

CloudOpt: Multi-Goal Optimization of Application Deployments across a Cloud

Jim ZW Li
1
, Murray Woodside

1
, John Chinneck

1
, Marin Litoiu

2

{zwli | cmw | chinneck}@sce.carleton.ca,; mlitoiu@yorku.ca
1
Carleton University, Ottawa, Canada;

2
York University, Toronto, Canada

Abstract— CloudOpt is a comprehensive approach to find

optimal deployments for large service centers and clouds. It

uses a combination of bin-packing, mixed integer

programming and performance models to make decisions

affecting diverse and strongly interacting goals, including

satisfaction of different service level agreements for many

different applications (involving response time, workload,

throughput), host memory requirements and availability,

license costs and power consumption. It is scalable and

extendable to new objectives.

I. INTRODUCTION

Optimization of cost and energy use in large data

centers and clouds poses challenges in scale, complexity

of constraints, and speed of solution. For maximum

benefit, global optimization should be applied to all the

applications in the cloud, each with many processes.

Quality of service (QoS) contracts must be satisfied, as

well as space requirements of the processes and (in this

work) limits on the numbers of replicas of some licensed

software.

Present optimal deployment approaches have various

limitations. Bin-packing [9][14][25] is simple but

addresses multiple goals with difficulty and gives only

modest optimization quality. Flow network optimization

[26] and mixed integer programming (MIP) [22] are

effective, but do not address the nonlinearities. Hill

climbing [32] and nonlinear optimization [15] have

limited search efficiency.

The CloudOpt approach described here is a strategic

combination of bin-packing, network flow and MIP,

incorporating nonlinear contention effects computed by a

performance model. It finds a deployment for a set of

service applications, which:

1. minimizes the cost of processing, in money and/or

energy,

2. satisfies multiple response time constraints,

3. respects the memory requirements of processes,

4. deploys as many replicas of each process as needed,

subject to soft limits on license availability,

5. provides a result in one or two minutes, for 20

applications with over 200 processes.

In principle it can be scaled further, using a simpler

model for performance, and is easily extended. In

dynamic management this full optimization can be

carried out periodically. In other research [17] we study

how to increase the persistence of the optimization

solutions, for dynamic management.

II. RELATED RESEARCH

Clouds have become part of many software companies’

offerings [1][12][24], and recent research considers small

systems [5] and large ones [10]. Allocation of virtual

resources shared by two applications in a two tier centre

is optimized in [16] using limited look-ahead, with linear

models to describe the applications and their use of

resources. The optimization is model-based, inspired by

control theoretic optimization. In [29] a genetic

algorithm optimizes deployments, with a workflow

model describing processing demands and queuing

delays.

MIP is applied in [7] to optimize VM deployments,

considering computation capacity, power, storage and

network bandwidth, but not QoS constraints, service

allocation and workload balance across VMs. Power

optimization by MIP is also part of [22]

Bin-packing has been used to pack execution

requirements [9], execution and communications

requirements [30], and memory; all of which have been

combined in multidimensional bin-packing [6]. Recently

bin-packing was extended to optimize task allocations in

virtual environments [4]. New packing approaches

include heuristics by Karve [13] and Steinder et al. [25]

to distribute workloads on virtual nodes, and a

combination of max-flow algorithms and heuristics by

Tang et al. [26] to manage large-scale resource

allocations on IBM Websphere XD.

Hill climbing has also been used to optimize system

management. Examples include maximizing through-put

in service systems [21], minimizing replicas to satisfy a

QoS requirement [23], and seeking optimal QoS

components for distributed systems [32]. However, high

evaluation costs limit its application to small and

medium scale systems.

Flow networks can model large systems but they

ignore resource contention effects. Bokhari et al. [3]

pioneered the use of flow networks for partitioning

workload among nodes. As mentioned above, Tang et al.

[26] combined flow algorithms with heuristics. Toktay

and Uzsoy [27] maximize resource utilizations with a

flow model for shop scheduling, getting almost the same

result as MIP, but much faster. However, their approach

ignores delay and contention.

Our earlier work combined resource contention models

and linear programming based on network flow models

(NFMs) to find deployments that satisfy QoS conditions

[19]. This was extended to find a change to

accommodate one new application [18]. Memory and

license constraints were considered using bin-packing

alone, with modest success [20].

CloudOpt goes substantially beyond any of these

approaches: it combines more goals with explicit

contention calculations, using bin-packing for a starting

point, and MIP for good quality optimization.

III. OPTIMIZATION ARCHITECTURE

CloudOpt uses the architecture shown in Figure 1 to

manage all the applications in a cloud. It uses tracked

performance models to evaluate QoS resulting from

deployment decisions. An application (upper left) shows

a set of service tasks (processes) running in a virtualized

environment, with interfaces offering services

(operations) to classes of users. Monitored data from the

services, virtual machines and hosts drives decisions and

also is used to track the parameters of a performance

model of each application. Optimization periodically

indicates deployment changes which are implemented by

the management systems using deployment effector tools

to load and initialize VM images on host processors.

The model tracking is described in [33]. When a new

application is loaded, an initial performance model is

supplied by the application provider, derived either from

knowledge of the application or by tracing its behaviour

(see e.g. [32]).

Figure 1. Cloud Management with Optimization

This work focuses on the optimization elements in

Figure 1. A management platform might include one or

more optimizers, each with an optimization model to

describe its part of the problem and a corresponding

solver to seek the optimal solution in terms of the

optimization model.

IV. PERFORMANCE MODEL FOR SERVICE
SYSTEMS

Figure 2. A Service System as an Application LQM

The performance model is a layered queueing model

(LQM) [11], with a queue and a server for every

software and hardware component. The structure of a

LQM expresses the service architecture, as shown in

Figure 2. The bold rectangles represent tasks with

attached rectangles for the operations they offer (in LQM

the operations are called entries, here they are called

services). Service s is labeled with its cpu demand [ds];

these demands are tracked by the ModelTracker of

Figure 1. Figure 2 does not show the processors.

Requests from one service to another are shown by

arrows between services labeled by the mean number of

requests (e.g. (3)). Each task t has a multiplicity label {mt}

representing a thread pool size (infinite, if there is no

limit). Each user class c is also represented as a task

(labeled here Userc), with a label {Nc} for the size of the

group of users, a service with a think time [Zc] (the time

between receiving a response and making the next

request), and arrows showing the service requests made

during a single response.

Figure 2 shows an application LQM which acts as a

template for the deployed model. The deployed LQM

includes host processors, replication of tasks and division

of workload between the replicas. Define:

 RTc = mean response time of user class c, subject to

the QoS constraint RTc ≤ RTc,SLA

 fc = throughput of user requests/sec, subject to a

corresponding QoS-related constraint fc ≥ fc,SLA By

Little’s result, for Nc users with think time Zc,

fc,SLA = Nc/(RTc,SLA+ Zc) (1)

eUserBehav
[171]

UserClass
{287}

eStoreAccess
[2]

WebServer
{90}

eReadImage
[1]

ImageDisk
{1}

eOrder
[2.04]

StoreApp
{90}

eBrowse
[3]

eBuy
[30]

ShoppingCart
{10}

eCustUp
[1.2]

CustomerDB
{1}

eCustRd
[3]

eFWrite
[1,3]

FileServer
{10}

eFRead
[3]

(1)

(0.913)
(2.5)

(0.0873)

(2.1) (3)

(1.2)

(1)

(1.8)

eUpdate
[1,10]

InventoryDB
{7}

eRead
[14.3]

(1)

(1) (2.5) (4)

(1)
(1
)

(1
)

 Suser,c = the set of all services used by class c,

 Ycs = the mean total requests to service s Suser,c

made during one user response of class c. Ycs is

found by tracing all paths from c to s, multiplying

the request rates along the paths, and summing the

products. Thus in Figure 2, YUserClass,eRead =

0.913*2.1+0.0873*1*3.

If Zc is unknown the worst-case value of zero can be

taken. If both fc,SLA and RTc,SLA are specified for a finite

Nc, fc,SLA is replaced by max(fc,SLA, Nc/(RTc,SLA + Zc). If Nc

is infinite and the SLA specifies open arrivals and values

for both fc,SLA and RTc,SLA then a closed approximation is

used: a large population Nc (say, 1000) and a large think

time Zc are chosen which satisfy Eq (1), and they are

used in the performance model.

V. THE OPTIMIZATION PROBLEM

The optimization problem allocates flows of work to

hosts, with one unit of flow being the rate of work which

makes one “standard” host 100% busy. Each host has a

capacity h which is the maximum flow it will be

allocated, taking into account

 it may be faster or slower than a “standard” host by

some factor,

 it may have multiple cores or CPUs, and its capacity

is summed over these,

 it may be constrained to a value giving less than

100% utilization (in this work we used 80%).

Thus, h = (relative CPU speed)(mh = number of cores

or CPUs)(h = max permitted utilization per core).

The flow at each host is related to the user request

rate via flows at tasks and services in the network flow

model (NFM) shown in Figure 3, and defined as:

ht = work rate on host h for task t ,

ts = total work rate by task t for service s,

sc = total work rate by service s for user class c.

The total flow into task t represents the work rate by all

replicas of the task, on the allocated hosts (those with

ht >0); the total flow into service s represents the total

work rate for that service for all user classes; and the

flow sc is the work rate for class c, i.e. for Ycsfc service

requests/sec. The cpu demand of one request for service

s is defined for a “standard” host as ds . Then

sc = (Ycs ds) fc = dsc fc (2)

Flow constraints are described further below.

The cost of the deployment per unit time is calculated

from the host flows, with a fixed part Cfh and a variable

part for each host. At host h:

Costh Cfh
t
ht

+Ch tht (3)

The fixed part Cfh is incurred if tht > 0 (i.e., the host

is used by one or more tasks), the variable part is

proportional to work rate or equivalently to host

utilization. Possible cases:

a) the cost is in dollars per unit time,

b) the cost is for power. Studies have shown that energy

use increases with utilization, roughly linearly (e.g.

[2][15]).

c) energy management scales the processor speeds, with

lower speeds (and power) for lighter load.

In case (c) we assume that energy cost (say, Ph) is linear

in the host speed setting, which is reduced from its

maximum to a fixed fraction “ratio”. Then Ph = a +

b*ratio for some constants a and b. Further we suppose

that ratio is chosen to give a total host flow rate of h.

Then at host h,

ratio = flow/h ,

Ph = a + b* flow/h

and the cost is linear in the flow. Then it can be written

in the form of Eq (3).

A. Overview of the Optimization Approach

The optimization algorithm uses an optimization loop

made up of 4 main steps and iterates until it gives a near-

optimal solution. It has this outline:

Algorithm MIP+C

1. construct the optimization model (MIP based on NFM)

for flow constraints,

2. solve the optimization model for an optimal

deployment,

3. construct and solve the LQM for the deployment,

4. If the solution does not meet the QoS constraints, add

surrogate flows and repeat from (2).

The details of the algorithm are as following.

B. Flow Constraints

The NFM in Figure 3 is a directed graph with nodes

representing hosts h, tasks (processes) t, services s, and

user classes c (see [19]). It has an arc for every pair (h,t),

for pair (t,s) in which service s is offered by task t (s

STask,t), and for pairs (s,c) for which user class c uses

service s directly or indirectly (s SUser,c). The flows on

arcs have labels [min flow, max flow, cost per unit flow]

with default values (where not shown in the figure) of [0,

∞, 0]. At host, task and service nodes the sum of flows

into the node always equals the sum of flows out. The

flow into node h on the left is its total flow, limited by

the capacity h. The flow out of node c on the right of

Figure 3 is the rate of user transaction requests, at rate

fc/sec.

Node c for user class c is a special type called a

processing node (see e.g. [8]) which converts the

execution flow rates sc into transaction flow rates fc,

using fixed proportionalities given by Eq. (2).

.

.

.

h

.

.

.

s

.

.

.

.

.

.

Hosts

Services Classes
of Users

c

t

.

.

. Server
Tasks

.

.

.

.

.

.

.

.

.
[0 , Ω h , C h]

 ht

d sc

 sc

 ts

1
[f c , SLA , P c]

fc

(processing
node
parameters)

Surrogate flow

[i+1
s,

i+1
s, 0].

Figure 3. Network Flow Model

The solution given by the optimization model (NFM) is

an optimistic deployment,

(1) allocating host reservations to tasks,

(2) dividing request traffic between multiple task

replicas, where applicable, and

(3) minimizing cost.

In [19] a linear program (LP) is derived from the NFM to

minimize the sum of flow costs (the host flows on the

left in the figure).

C. Including Contention Effects

Contention effects for a given set of flows are

estimated by a “deployed LQM” created from the flows.

A replica of task t is deployed on host h for each ht>0,

and the requests to its services are divided appropriately

(as described in [19]).

The user response delay from the LQM solution is

increased by resource contention due to queueing at the

hosts or the server tasks. Contention delays may make

the LQM user flows fc,LQN smaller than the required

flows fc,SLA, even if the NFM flows meet the requirement

fc ≥ fc,SLA. As described in [19], this difference is added to

the NFM as a surrogate flow at each service, indicated in

Figure 3 by the red arrow. The added flow is

s = c (difference at node s)

= c dsc (fc,SLA − fc,LQN)

The surrogate flows force the NFM to reserve additional

capacity at the hosts.

As in [19], the algorithm for optimal flows and the

solution of the corresponding LQM are combined in a

fixed point iteration. After iteration i the accumulated

surrogate flow (js at iteration j) is:

i+1

s =
i
j=1

j
s

which is used in iteration i+1.

D. Integer Variables and Constraints

Host memory is limited and each replica task has its

own VM with memory requirements. Let:

 mt = memory requirement of a replica of task t,

including its VM,

 Mh = memory available at host h,

 Aht = 1 if task t runs on host h, i.e. if ht >0, else 0.

Then a deployment must satisfy t Ahtmt < Mt.

It may be wasteful in other ways to deploy many

replicas of a task. Commercial tasks are licensed, and

there may be an additional cost if the number of replicas

exceeds the already licensed number. Let:

 Lt = licenses owned for application task t,

 L′t = max (0, t Aht – Lt) = additional licenses,

 CLt = cost per additional license for task t.

Additional license cost is included as a soft constraint.

Mixed Integer Program (MIP)
To construct a MIP for optimal deployment we use the

variables above plus the additional variables:

 Sh = 1 if ht>0 for some t, else 0,

 T(h) = set of tasks with ht >0,

 BigC = a large positive number.

Optimization Model: MIP Model

Objective:

Minimize h ShCfh + ht Chht + t Lt' CLt (4a)

over A, L', S, ≥ 0 with A, S in {0,1}, L' integer,

and subject to constraints:

o capacity for each host h: tht ≤ Ωh (4b)

o for each task t: hht = sts (4c)

o for each service, add

surrogate flows at node s:
tts = csc + S

i
s (4d)

o for each class c and service

s:
sc = fcdsc (4e)

o force Aht=1 for arcs with

positive flow:
ht ≤ Aht. BigC (4f)

o memory space at host h: tAhtmt < Mh (4g)

o license constraint: h Aht ≤ Lt + Lt' (4h)

o Set Sh = 1 if any Aht ≥ 0 Aht ≤ Sh over all t (4i)

o SLA constraint fc ≥ fc,SLA (4j)

o non-negative flows , f ≥ 0 (4k)

(4f) and (4i) are artificial linear constraints to define Aht

= 1 if ht > 0, and Sh = 1 if Aht = 1 for any t, else 0.

E. Iterative Solution

The trajectory of the iterations is illustrated

conceptually in the sketch in Figure 4 for two user classes,

showing the user throughputs found by the performance

model at each iteration. The solution is expected to be at

the intersection of the constraints, since greater

throughputs increase the cost. The solution trajectory

wanders considerably before reaching the feasible region

in the upper right.

The final step is special, using a linearization of the

performance model [17]. It usually comes almost exactly

to the constraints, from a solution within a few percent of

them. Insisting on a feasible solution first ensures

adequate host resources for the final step.

 Class 2 throughput f2

Class 1 throughput f1

2
3

1

4

5

6

 f1,SLA

 Feasible area

 f2,SLA

Figure 4. Notional Progress of Iterations of MIP+C

Unfortunately MIP and MIP+C do not scale well

enough for large systems. The method is therefore

extended with two heuristics: Heuristic Packing (HP) and

Heuristic Packing with MIP (HMIP).

VI. HEURISTIC PACKING (HP) AND HMIP

HP assigns task flows to the cheapest processors

(smallest Ch) with available memory, while seeking to

reduce the cost on additional license. The resulting

quality of optimization is sometimes poor, so HP and

MIP are combined in “Heuristic MIP” (HMIP). HMIP

applies MIP with the hosts restricted to those selected by

HP, reducing the complexity of the MIP.

HP consists of two steps. Step I allocates workloads to

the lowest-cost hosts. The memory and license

constraints may mean some hosts are under-utilized, so

Step II checks for better hosts to replace them. The goal

of Step I is to minimize the sum of costs:

Costh = max(Mt/Mh, d/Ωh) Cfh + d·Ch (5)

in which the first term estimates the share of fixed costs

at host h. Additional variables (all ≥0) needed for the HP

and HMIP algorithms are:

Ω
+

h

remaining execution demand space of host h

Ω
*
h

the used capacity of host h, Ω

*
h = Ωh - Ω

+
h

M
+

h remaining memory space of host h

M
*
h used memory space of host h, M

*
h = Mh - M

+
h

d
+

t remaining execution demand of task t

L
+

t Remaining licenses available for use

L
*
t Total number of licenses in use, L

*
t

= h Aht

Heuristic Packing (HP) Algorithm:

Allocate (t, d, h) // allocation function

//allocate demand d for task t to host h, and adjust the

remaining demand d
+

lt and available memory M
+

h

Setht = d; decrement Ω
+

h by ht; decrement d
+

t by

ht; decrement M
+

h by Mt ; increment L
*

t by 1.

Step I

1 Sort the tasks in decreasing order of d
+

t /L
+

t,

subordered by decreasing order of CLt.

//This gives priority to tasks with the most demand

and fewest licenses.

2 For each task t in order:

a. Sort the hosts with M
+

h > Mt by flow space Ω
+

h

(largest first), breaking ties by Ch (smallest first)

and designate h(i) as the ith host in order.

Define the sorted hosts as set I.

b. Set i = 1 //allocate first to host h(1))

c. if d
+

t > 0

i Allocate (t, min(d
+

t , Ω
+

h(i)), h(i))

ii If d
+

t >0 and I is not empty, increment i and

repeat from Step 2.c, else exit with error

“not enough available hosts”

d. if d
+

t = 0, move some replica of task t to a

cheaper host (smaller Ch) if possible, or move

some processing to a new replica on a cheaper

host, if a license is available.

e. if I is not empty, increment i.

Step II

For each host i which is not selected in Step I:

For each host j which has been selected to host

one or more tasks:

If Ω
+

h(i) > Ω
*
h(j) and M

+
h(i) > M

*
h(j) and

Cfh(i)+Ch(i)Ω
*

h(j) < Cfh(j)+Ch(j) Ω
*
h(j) then:

Move all tasks from host j to host i.

//swap to a cheaper host if feasible

Heuristic Packing with MIP (HMIP) Algorithm:

1. Heuristic Packing (HP) performed as above.

2. Using only the hosts selected in Step 1, construct

and solve a MIP as in Section 4.

The feasible solution cost found by HP (CHP) is used as

an incumbent by the MIP solver to reduce the

optimization time. It is added as a constraint:

ht Chht + t Lt'CLt+ h ShCfh ≤ CHP (6)

To include estimates of contention, step 2 uses MIP+C

in place of MIP, with the iteration between the MIP and

the performance model, as described above.

VII. EXAMPLE: USE OF HMIP+C

The first example considers deployment of the

application shown in Figure 2, with QoS requirement

RTUserClass ≤ 29ms, and a memory requirement for each

task of 1 unit. The hosts for this (and later) experiments

are equal numbers of five types with the relative speeds,

memory and cost factors shown in Table 3. The ratios

between Ch and Cfh are based on the experimental results

given in [2][15], ranging from 0.15 to 1. The number of

hosts was adjusted to make the average host utilization

about 0.7 in the solution.

Table 1. Host Information

Type Speed Memory
Variable

cost coefficient (Ch)

Fixed cost

coefficient (Cfh)

A 1.8 2 0.5 0.6

B 2.4 4 0.45 0.81

C 2.8 8 0.4 1.12

D 3.2 12 0.35 1.4

E 3.6 16 0.3 1.62

CPLEX [13] is used as the MIP solver with

aggressive probing and strong branching, stopping when

it has found a feasible solution within one percent of the

current bound, or at 350 seconds. No additional licenses

were required in this case.

Table 2 shows that a feasible solution with RT =

27.21ms was found in three iterations, with 13 replicas

deployed on 6 hosts. Table 3 shows that the resource

usage is balanced across the hosts. The solution takes

1.87 sec.

Table 2. Solution Properties by Iteration

Iteration 1 2 3

Response Time (Goal: 29ms) 34.80 ms 32.47 ms 27.21 ms

Variable Cost 4.93 4.83 5.07

Fixed Cost 6.58 6.86 6.88

 Total Cost 11.51 11.69 11.93

Solution Time 0.73 s 0.55 s 0.59 s

Table 3 CPU and Memory Utilization in Hosts

Host Name CPU Utilization Memory Utilization

pHostB_505 76.19% 29.45%

pHostB_510 76.15% 25.95%

pHostC_895 78.21% 18.48%

pHostC_899 70.91% 13.79%

pHostD_307 78.38% 13.35%

pHostE_774 78.44% 5.94%

The optimization creates replicas for tasks, balances

workloads, and optimizes allocations, achieving the

required performance with an economical solution.

VIII. EVALUATION OF HP, HMIP and MIP

To focus on the comparison of MIP with both HP and

HMIP, experiments were first done without the iterative

contention calculations, then with them.

Cases had 10 to 50 applications, each based on the

template in Figure 2, with randomly chosen demands for

CPU, memory, and license availability for each task.

The size of the host pool (made up of the five types A –

E in Table 1), was adjusted to give levels of “stress” of

about 0.25, 0.5, and 0.7:

stress = required flow for SLA/total capacity

 = cfc,SLAsdsc/hΩh

At each stress value there is about the same number of

hosts of each type, and the same randomly constructed

applications were used.

Table 4. Comparison of HP alone, MIP alone, and HMIP (Without Iterating to Include Contention)

Stress rate High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05)

 HP MIP HMIP HP MIP HMIP HP MIP HMIP

10 app, 100 tasks 23 hosts 32 hosts 57 hosts

objective 34.38 32.82 33.14 46.79 32.65 32.85 35.2 32.2 32.2

Solution time (sec) 0.016 6.969 0.422 0.015 6.344 1.734 0.031 0.891 0.422

of variables in MIP - 3313 2326 - 4582 2326 - 8107 2044

20 app, 200 tasks 33 hosts 46 hosts 86 hosts

objective 56.52 52 51.99 68.69 51.3 51.3 52.35 50.98 50.88

Solution time (sec) 0.031 4.281 3.203 0.031 25.953 7.735 0.062 68.66 2.562

of variables in MIP - 9413 6884 - 13066 7165 - 24306 6322

30 app, 300 tasks 53 hosts 75 hosts 139 hosts

objective 106.41 84.11 84.06 86.1 83.4 83.3 84.51 81.95 81.95

Solution time (sec) 0.046 6.266 7.625 0.078 51.687 9.672 0.109 21.42 4.328

of variables in MIP - 22523 16629 - 31785 16629 - 58729 14945

40 app, 400 tasks 64 hosts 89 hosts 169 hosts

objective 107.12 101.71 102.66 104.72 100.7 100.7 102.13 Out of

Memory

101.0

Solution time (sec) 0.063 100.81 13.688 0.094 165.83 27.093 0.141 9.047

of variables in MIP - 36184 26647 - 50209 26647 - 95205 23842

50 app, 500 tasks 81 hosts 113 hosts 216 hosts

objective 134.86 130.91 130.77 135.2 130.28 130.3 130.58 Out of

Memory

128.6

Solution time (sec) 0.062 Time out 54.547 0.094 Time out 57.3 0.187 19.359

of variables in MIP - 57131 41709 - 79563 42410 - 152103 37503

Table 4 compares the cost, solution time and number of

MIP variables (continuous and discrete). The smallest

value for each is in boldface. It shows:

 MIP usually gives the smallest cost, but it takes

longer than HMIP and runs out of memory or time.

 HP occasionally gives considerably higher cost.

 In under 10 sec, HMIP found a solution with 40

applications on 169 hosts, under high “stress”.

 HMIP gives almost as low cost results as MIP.

 HMIP time was smallest for high stress models.

 The costs, hosts and replicas are similar across low

and high-stress problems. Excess resources thus are

not an advantage.

 Low stress cases have larger MIPs than high stress,

but have more reduction in size for HMIP.

 MIP problems with less than 10,000 variables were

solved by CPLEX in less than 10 seconds.

Overall, HMIP is very satisfactory. Cost is within 2% of

pure MIP and it is always faster, up to an order of

magnitude (and increasing) on large problems.

A. Comparison including Contention

The same set of applications with 1, 5, 10 and 20

applications were optimized again with the iterative

contention calculation included. The results are shown in

Table 5.

If we adopt one minute as a maximum practical

optimization time, these cases are practical up 10

applications. This is quite good, since changes to

deployment take on the order of minutes even for just a

few machines. Since about 60% of the iteration time is

devoted to the LQM, this would be improved if the LQM

solution time could be reduced.

These experimental results show that CloudOpt can

deploy between 100 and 200 heterogeneous tasks in a

reasonable time. The performance model is the limiting

factor.

Table 5. Evaluation of HP+C, Pure MIP+C, and HMIP+C

Stress rate High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05)

1 app HP MIP+C HMIP+C HP MIP+C HMIP+C HP MIP+C HMIP+C

of iterations 1 1 1 1 1 1 1 1 1

Time for optimization (sec) 0.01 0.109 0.109 0.01 0.109 0.109 0.01 0.109 0.109

Time for LQNS (sec) 0.094 0.11 0.11 0.109 0.11 0.11 0.109 0.094 0.109

Total energy and license Cost 3.82 2.32 2.32 3.82 2.32 2.32 3.85 2.22 2.22

of replicas (task)/ # of hosts 7/2 7/1 7/1 7/2 7/1 7/1 7/3 7/1 7/1

of variables in MIP - 37 37 - 37 37 - 82 52

5 app

of iterations 7 18 21 1 8 8 8 3 9

Time for optimization (sec) 0.012 1.36 1.079 0.016 1.11 0.765 0.031 1.03 0.953

Time for LQNS (sec) 2.078 4.829 4.875 0.313 1.907 2.031 2.811 0.789 2.155

Total energy and license Cost 10.25 9.765 9.532 9.82 9.52 9.37 13.13 9.30 9.41

of replicas (task)/ # of hosts 58/6 38/5 38/5 37/5 37/5 38/5 48/10 37/4 38/5

of variables in MIP - 461 390 - 674 390 - 1242 674

10 app

of iterations 24 11 24 23 21 25 19 9 20

Time for optimization (sec) 0.093 6.078 7.485 0.015 17.859 11.174 0.109 28.141 6.425

Time for LQNS (sec) 32.625 10.954 26.92 32.093 20.70 24.886 31.031 11.189 25.890

Total energy and license Cost 24.14 21.43 20.63 29.71 20.19 20.4 24.77 19.49 20.08

of replicas (task)/ # of hosts 129/15 75/11 77/10 179/20 76/10 78/10 112/15 76/8 77/9

of variables in MIP - 2185 1480 - 2890 1762 - 5710 2044

20 app

of iterations 23 42 22 32

Out of
Memory

28 17

Out of
Memory

21

Time for optimization (sec) 0.079 197.32 61.62 0.156 64.32 0.295 29.766

Time for LQNS (sec) 202.86 273.66 121.86 304.67 271.4 178.13 191.74

Total energy and license Cost 47.79 42.32 41.42 58.26 41.75 54.63 39.29

of replicas (task)/ # of hosts 244/29 155/21 153/20 294/38 158/21 250/35 152/16

of variables in MIP - 8289 6884 - 8008 - 5479

IX. COMPARISON WITH OTHER
APPROACHES

Many existing systems use packing approaches to handle

task deployments. HMIP was compared to the Power-

minimizing Placement Algorithm (mPP) [2] and a simple

greedy approach SGD described as follows:

Simple Greedy Deployment (SGD):

T: a collection of tasks to be deployed.

 I: the number of hosts

1. Sort hosts in increasing order of maximum cost Cfh+

ΩhCh, and set i = 1

2. For each t in T

2.1. Set d
+

t = dt

2.2. If i ≤ I then:

2.2.1. Allocate (t, min(d
+

t , Ωh(i)), h(i))

2.2.2. If d
+

t > 0 increment i and repeat from 2.

2.3. Else (i.e. i > I) return error “out of hosts”

2.4. Next t, and increment i

Table 6 compares the effectiveness of HMIP, SGD

and mPP for the single application used in Section 6.

SGD and mPP do not account for performance, so it

is not surprising that their solutions violate the response

time constraint. In SGD one task per host increases the

number of hosts and reduces host utilization. This results

in higher costs and more hosts than HMIP. mPP allows

resource sharing, so it uses fewer hosts, but cannot

guarantee optimality because of the limitation of the

packing strategy. Moreover, both SGD and mPP do not

consider the memory and license constraints, but this

limitation is not critical in this simple example.

Table 6. Comparison of HMIP, SGD and mPP

 HMIP SGD mPP

Response Time
(Goal: 29ms)

27.21ms 34.10ms 41.78ms

Hosts Used 6 13 10

Total Cost 11.95 14.28 12.34

Variable Cost 5.05 6.48 6.34

Fixed Cost 6.88 7.80 5.99

Average CPU Utilization 0.76 0.55 0.70

X. CONCLUSIONS

CloudOpt has been shown to be an effective and

scalable algorithm for optimizing deployments in clouds.

It has been shown to be practical (in the sense of

providing a solution in under two minutes) for deploying

applications totaling 100-200 processes plus some

replicas. It honors constraints on user QoS and process

memory, and can optimize energy use or financial cost.

License cost is also included, showing flexibility in

addressing additional concerns.

HMIP is more effective and more efficient when

applied to a smaller host pool (which is big enough to

carry the workload with an average utilization no more

than 70%).

CloudOpt can be made still more scalable with a more

efficient performance model solver. It has also been

extended to deal with installation of new applications

and with other dynamic changes. An extended

description of CloudOpt is given in [17].

Acknowledgements

This research was supported by a studentship from the

Toronto IBM Centre for Advanced Studies.

REFERENCES
[1] Amazon Web Services, http://aws.amazon.com/, March. 2011.

[2] A. Verma, P. Ahuja, A. Neogi, “pMapper: Power and Migration
Cost Aware Application Placement in Virtualized Systems”. In
Proc 9th ACM/IFIP/ USENIX Intl Conf on Middleware
(Middleware '08), Springer-Verlag, pp 243-264.

[3] S. H. Bokhari, "Partitioning Problems in Parallel, Pipeline, and
Distributed Computing". IEEE Trans. Comput. 37, 1 48-57, Jan.
1988.

[4] D. Carrera,, “Adaptive Execution Environments for Application
Servers.” PhD dissertation, Universitat Politècnica de Catalunya ,
Barcelona, 2008

[5] CERAS project, https://www.cs.uwaterloo.ca/twiki
/view/CERAS, Jan 15, 2010.

[6] S. Chao, J.W. Chinneck, R.A. Goubran, “Assigning Service
Requests in Voice-over-Internet Gateway Multiprocessors”
Computers and Operations Research, v. 31, pp 2419-2437, 2004.

[7] S. Chaisiri, B. Lee, D. Niyato, “Optimal Virtual Machine
Placement Across Multiple Cloud Providers”, Proc Asia-Pacific
Services Computing Conf, (APSCC 2009), 2009, pp 103 – 110.

[8] J.W. Chinneck, “Processing Network Models of
Energy/Environment Systems”, Computers and Industrial
Engineering, vol. 28, no. 1, pp. 179-189. 1995.

[9] E.G Coffman, M.R. Garey, D.S. Johnson, "An Application Of
Bin-Packing to Multiprocessor Scheduling", SIAM J. Computing,
vol. 7, pp. 1-17, Feb. 1978.

[10] EU’s FP7 RESERVOIR project, http://www.reservoir-fp7.eu/,
Jan 15, 2010..

[11] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi,
“Enhanced Modeling and Solution of Layered Queueing
Networks”, IEEE Trans. on Software Eng. Aug. 2008.

[12] IBM Corp., "From Cloud Computing to the New Enterprise Data
Center", 2008.

[13] IBM Corp, Users Manual for CPLEX, 2009.

[14] A. Karve, T. Kimbrel, Pacifici, G., Spreitzer, M., Steinder, M.,
Sviridenko, M., and Tantawi, A., “Dynamic Placement for
Clustered Web Applications”. Proc. 15th Int Conf. on World
Wide Web (WWW '06), pp 595-604. Edinburgh, 2006.

[15] D. Kusic,; J.O. Kephart, J.E. Hanson, N. Kandasamy, G. Jiang;
“Power and Performance Management of Virtualized Computing
Environments Via Lookahead Control,” ICAC’08, pp 3 – 12,
June 2008.

[16] A. Lenk , M. Klems , J. Nimis , S. Tai , T. Sandholm, “What's
inside the Cloud? An architectural map of the Cloud Landscape”,
Proc. 2009 ICSE Workshop on Software Eng Challenges of
Cloud Computing, p.23-31, May 2009.

[17] J. Li, “Fast Optimization for Scalable Application Deployments
in Large Service Centers” , PhD thesis, Carleton University,
Ottawa, Feb, 2011.

[18] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai,
“Performance Model Driven QoS Guarantees and Optimization in
Clouds”, Proc. Workshop on Software Engineering Challenges in
Cloud Computing, ICSE 2009, Vancouver, May 2009.

http://aws.amazon.com/

[19] J. Li, J. Chinneck, M. Woodside, M. Litoiu, "Fast Scalable
Optimization to Configure Service Systems having Cost and
Quality of Service Constraints," Proc. Int. Conf. on Autonomic
Computing (ICAC09), Barcelona, June 2009.

[20] J. Li, J. Chinneck, M. Woodside, M. Litoiu, “Deployment of
Services in a Cloud Subject to Memory and License Constraints”,
Proc the 2nd Int. Conf. on Cloud Computing, IEEE, Bangalore,
India, Sept 2009.

[21] M. Litoiu, J. Rolia, and G. Serazzi, “Designing Process
Replication and Activation: A Quantitative Approach”, IEEE
Transactions on Software Engineering, vol. 26, no. 12, pp. 1168-
1178, Dec. 2000.

[22] L. Bertini, J.C.B. Leite, D. Moss, :Power optimization for
dynamic configuration in heterogeneous web server clusters”, J.
Syst. Softw. 83, 4 (April 2010), 585-598.

[23] D. A. Menascé, E. Casalicchio, V. Dubey, "A Heuristic
Approach to Optimal Service Selection in Service Oriented
Architectures", Proc 7th Int. Workshop on Software and
Performance, WOSP '08, pp. 13-24, New York, 2008.

[24] Salesforce Cloud Computing Platform,
http://www.salesforce.com/platform/, Jan 15, 2011.

[25] M. Steinder, I. Whalley, D. Carrera, and D. Chess, "Server
Virtualization in Autonomic Management of Heterogeneous
Workloads". Proc. Integrated Management (IM 2007), Munich,
May 2007.

[26] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, "A Scalable
Application Placement Controller for Enterprise Data Centers",
Proc. 16th Int. Conf. on the World Wide Web (WWW '07). pp
331-340, 2007.

[27] Toktay and Uzsoy, "A Capacity Allocation Problem with Integer
Side Constraints". European Journal of Operational Research,
v109 pp 170-182, 1998.

[28] Computing and Networking (e-Energy '10), ACM, 225-233.

[29] H. Wada, J. Suzuki, K. Oba, “Queuing Theoretic and
Evolutionary Deployment Optimization with Probabilistic SLAs
for Service Oriented Clouds”, 2009 World Conf. on Services, pp
661–669, July 2009.

[30] C.M. Woodside, G.G. Monforton, "Fast Allocation of Processes
in Distributed and Parallel Systems", IEEE Trans. on Parallel and
Distributed Systems, v. 4, n. 2, pp. 164-174, 1993.

[31] X. Dutreilh, A. Moreau, J. Malenfant, N. Riviere, and I. Truck,
“From Data Center Resource Allocation to Control Theory and
Back.” Proc 3rd Int Conf on Cloud Computing (CLOUD '10).
Washington, pp 410-417.

[32] T. Zheng, “Model-based Dynamic Resource Management for
Multi Tier Information Systems”, PhD thesis, Carleton
University, Ottawa, August 2007.

[33] T. Zheng, M. Woodside, M. Litoiu, "Performance Model
Estimation and Tracking using Optimal Filters", IEEE Trans.
Software Engineering, V 34 , no. 3, pp 391-406. May 2008.

http://ieeexplore.ieee.org.ezproxy.library.yorku.ca/xpl/RecentCon.jsp?punumber=5190624

