detailed design of control components can be

replaced and extended easily. The “soft” dependency among

system components allows them to be individually redesigned

or upgraded. In this paper, we choose CPU as our focus

for overload protection, but the sub-controller can be easily

extended to monitor and manage memory, I/O, bandwidth and

other critical resources on the back-end servers.

III. SUB-CONTROLLER DESIGN

Fig. 2 presents system diagram of SCOPS, including control

flow of the sub-controller. During each control cycle, the

resource monitor unit of sub-controller collects the resource

consumption and request arrival information locally, which is

then fed into the rate calculator module. The rate calculator

determines the maximum allowed request rate for the local

server node, which is then further distributed by the resource

manager based on the requests profiles received from each

proxy in the current control cycle. Below we describe the

detailed functionalities of the above components in the sub-

controller.

A. Resource Monitor and Data Collection

One common practice in resource monitoring is to period-

ically sample the usage statistics of the bottleneck resources,

e.g., CPU capacity, memory, bandwidth, etc. We adopt two

levels of control cycles to obtain reliable resource usage in-

formation. One is the external control cycle where the statistics

is summarized and delivered to the resource manager shown

in Fig. 2. The other is an internal cycle of finer granularity

to collect several samples of resource usage status within one

external control cycle. When monitoring the resource usage

of server component externally, there may be some delay

introduced by data caching inside the monitored components.

Collecting multiple samples allows us to filter out outlier and

conduct aggregations, thus obtaining more accurate results.

In this paper, we assume the system’s bottleneck is inves-

tigated by mechanisms like [17] and specified by the cloud

provider, thus the workload is managed towards a known

bottleneck. Considering CPU capacity as the example, the OS

API (e.g., system binary top) can be utilized to obtain the

CPU usage, and the application server or network sniffing

logs can be analyzed to obtain the request arrival rate on

the server. We can also ensure the data collection itself does

not affect the obtained results. For example, the actual CPU

usage of sub-controller can be optimized to less than 0.3% on

average, to ensure the accuracy of our measurement. It is also

feasible to extend the sub-controller to monitor and manage a

combination of system resources or even detect the bottleneck

resource automatically, but these are out of scope of this paper.

B. Adaptive Rate Calculator Design

The rate calculator is designed based on the feedback

Proportional-Integral (PI) controller due to its high adap-

tiveness to the variance of the workload. Fig. 3 illustrates
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the control system diagram. The “Target CPU Utilization”

(target), configured by the system administrator, is the re-

source usage upper bound that the controller operates with.

The “Admission Rate”, the control variable, indicates the

maximum admission rate in correspondence with the CPU

target. The “CPU Utilization”, the system output, reveals the

actual CPU consumption.

The design of our PI controller involves two main steps:

constructing statistical model by system identification; choos-

ing the controller gain using pole placement technique [9].

1) System Identification: System identification is to figure

out the relationship between control inputs and system outputs.

We choose the CPU consumption as our system output, and the

request arrival rate as our control input since it is dynamically

changeable and has great impact on the CPU consumption

[12]. We start from a linear model due to its simplicity as

follows:

y(i) = A ∗ y(i− 1) +B ∗ r(i− 1) (1)

where y(i) is the CPU utilization and r(i) stands for the

request arrival rate during the ith control cycle. We conducted

rounds of empirical experiments and verified that Equation

(1) is able to adequately capture the relationship between

control input and system output. Using linear regression, we

estimate the time invariant unknown parameters A and B in

Equation (1), which are 0.9883 and 0.0259 respectively. The

linear regression fit results in the value of R2 = 0.93, which
indicates a good fit of the model.

2) Controller Design: The incremental form of the PI

controller takes the following format:

r(i) = r(i− 1) + (Kp +Ki) ∗ e(i)−Kp ∗ e(i− 1) (2)

where e(i) = target−y(i) calculates the control error regard-
ing the CPU utilization and r(i), the request rate, represents

the controller input. We use pole placement to calculate the

controller gains Kp and Ki:

Kp =
A− p1p2

b
(3)

Ki =
1− p1 − p2 + p1p2

B
(4)

where the model parameters A and B are derived from system

identification. The pole locations p1 and p2 are obtained from

the desired control performance quantified by the control

settling time and the maximum overshoot. Here, we apply

Kp = 2.809 and Ki = 38.897 respectively.

Two improvements are adopted while implementing the

PI controller. First, the “windup” situation similar to [10] is

also found in our design. To tackle this issue, we replace

r(i−1) in Equation (2) by the actual admission rate measured

by the resource monitor (r′(i − 1)). Second, it is observed

that sometimes the actual admission rate profiled is a little

bit different from the max admission rate regulated by the

controller due to the profiling variance. Our solution is to

replace r(i− 1) in Equation (2) by the minimum of r(i− 1)
and the actual rate r′(i−1) when detecting that the controller

is trying to back off due to overload. Hence, the final PI-

controller is:

r(i) =Min(r(i− 1), r′(i− 1))

+ (Kp +Ki) ∗ e(i)−Kp ∗ e(i− 1)
(5)

C. Resource Manager and Control Cycle Synchronization

At each regular control cycle, the rate calculator returns the

maximum request admission rate for the local server node.

The resource manager then allocates the rate as quotas to the

related front-end proxies as shown in Fig. 2.

For Server i, we assume there are J proxies dispatching

workload to it, and each of the proxy receives µij out of

the maximum rate ri returned by rate calculator on Server i.

Thus,
∑J

j=1
µij = ri. Consequently, for proxy j, if it manages

workloads for applications on I servers, it will receive I

rate quotas from these servers, such that the total rate it

can send back is
∑I

i=1
µij = µj . With the above allocation

and aggregation done at the sub-controller and the proxy

tier respectively, we have to deal with time synchronization

issue among them. Otherwise, the allocation and aggregation

may happen at random moment on different servers, causing

inaccuracy in rate calculation and management.

An internal NTP service is used to roughly synchronize

the clock of sub-controllers and proxy dispatchers. Resource

manager at sub-controller sets its control cycle apart from the

control cycle at the proxy tier by a few seconds. Thus the

control cycle of sub-controller can be roughly synchronized

to be a few seconds behind the control cycle in the proxy tier.

This is to ensure that the resource manager in sub-controller

can receive most recent information from the proxies. For each

proxy dispatcher, as discussed later, it will adjust the rate

whenever it receives the updated quota. This is because the

proxies care more about the resource sharing among different

service classes instead of the absolute rate being shared. The

adaptiveness of our overall framework provides the flexibility

that strict clock synchronization among all components is not

required.

IV. PROXY DISPATCHER DESIGN

Fig. 2 also shows the work flow of the proxy dispatcher. The

incoming requests are classified into different weighted queues

based on their importance. The rate quota received from

resource manager (in back-end sub-controller) is distributed by

dispatch manager among weighted queues to achieve service

classification. In this section, we present the design of proxy

in terms of service classification and admission control.



A. Service Class Differentiation

Service class differentiation is designed to ensure that the

performance goals of different workload can be configured

appropriately for business and economic reasons. These goals

may be specified as part of the SLA between customers and

the service provider. As mentioned earlier, the configuration is

usually stated as the target average response time of different

workload and the business importance of meeting the target.

In order to achieve service classification, each proxy man-

ages multiple waiting queues with different weights for re-

quests of different classes, e.g., gold, silver, and bronze, as

demonstrated in Fig. 2. The incoming requests are classified

into their corresponding service classes, and mapped to the

corresponding weighted queues during the dispatching pro-

cess. Each queue controls the queuing time of its queued

requests based on the rate quota it receives from dispatch

manager.

Our approach to achieving service differentiation consists of

two components: the queuing model and the system optimiza-

tion built upon a utility function. The latter functions when

the system overloads, i.e., the request arrival rate is higher

than the maximum rate quota that a proxy manages. In such

scenario, we have to control the queuing time of each service

class (may lead to certain degree of violation in SLA, e.g.,

longer delay in average response time of each service class),

such that the penalty of SLA violation is minimized.

1) Utility Function: In order to reflect the penalty of failing

to meet the target response time of each service, we design a

utility function Ujk for proxy dispatcher j, which represents

the penalty for service class k based on its current response

time Tjk and the business importance Ijk:

Ujk(Tjk) =
Ijk

2
{(Tjk−djk)+

√

((Tjk − djk)2) + 0.5}, (6)

where djk is the target response time for service class k in

the proxy dispatcher j.

Under the definition of our utility function, the optimization

goal is to minimized the total utility Uj =
∑n

k=1
Ujk(Tjk)

during runtime, where n is the number of the service classes.

That is, the proxy needs to determine the dispatching rate

µjk for each service class according to the following con-

strained optimization problem: min{µjk} Σ
n
k=1

Ujk(Tjk), un-
der the constraint of

∑n
k=1

µjk = µj .

2) Queuing Model: We now associate service class dispatch

rate with its responding time. In other words, in order to

determine µjk for each service class, we need to obtain the

relationship between µjk and Tjk to translate the constrained

optimization problem into min{µjk} Σ
n
k=1

Ujk(Tjk(µjk)), un-
der the constraint of

∑n

k=1
µjk = µj . We employ a queuing

model, named Generalized Processor Sharing (GPS) Queue

[6], to captures the transient behavior of various workload. We

adopt such model not only because it is applicable to dynamic

resource allocation in shared servers but also because it does

not rely on the steady-state assumptions.

Thus, we model our queuing system as follows:

Tjk(i) =
Wjk(i)

Wµjk(i)
(qjk(i) +

Wjk(i)

2
(λjk(i)

− µjk(i))) +
1

µjk(i)

(7)

Here, Wjk(i) is the non-empty time of queue k during the ith

control cycle.W denotes the time duration of one control cycle

and µjk(i) represents the dispatching rate. λjk(i) denotes the
request arrival rate of queue k during the ith control cycle.

qjk(i) is the initial queue length of queue k at the beginning

of the ith control cycle.

The value of qjk(i) can be easily measured at the beginning

of each control cycle. Both Wjk(i) and λjk(i) should be

estimated since neither of them can be measured until the

end of each control cycle. A straightforward way to estimated

Wjk(i) and λjk(i) is to approximate them to the same statistics

measured from the last control cycle. Although some precision

is lost by this approximation, it is validated to be effective

and acceptable in Section V. As a result, Equation (7) can be

translated into

Tjk(i) =
Wjk(i− 1)

Wµjk(i)
(qjk(i) +

Wjk(i− 1)

2
(λjk(i− 1)

− µjk(i))) +
1

µjk(i)
.

(8)

By applying the Lagrange multiplier to Equation (8) [4],

the optimization problem with constraints can be reduced to

unconstrained optimization problem as follows:

Lk(µjk, α) = Σn
k=1Ujk(Tjk(µjk))− α(Σn

k=1µjk − µj)

Thus, the optimization is translated into the minimization of

function Lk, that is, to solve ∇µjk,αLk(µjk, α) = 0 for the

best allocation of µjk.

B. Rate Control and Load Balancing

At the beginning of each control cycle, the dispatch manager

obtains the calculated weight of each queue from the utility

function described above. The weight is the percentage of

overall rate allocated to one queue. Then the dispatch manager

distributes the rate quota received from the sub-controller to

each queue based on its weight. The rate of each queue is

updated whenever the proxy receives rate update from the

back-end sub-controllers, but the weight of each queue is only

recalculated once per control cycle as discussed above.

We implement the rate control utilizing the token bucket

algorithm. On each queue of one proxy dispatcher, we main-

tain one token bucket policer for each back-end sub-controller

the proxy forwards workload to. The rate of the token bucket

is set to the corresponding divided rate quota from each

sub-controller based on the weight of this queue. The burst

size is set based on the capacity profiling of each back-end

server. For a request belonging to a queue, by examining the

queue’s available token for each sub-controller, the proxy can

determine whether the request can be admitted into the back-

end system, and which server the request should be forwarded



TABLE I
LOAD DYNAMICS DURING THE EXPERIMENTS

Stage
Control

Cycle ID
Duration Concurrency Think Time

Request CPU

Consumption
Stage Description

0 0 400 sec 1 100ms low Warm up

1.a 20 360 sec 1 50ms low Light Load: adjust request arrival interval

1.b 38 340 sec 2 50ms low Light Load: adjust the number of clients

1.c 55 400 sec 2 50ms high Light Load: adjust request CPU requirement

2.a 75 580 sec 10 50ms high Overload: transit from heavy load

2.b 104 620 sec 12 50ms high Overload: adjust the number of client

2.c 135 540 sec 12 50ms low Overload: adjust request CPU requirement

3.a 162 360 sec 2 50ms low Fluctuation: overload to light load

3.b 180 360 sec 12 50ms low Fluctuation: light load to overload

4 198 260 sec 1 50ms low Ramp down

to. The tokens can be examined in a round robin fashion to

ensure fairness and load balancing.

V. PERFORMANCE EVALUATION

A set of experiments are conducted to demonstrate the

performance of managing server CPU consumption while

maintaining the predefined QoS requirement under dynamic

workload.

A. Experimental Environment

In order to verify the adaptability of our design, we inten-

tionally choose three heterogeneous computers as our applica-

tion server platforms, in particular with different processors:

Intel Xeon X3430 quad-core, Intel Core 2 Duo E6400 dual-

core, and Intel Core 2 Duo T9300 dual-core respectively. We

have three proxies and three clients running on a separated

machine with two Intel Xeon E5405 processors. All the

machines are connected by Gigabit Ethernet. We use Apache

Tomcat 6.0.29 as the application server, and Tinyproxy [1], a

light weight HTTP proxy daemon, as our proxy.

A synthetic workload generator is used to generate http

requests, with inter-arrival time (think time) following a trun-

cated negative exponential distribution. The workload can be

adjusted dynamically at runtime by changing the mean and

the bias of the chosen think time distribution or the number

of concurrent requests. By mapping the URL, the workload

generator produces requests with three service classes: Gold,

Silver, and Bronze. All of them share the same average

response time target (200ms), but with different importance

marked as IG, IS and IB respectively. To emulate CPU

consumption in the application server, we deploy a CPU-

intensive application on all servers, which computes the sum of

N integers every time. Hence, the CPU consumed per request

can be adjusted by different value of N supplied through the

workload generator.

During the experiment, the characteristics of the workload

are changed dynamically. Table I summarizes the parameters

for each stage and the purpose of doing such changes. Basi-

cally, the workload changes during light load (Stage 1), over-
load (Stage 2), and workload fluctuation (Stage 3). We choose

80% as the target CPU usage for each application server, and

20 seconds as the control cycle for both sub-controllers and the

proxy dispatchers. Below, we present the evaluation results of

SCOPS in terms of overload protection, service differentiation,

and robustness against control component failure.

B. Scenario 1: Overload Protection and Service Differentia-

tion

The CPU utilization of all the application servers is shown

in Fig. 4. The workload stage is marked by the top x axis.

Given the target CPU utilization at 80%, the controllers main-

tain a stable CPU consumption during the overload stages,

regardless of the dynamics of the workload. As shown in

Fig. 4, quick convergence and little oscillation are observed for

all the application servers, even though they are heterogeneous

in their computation capacity.

Fig. 5 illustrates the throughput for one application server

(arrival rate), together with the target rate calculated by

our sub-controller. Both of them experience very limited

oscillation, although the control is conducted without a priori

knowledge of workload characteristics. We observe similar re-

sults for the other application servers, which are not presented

here due to space limit.

Fig. 6 shows the throughput of all the service classes on

Proxy III. Under the light load stage, each service class is

equally treated since there is no resource contention. During

the overload stage, the effect of service differentiation emerges

due to the limit of CPU capacity. Service class with higher

importance receives more resources, so Gold class experiences

limited queuing and shorter waiting time. The evaluation

result confirms that Gold wins with the highest throughput.

Similarly, Silver class outperforms the Bronze class.

In order to demonstrate that our service differentiation

achieves low overall QoS penalty, we repeat the same ex-

periment by using a static weighted assignment algorithm

based on service class importance. The dispatching rate µjk

is calculated with the following function: µjk =
Ijk∑

n
k=1

Ijk
µj .

The comparison of the total utility is shown in Fig. 7. SCOPS

shows better performance with less penalty during overload,

and outperforms the static weighted assignment by 50% on

average.

C. Scenario 2: Fault Tolerance against Server or Proxy Fail-

ure

In order to evaluate the resilience of SCOPS, the same

setup as Scenario 1 is used, but with fewer stages in workload

characteristic changes. In particular, we limit the experiment

to stage 0, 1.b, 2.c, and 4. The experiment is repeated twice,

with failure and restart of a back-end application server and a

proxy server respectively.
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Fig. 9. Resilience to Proxy Failure and Recovery

In the first run, we turn off one application server to

emulate the application server failure. Fig. 8 shows the sum

of the throughput for each service class. The server failure

happens in the middle of stage 1.b, as marked in the figure.

The system throughput drops a little bit due to the reduction

of overall server capacity. However, the overall throughput

remains stable most of the time, not affected by the server

failure. In stage 2.c, the same application server is restarted to

simulate a server reboot or addition. This event is also marked

in Fig. 8. The overall throughput increases quickly, and is even

higher than the time before server failure. This is caused by

additional load at stage 2.c comparing to the light load of

stage 1.b. We observe that the throughput converges quickly

within 5 control cycles with little oscillation, demonstrating

resilience to such server failure.

In the second run, a front-end proxy is shut down and then

brought up to evaluate the system’s performance. Fig. 9 shows

the CPU utilization and the throughput of one application

server (the other servers share similar qualitative results).

As marked in the figure, one of the proxy is shut down

during stage 1.b. The capacity assigned to the failed proxy is

redistributed to the other running proxies quickly. We observe

no impact to the performance of our system. The proxy restarts

during stage 2.c. Similarly, both the CPU utilization and the

throughput remain stable with very little oscillation during the

change. We have also tested system failure cases with different

workload profiles, and observed similar results as presented.

These evaluations confirms the resilience of our decentralized

system to control component failures.

D. Runtime Overhead

Our approach requires several parameters to be measured

and exchanged among the proxy dispatchers and servers during

TABLE II
OVERHEAD OF SCOPS: COMPARISON OF RESPONSE TIME

Architecture
Response Time Under Throughput

12.75 Req/s 60 Req/s 97.5 Req/s

Without Proxy 133.3ms 149.3ms 205.2ms

SCOPS 134.3ms 150.7 207.4ms

Delay Overhead 0.75% 0.94% 1.07%

runtime. We monitor the CPU overhead imposed by the sub-

controller to the back-end server, and find that the CPU

overhead of this online estimation is negligible, less than 0.3%

across a number of experiments, even when the controller is

working intensively during the control cycles.

The queuing operation and weight calculation of proxy

impose response delay. We compare the baseline response

time (requests directly go to application server bypassing

the proxy) with our managed response time (requests are

forwarded by our proxy dispatcher with queuing and cal-

culation functionality). Table II shows that, as throughout

increases from 12.75 requests per second to 97.5 requests

per second, the delay incurred by the proxy increases slightly

from 0.75% to 1.07%, about 1-2 ms. Thus, we believe that the

management mechanism in proxy dispatcher will not impose

serious runtime overhead to our system.

Since the statistics measured at the proxy and sub-controller

need to be periodically communicated, we also analyze the

network overhead of these messages. For the scenario where

we run three servers with the throughput upto 140 requests per

second, the network traffic created by our approach is about 24

Kbps, negligible for Gigabit network of cloud. For large scale

application server deployment, since our design automatically

groups proxies and servers into clusters based on their working

relations, the communication overhead is very limited.



VI. RELATED WORK

The boom of cloud computing, especially the concept of

offering resource as a service, emphasizes the importance of

designing a flexible control system for overload protection

together with QoS assurance [16]. A number of research

efforts have been done in this area. Most of them rely on one

centralized unit to gather information and dispatch decisions,

not quite applicable to large scale cloud environment.

Researchers have focused on the management of data

centers on different resource-sharing environments for years:

multiple application instances sharing the same application

server [19] and [20], multiple application servers (each with

exactly one application instance) sharing the same physical

machine [21], [14] and [2], multiple virtual machines (each

with exactly one application instance) sharing a physical

machine [3] and [13], and finally, each application instance

running on a dedicated physical machine[7]. We adopt the

resource sharing scenario of multiple application instances

running on the application server which in turn run on the

physical machine, to represent general application server de-

ployment and offer extreme flexibility and scalability.

Admission control on application servers has been widely

studied in the literature. Li et al. [15] describe an algorithm

allocating configurable fixed percentages of bandwidth across

numerous simultaneous clients with Apache HTTP server.

Cataclysm [22] is a low overhead, highly scalable admission

control system, handling extreme loads in hosted Internet

applications. Welsh et at. [23] present SEDA architecture,

which splits applications into event-driven stages connected

by explicit queues, and relies on dynamic resource controllers

to keep stages within their operating regime despite large

fluctuations in workload. Xiong et al. [24] propose a novel

and efficient distributed flow control scheme for multirate

multicast, based on Proportional Integral and Derivative (PID)

controllers to achieve both intrasession and intersession fair-

ness. Our overload protection is done through the collaboration

among sub-controllers and proxies. The sub-controllers gener-

ate the max admission rate and distribute it among the proxies,

while the proxy applies the token bucket policer to abide

by its rate quota. Several researchers have designed various

utility functions to support SLA, such as using price-based

priority service to provide differentiated quality of service

[18]. Our utility function aims to minimize the penalty due

to the violation of the target response time. It produces the

weight of each class based on online auditing of its runtime

information to achieve an optimal service class differentiation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a decentralized approach to manag-

ing workload on the application servers in large scale deploy-

ment, e.g., cloud environment. In particular, we design and

develop SCOPS, a low overhead, highly scalable, simple but

effective workload management system for QoS assurance and

overload protection. SCOPS is designed to collaborate with

commodity host OS, legacy application servers and application

instances, thus easing the field deployment. The performance

evaluation demonstrates that our approach features with low

runtime overhead, effective resource overload protection, and

SLA-oriented service classification. As part of our future work,

we plan to extend our overload protection to more general

session-oriented workloads and other types of resources, e.g.,

memory, bandwidth, etc. In the scenario of protecting multi-

type bottleneck resources, we will also consider integrating

an optimal load balancing scheme to automatically detect the

current bottleneck capacity of back-end servers.
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