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Abstract— CloudOpt is a comprehensive approach to find 

optimal deployments for large service centers and clouds. It 

uses a combination of bin-packing, mixed integer 

programming and performance models to make decisions 

affecting diverse and strongly interacting goals, including 

satisfaction of different service level agreements for many 

different applications (involving response time, workload, 

throughput), host memory requirements and availability, 

license costs and power consumption. It is scalable and 

extendable to new objectives.  

I. INTRODUCTION 

Optimization of cost and energy use in large data 

centers and clouds poses challenges in scale, complexity 

of constraints, and speed of solution. For maximum 

benefit, global optimization should be applied to all the 

applications in the cloud, each with many processes. 

Quality of service (QoS) contracts must be satisfied, as 

well as space requirements of the processes and (in this 

work) limits on the numbers of replicas of some licensed 

software. 

Present optimal deployment approaches have various 

limitations. Bin-packing [9][14][25] is simple but 

addresses multiple goals with difficulty and gives only 

modest optimization quality. Flow network optimization 

[26] and mixed integer programming (MIP) [22] are 

effective, but do not address the nonlinearities. Hill 

climbing [32] and nonlinear optimization [15] have 

limited search efficiency.  

The CloudOpt approach described here is a strategic 

combination of bin-packing, network flow and MIP, 

incorporating nonlinear contention effects computed by a 

performance model. It finds a deployment for a set of 

service applications, which: 

1. minimizes the cost of processing, in money and/or 

energy, 

2. satisfies multiple response time constraints,  

3. respects the memory requirements of processes,  

4. deploys as many replicas of each process as needed, 

subject to soft limits on license availability, 

5. provides a result in one or two minutes, for 20 

applications with over 200 processes. 

In principle it can be scaled further, using a simpler 

model for performance, and is easily extended. In 

dynamic management this full optimization can be 

carried out periodically. In other research [17] we study 

how to increase the persistence of the optimization 

solutions, for dynamic management. 

II. RELATED RESEARCH 

Clouds have become part of many software companies’ 

offerings [1][12][24], and recent research considers small 

systems [5] and large ones [10]. Allocation of virtual 

resources shared by two applications in a two tier centre 

is optimized in [16] using limited look-ahead, with linear 

models to describe the applications and their use of 

resources. The optimization is model-based, inspired by 

control theoretic optimization. In [29] a genetic 

algorithm optimizes deployments, with a workflow 

model describing processing demands and queuing 

delays.  

MIP is applied in [7] to optimize VM deployments, 

considering computation capacity, power, storage and 

network bandwidth, but not QoS constraints, service 

allocation and workload balance across VMs. Power 

optimization by MIP is also part of [22]  

Bin-packing has been used to pack execution 

requirements [9], execution and communications 

requirements [30], and memory; all of which have been 

combined in multidimensional bin-packing [6]. Recently 

bin-packing was extended to optimize task allocations in 

virtual environments [4].  New packing approaches 

include heuristics by Karve [13] and Steinder et al. [25] 

to distribute workloads on virtual nodes, and a 

combination of max-flow algorithms and heuristics by 

Tang et al. [26] to manage large-scale resource 

allocations on IBM Websphere XD.  

Hill climbing has also been used to optimize system 

management. Examples include maximizing through-put 

in service systems [21], minimizing replicas to satisfy a 

QoS requirement [23], and seeking optimal QoS 

components for distributed systems [32]. However, high 

evaluation costs limit its application to small and 

medium scale systems.  

Flow networks can model large systems but they 

ignore resource contention effects. Bokhari et al. [3] 

pioneered the use of flow networks for partitioning 

workload among nodes. As mentioned above, Tang et al. 

[26] combined flow algorithms with heuristics. Toktay 

and Uzsoy [27] maximize resource utilizations with a 

flow model for shop scheduling, getting almost the same 

result as MIP, but much faster. However, their approach 

ignores delay and contention. 

Our earlier work combined resource contention models 

and linear programming based on network flow models 

(NFMs) to find deployments that satisfy QoS conditions 



    

   

   

 

[19]. This was extended to find a change to 

accommodate one new application [18]. Memory and 

license constraints were considered using bin-packing 

alone, with modest success [20].  

CloudOpt goes substantially beyond any of these 

approaches: it combines more goals with explicit 

contention calculations, using bin-packing for a starting 

point, and MIP for good quality optimization. 

 

III. OPTIMIZATION ARCHITECTURE 

CloudOpt uses the architecture shown in Figure 1 to 

manage all the applications in a cloud. It uses tracked 

performance models to evaluate QoS resulting from 

deployment decisions. An application (upper left) shows 

a set of service tasks (processes) running in a virtualized 

environment, with interfaces offering services 

(operations) to classes of users. Monitored data from the 

services, virtual machines and hosts drives decisions and 

also is used to track the parameters of a performance 

model of each application. Optimization periodically 

indicates deployment changes which are implemented by 

the management systems using deployment effector tools 

to load and initialize VM images on host processors. 

The model tracking is described in [33]. When a new 

application is loaded, an initial performance model is 

supplied by the application provider, derived either from 

knowledge of the application or by tracing its behaviour 

(see e.g. [32]).  
 

 
Figure 1. Cloud Management with Optimization 

This work focuses on the optimization elements in 

Figure 1. A management platform might include one or 

more optimizers, each with an optimization model to 

describe its part of the problem and a corresponding 

solver to seek the optimal solution in terms of the 

optimization model.  
 

IV. PERFORMANCE MODEL FOR SERVICE 
SYSTEMS 

 

 
 

Figure 2. A Service System as an Application LQM 

The performance model is a layered queueing model 

(LQM) [11], with a queue and a server for every 

software and hardware component. The structure of a 

LQM expresses the service architecture, as shown in 

Figure 2. The bold rectangles represent tasks with 

attached rectangles for the operations they offer (in LQM 

the operations are called entries, here they are called 

services). Service s is labeled with its cpu demand [ds]; 

these demands are tracked by the ModelTracker of 

Figure 1. Figure 2 does not show the processors. 

Requests from one service to another are shown by 

arrows between services labeled by the mean number of 

requests (e.g. (3)). Each task t has a multiplicity label {mt} 

representing a thread pool size (infinite, if there is no 

limit). Each user class c is also represented as a task 

(labeled here Userc), with a label {Nc} for the size of the 

group of users, a service with a think time [Zc] (the time 

between receiving a response and making the next 

request), and arrows showing the service requests made 

during a single response.  

Figure 2 shows an application LQM which acts as a 

template for the deployed model. The deployed LQM 

includes host processors, replication of tasks and division 

of workload between the replicas. Define:  

 RTc = mean response time of user class c, subject to 

the QoS constraint RTc ≤ RTc,SLA  

 fc = throughput of user requests/sec, subject to a 

corresponding QoS-related constraint fc ≥ fc,SLA By 

Little’s result, for Nc users with think time Zc,      

fc,SLA = Nc/(RTc,SLA+ Zc) (1 ) 
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 Suser,c = the set of all services used by class c,  

 Ycs = the mean total requests to service s  Suser,c 

made during one user response of class c. Ycs is 

found by tracing all paths from c to s, multiplying 

the request rates along the paths, and summing the 

products. Thus in Figure 2, YUserClass,eRead = 

0.913*2.1+0.0873*1*3. 

 

If Zc is unknown the worst-case value of zero can be 

taken. If both fc,SLA and RTc,SLA are specified for a finite 

Nc, fc,SLA is replaced by max(fc,SLA, Nc/(RTc,SLA + Zc). If Nc 

is infinite and the SLA specifies open arrivals and values 

for both fc,SLA and RTc,SLA then a closed approximation is 

used: a large population Nc (say, 1000) and a large think 

time Zc are chosen which satisfy Eq (1), and they are 

used in the performance model.   

               

V. THE OPTIMIZATION PROBLEM 

The optimization problem allocates flows of work to 

hosts, with one unit of flow being the rate of work which 

makes one “standard” host 100% busy. Each host has a 

capacity h which is the maximum flow it will be 

allocated, taking into account 

 it may be faster or slower than a “standard” host by 

some factor, 

 it may have multiple cores or CPUs, and its capacity 

is summed over these, 

 it may be constrained to a value giving less than 

100% utilization (in this work  we used 80%). 

Thus, h = (relative CPU speed)(mh = number of cores 

or CPUs)( h = max permitted utilization per core).        

The flow at each host is related to the user request 

rate via flows at tasks and services in the network flow 

model (NFM) shown in Figure 3, and defined as: 

ht = work rate on host h for task t , 

ts = total work rate by task t for service s,  

sc = total work rate by service s for user class c. 

The total flow into task t represents the work rate by all 

replicas of the task, on the allocated hosts (those with 

ht >0); the total flow into service s represents the total 

work rate for that service for all user classes; and the 

flow sc is the work rate for class c, i.e. for Ycsfc service 

requests/sec. The cpu demand of one request for service 

s is defined for a “standard” host as ds . Then  

sc =  (Ycs ds) fc = dsc fc (2) 

Flow constraints are described further below. 

The cost of the deployment per unit time is calculated 

from the host flows, with a fixed part Cfh and a variable 

part for each host. At host h: 

Costh Cfh 
t
ht 

+Ch tht   (3) 

The fixed part Cfh is incurred if tht > 0 (i.e., the host 

is used by one or more tasks), the variable part is 

proportional to work rate or equivalently to host 

utilization. Possible cases: 

a) the cost is in dollars per unit time,  

b) the cost is for power. Studies have shown that energy 

use increases with utilization, roughly linearly (e.g. 

[2][15]). 

c) energy management scales the processor speeds, with 

lower speeds (and power) for lighter load.  

In case (c) we assume that energy cost (say, Ph) is linear 

in the host speed setting, which is reduced from its 

maximum to a fixed fraction “ratio”. Then Ph = a + 

b*ratio for some constants a and b. Further we suppose 

that ratio is chosen to give a total host flow rate of h. 

Then at host h,  

ratio = flow/h ,  

Ph = a + b* flow/h 

and the cost is linear in the flow. Then it can be written 

in the form of Eq (3). 

 

A. Overview of the Optimization Approach 

The optimization algorithm uses an optimization loop 

made up of 4 main steps and iterates until it gives a near-

optimal solution. It has this outline: 

 

Algorithm MIP+C  

1. construct the optimization model (MIP based on NFM) 

for flow constraints, 

2. solve the optimization model for an optimal 

deployment, 

3. construct and solve the LQM for the deployment,  

4. If the solution does not meet the QoS constraints, add 

surrogate flows and repeat from (2). 

The details of the algorithm are as following. 

 

B. Flow Constraints 

The NFM in Figure 3 is a directed graph with nodes 

representing hosts h, tasks (processes) t, services s, and 

user classes c (see [19]). It has an arc for every pair (h,t), 

for pair (t,s) in which service s is offered by task t (s  

STask,t), and for pairs (s,c) for which user class c uses 

service s directly or indirectly (s  SUser,c). The flows on 

arcs have labels [min flow, max flow, cost per unit flow] 

with default values (where not shown in the figure) of [0, 

∞, 0]. At host, task and service nodes the sum of flows 

into the node always equals the sum of flows out. The 

flow into node h on the left is its total flow, limited by 

the capacity h. The flow out of node c on the right of 

Figure 3 is the rate of user transaction requests, at rate 

fc/sec.  

Node c for user class c is a special type called a 

processing node (see e.g. [8]) which converts the 

execution flow rates sc into transaction flow rates fc, 

using fixed proportionalities given by Eq. (2). 
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Figure 3. Network Flow Model 

The solution given by the optimization model (NFM) is 

an optimistic deployment,  

(1) allocating host reservations to tasks,  

(2) dividing request traffic between multiple task 

replicas, where applicable, and  

(3) minimizing cost.  

In [19] a linear program (LP) is derived from the NFM to 

minimize the sum of flow costs (the host flows on the 

left in the figure).  

 

C. Including Contention Effects 

Contention effects for a given set of flows are 

estimated by a “deployed LQM” created from the flows. 

A replica of task t is deployed on host h for each ht>0, 

and the requests to its services are divided appropriately 

(as described in [19]). 

The user response delay from the LQM solution is 

increased by resource contention due to queueing at the 

hosts or the server tasks. Contention delays may make 

the LQM user flows  fc,LQN  smaller than the required 

flows fc,SLA, even if the NFM flows meet the requirement 

fc ≥ fc,SLA. As described in [19], this difference is added to 

the NFM as a surrogate flow at each service, indicated in 

Figure 3 by the red arrow. The added flow is 

s = c (difference at node s) 

=  c dsc (fc,SLA  − fc,LQN) 

The surrogate flows force the NFM to reserve additional 

capacity at the hosts.  

As in [19], the algorithm for optimal flows and the 

solution of the corresponding LQM are combined in a 

fixed point iteration. After iteration i the accumulated 

surrogate flow (js at iteration j) is: 


i+1

s = 
i
j=1 

j
s 

which is used in iteration i+1. 

 

D. Integer Variables and Constraints 

Host memory is limited and each replica task has its 

own VM with memory requirements. Let: 

 mt = memory requirement of a replica of task t, 

including its VM, 

 Mh = memory available at host h, 

 Aht = 1 if task t runs on host h, i.e. if ht >0, else 0. 

Then a deployment must satisfy t Ahtmt < Mt. 

It may be wasteful in other ways to deploy many 

replicas of a task. Commercial tasks are licensed, and 

there may be an additional cost if the number of replicas 

exceeds the already licensed number. Let: 

 Lt = licenses owned for application task t, 

 L′t = max (0, t Aht – Lt) = additional licenses, 

 CLt = cost per additional license for task t. 

Additional license cost is included as a soft constraint. 

 

Mixed Integer Program (MIP) 
To construct a MIP for optimal deployment we use the 

variables above plus the additional variables: 

 Sh = 1 if ht>0 for some t, else 0, 

 T(h) = set of tasks with ht >0, 

 BigC = a large positive number. 

 

Optimization Model: MIP Model 

Objective: 

Minimize h ShCfh + ht Chht  + t Lt' CLt (4a) 

over A, L', S,  ≥ 0 with A, S in {0,1}, L' integer, 

and subject to constraints: 

o capacity for each host h: tht ≤  Ωh             (4b) 

o for each task t: hht = sts       (4c) 

o for each service, add 

surrogate flows at node s: 
tts = csc + S

i
s                    (4d) 

o for each class c and service 

s: 
sc = fcdsc               (4e)

o force Aht=1 for arcs with  

positive flow: 
ht ≤ Aht. BigC       (4f) 

o memory space at host h:  tAhtmt < Mh (4g) 

o license constraint: h Aht ≤ Lt + Lt'       (4h)

o Set Sh = 1 if any Aht ≥ 0  Aht ≤ Sh over all t    (4i) 

o SLA constraint fc ≥ fc,SLA                 (4j) 

o non-negative flows , f ≥ 0            (4k) 

(4f) and (4i) are artificial linear constraints to define Aht 

= 1 if ht > 0, and Sh = 1 if Aht = 1 for any t, else 0.  

 

E. Iterative Solution  

The trajectory of the iterations is illustrated 

conceptually in the sketch in Figure 4 for two user classes, 

showing the user throughputs found by the performance 

model at each iteration. The solution is expected to be at 

the intersection of the constraints, since greater 

throughputs increase the cost. The solution trajectory 

wanders considerably before reaching the feasible region 

in the upper right.  

The final step is special, using a linearization of the 

performance model [17]. It usually comes almost exactly 

to the constraints, from a solution within a few percent of 



    

   

   

 

them. Insisting on a feasible solution first ensures 

adequate host resources for the final step. 
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Figure 4. Notional Progress of Iterations of MIP+C 

 

Unfortunately MIP and MIP+C do not scale well 

enough for large systems. The method is therefore 

extended with two heuristics: Heuristic Packing (HP) and 

Heuristic Packing with MIP (HMIP). 

VI. HEURISTIC PACKING (HP) AND HMIP 

HP assigns task flows to the cheapest processors 

(smallest Ch) with available memory, while seeking to 

reduce the cost on additional license. The resulting 

quality of optimization is sometimes poor, so HP and 

MIP are combined in “Heuristic MIP” (HMIP). HMIP 

applies MIP with the hosts restricted to those selected by 

HP, reducing the complexity of the MIP. 

HP consists of two steps. Step I allocates workloads to 

the lowest-cost hosts. The memory and license 

constraints may mean some hosts are under-utilized, so 

Step II checks for better hosts to replace them. The goal 

of Step I is to minimize the sum of costs: 

Costh = max(Mt/Mh, d/Ωh ) Cfh +  d·Ch (5) 

in which the first term estimates the share of fixed costs 

at host h.  Additional variables (all ≥0) needed for the HP 

and HMIP  algorithms are: 

Ω
+

h
 

remaining execution demand space of host h 

Ω
*
h

 
the used capacity of host h, Ω

*
h = Ωh - Ω

+
h 

M
+

h remaining memory space of host h 

M
*
h used memory space of host h, M

*
h = Mh - M

+
h 

d
+

t remaining execution demand of task t 

L
+

t Remaining licenses available for use 

L
*
t  Total number of licenses in use, L

*
t
 
= h Aht 

Heuristic Packing (HP) Algorithm: 

Allocate (t, d, h )   // allocation function 

//allocate demand d for task t to host h, and adjust the 

remaining demand d
+

lt and available memory M
+

h 

Setht = d; decrement Ω
+

h by ht; decrement d
+

t by 

ht; decrement M
+

h by Mt ; increment L
*

t by 1. 

 

 

Step I 

1 Sort the tasks in decreasing order of d
+

t /L
+

t, 

subordered by decreasing order of CLt. 

//This gives priority to tasks with the most demand 

and fewest licenses.  

2 For each task t in order: 

a. Sort the hosts with M
+

h > Mt by flow space Ω
+

h 

(largest first), breaking ties by Ch (smallest first) 

and designate h(i) as the ith host in order. 

Define the sorted hosts as set I. 

b. Set i = 1    //allocate first to host h(1)) 

c. if d
+

t  > 0 

i Allocate (t, min(d
+

t , Ω
+

h(i) ), h(i))    

ii If d
+

t >0 and I is not empty, increment i and 

repeat from Step 2.c, else exit with error 

“not enough available hosts” 

d. if d
+

t  = 0, move some replica of task t to a 

cheaper host (smaller Ch) if possible, or move 

some processing to a new replica on a cheaper 

host, if a license is available. 

e. if I is not empty, increment i. 

Step II 

For each host i which is not selected in Step I: 

For each host j which has been selected to host 

one or more tasks: 

If   Ω
+

h(i) > Ω
*
h(j) and M

+
h(i) > M

*
h(j) and  

Cfh(i)+Ch(i)Ω
*

h(j) < Cfh(j)+Ch(j) Ω
*
h(j) then: 

Move all tasks from host j to host i. 

//swap to a cheaper host if feasible 

 

Heuristic Packing with MIP (HMIP) Algorithm: 

1. Heuristic Packing (HP) performed as above.  

2. Using only the hosts selected in Step 1, construct 

and solve a MIP as in Section 4. 

The feasible solution cost found by HP (CHP) is used as 

an incumbent by the MIP solver to reduce the 

optimization time. It is added as a constraint: 

ht Chht + t Lt'CLt+ h ShCfh ≤  CHP ( 6 ) 

To include estimates of contention, step 2 uses MIP+C 

in place of MIP, with the iteration between the MIP and 

the performance model, as described above. 

 

VII. EXAMPLE: USE OF HMIP+C 

The first example considers deployment of the 

application shown in Figure 2, with QoS requirement 

RTUserClass ≤ 29ms, and a memory requirement for each 

task of 1 unit. The hosts for this (and later) experiments 

are equal numbers of five types with the relative speeds, 

memory and cost factors shown in Table 3. The ratios 

between Ch and Cfh are based on the experimental results 

given in [2][15], ranging from 0.15 to 1. The number of 

hosts was adjusted to make the average host utilization 

about 0.7 in the solution. 

 



    

   

   

 

Table 1. Host Information 

Type Speed Memory 
Variable  

cost coefficient (Ch) 

Fixed cost 

coefficient (Cfh) 

A 1.8 2 0.5 0.6 

B 2.4 4 0.45 0.81 

C 2.8 8 0.4 1.12 

D 3.2 12 0.35 1.4 

E 3.6 16 0.3 1.62 

CPLEX [13] is used as the MIP solver with 

aggressive probing and strong branching, stopping when 

it has found a feasible solution within one percent of the 

current bound, or at 350 seconds. No additional licenses 

were required in this case. 

Table 2 shows that a feasible solution with RT = 

27.21ms was found in three iterations, with 13 replicas 

deployed on 6 hosts. Table 3 shows that the resource 

usage is balanced across the hosts. The solution takes 

1.87 sec. 

Table 2. Solution Properties by Iteration 

Iteration  1  2  3 

Response Time (Goal: 29ms) 34.80 ms 32.47 ms 27.21 ms 

Variable Cost 4.93 4.83 5.07 

Fixed Cost 6.58 6.86 6.88 

 Total Cost 11.51 11.69 11.93 

Solution Time  0.73 s 0.55 s 0.59 s 

 

 

 

Table 3 CPU and Memory Utilization in Hosts  

Host Name CPU Utilization Memory Utilization 

pHostB_505 76.19% 29.45% 

pHostB_510 76.15% 25.95% 

pHostC_895 78.21% 18.48% 

pHostC_899 70.91% 13.79% 

pHostD_307 78.38% 13.35% 

pHostE_774 78.44% 5.94% 

 

The optimization creates replicas for tasks, balances 

workloads, and optimizes allocations, achieving the 

required performance with an economical solution. 

 

VIII. EVALUATION OF HP, HMIP and MIP  

To focus on the comparison of MIP with both HP and 

HMIP, experiments were first done without the iterative 

contention calculations, then with them. 

Cases had 10 to 50 applications, each based on the 

template in Figure 2, with  randomly chosen demands for 

CPU,  memory, and license availability for each task. 

The size of the host pool (made up of the five types A – 

E in Table 1), was adjusted to give levels of “stress” of 

about 0.25, 0.5, and 0.7: 

stress = required flow for SLA/total capacity 

          =  cfc,SLAsdsc/hΩh 

At each stress value there is about the same number of 

hosts of each type, and the same randomly constructed 

applications were used. 

 

Table 4. Comparison of HP alone, MIP alone, and HMIP (Without Iterating to Include Contention) 

Stress rate  High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05) 

 HP MIP HMIP HP MIP HMIP HP MIP HMIP 

10 app, 100 tasks 23 hosts 32 hosts 57 hosts 

objective 34.38 32.82 33.14 46.79 32.65 32.85 35.2 32.2 32.2 

Solution time (sec) 0.016 6.969 0.422 0.015 6.344 1.734 0.031 0.891 0.422 

# of variables in MIP - 3313 2326 - 4582 2326 - 8107 2044 

20 app, 200 tasks 33 hosts 46 hosts 86 hosts 

objective 56.52 52 51.99 68.69 51.3 51.3 52.35 50.98 50.88 

Solution time (sec) 0.031 4.281 3.203 0.031 25.953 7.735 0.062 68.66 2.562 

# of variables in MIP - 9413 6884 - 13066 7165 - 24306 6322 

30 app, 300 tasks 53 hosts 75 hosts 139 hosts 

objective 106.41 84.11 84.06 86.1 83.4 83.3 84.51 81.95 81.95 

Solution time (sec) 0.046 6.266 7.625 0.078 51.687 9.672 0.109 21.42 4.328 

# of variables in MIP - 22523 16629 - 31785 16629 - 58729 14945 

40 app, 400 tasks 64 hosts 89 hosts 169 hosts 

objective 107.12 101.71 102.66 104.72 100.7 100.7 102.13 Out of  

Memory 

101.0 

Solution time (sec) 0.063 100.81 13.688 0.094 165.83 27.093 0.141 9.047 

# of variables in MIP - 36184 26647 - 50209 26647 - 95205 23842 

50 app, 500 tasks  81 hosts 113 hosts 216 hosts 

objective 134.86 130.91 130.77 135.2 130.28 130.3 130.58 Out of  

Memory 

128.6 

Solution time (sec) 0.062 Time out 54.547 0.094 Time out 57.3 0.187 19.359 

# of variables in MIP - 57131 41709 - 79563 42410 - 152103 37503 

 



    

   

   

 

Table 4 compares the cost, solution time and number of 

MIP variables (continuous and discrete). The smallest 

value for each is in boldface. It shows: 

 MIP usually gives the smallest cost, but it takes 

longer than HMIP and runs out of memory or time. 

 HP occasionally gives considerably higher cost.  

 In under 10 sec, HMIP found a solution with 40 

applications on 169 hosts, under high “stress”. 

 HMIP gives almost as low cost results as MIP. 

 HMIP time was smallest for high stress models. 

 The costs, hosts and replicas are similar across low 

and high-stress problems. Excess resources thus are 

not an advantage. 

 Low stress cases have larger MIPs than high stress, 

but have more reduction in size for HMIP. 

 MIP problems with less than 10,000 variables were 

solved by CPLEX in less than 10 seconds. 

Overall, HMIP is very satisfactory. Cost is within 2% of 

pure MIP and it is always faster, up to an order of 

magnitude (and increasing) on large problems.  

A. Comparison including Contention 

The same set of applications with 1, 5, 10 and 20 

applications were optimized again with the iterative 

contention calculation included. The results are shown in 

Table 5. 

If we adopt one minute as a maximum practical 

optimization time, these cases are practical up 10 

applications. This is quite good, since changes to 

deployment take on the order of minutes even for just a 

few machines. Since about 60% of the iteration time is 

devoted to the LQM, this would be improved if the LQM 

solution time could be reduced. 

These experimental results show that CloudOpt can 

deploy between 100 and 200 heterogeneous tasks in a 

reasonable time. The performance model is the limiting 

factor. 

 
 

Table 5. Evaluation of HP+C, Pure MIP+C, and HMIP+C  

Stress rate High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05) 

1 app HP MIP+C HMIP+C HP MIP+C HMIP+C HP MIP+C HMIP+C 

# of iterations 1 1 1 1 1 1 1 1 1 

Time for optimization (sec) 0.01 0.109 0.109 0.01 0.109 0.109 0.01 0.109 0.109 

Time for LQNS (sec) 0.094 0.11 0.11 0.109 0.11 0.11 0.109 0.094 0.109 

Total energy and license Cost 3.82 2.32 2.32 3.82 2.32 2.32 3.85 2.22 2.22 

# of replicas (task)/ # of hosts 7/2 7/1 7/1 7/2 7/1 7/1 7/3 7/1 7/1 

# of variables in MIP - 37 37 - 37 37 - 82 52 

5 app          

# of iterations 7 18 21 1 8 8 8 3 9 

Time for optimization (sec) 0.012 1.36 1.079 0.016 1.11 0.765 0.031 1.03 0.953 

Time for LQNS (sec) 2.078 4.829 4.875 0.313 1.907 2.031 2.811 0.789 2.155 

Total energy and license Cost 10.25 9.765 9.532 9.82 9.52 9.37 13.13 9.30 9.41 

# of replicas (task)/ # of hosts 58/6 38/5 38/5 37/5 37/5 38/5 48/10 37/4 38/5 

# of variables in MIP - 461 390 - 674 390 - 1242 674 

10 app          

# of iterations 24 11 24 23 21 25 19 9 20 

Time for optimization (sec) 0.093 6.078 7.485 0.015 17.859 11.174 0.109 28.141 6.425 

Time for LQNS (sec) 32.625 10.954 26.92 32.093 20.70 24.886 31.031 11.189 25.890 

Total energy  and license Cost 24.14 21.43 20.63 29.71 20.19 20.4 24.77 19.49 20.08 

# of replicas (task)/ # of hosts 129/15 75/11 77/10 179/20 76/10 78/10 112/15 76/8 77/9 

# of variables in MIP - 2185 1480 - 2890 1762 - 5710 2044 

20 app          

# of iterations 23 42 22 32 

Out of 
Memory 

28 17 

Out of 
Memory 

21 

Time for optimization (sec) 0.079 197.32 61.62 0.156 64.32 0.295 29.766 

Time for LQNS (sec) 202.86 273.66 121.86 304.67 271.4 178.13 191.74 

Total energy  and license Cost 47.79 42.32 41.42 58.26 41.75 54.63 39.29 

# of replicas (task)/ # of hosts 244/29 155/21 153/20 294/38 158/21 250/35 152/16 

# of variables in MIP - 8289 6884 - 8008 - 5479 

 



    

   

   

 

IX. COMPARISON WITH OTHER 
APPROACHES 

Many existing systems use packing approaches to handle 

task deployments. HMIP was compared to the Power-

minimizing Placement Algorithm (mPP) [2] and a simple 

greedy approach SGD described as follows:  
 

Simple Greedy Deployment (SGD): 

T: a collection of tasks to be deployed.  

 I: the number of hosts 

1. Sort hosts in increasing order of maximum cost Cfh+ 

ΩhCh, and set i = 1 

2. For each t in T  

2.1. Set  d
+

t = dt 

2.2. If i ≤ I then: 

2.2.1. Allocate (t, min(d
+

t , Ωh(i) ), h(i))  

2.2.2. If d
+

t > 0 increment i and repeat from 2. 

2.3. Else (i.e. i > I) return error “out of hosts” 

2.4. Next t, and increment i 

 

Table 6 compares the effectiveness of HMIP, SGD 

and mPP for the single application used in Section 6. 

SGD and mPP do not account for performance, so it 

is not surprising that their solutions violate the response 

time constraint. In SGD one task per host increases the 

number of hosts and reduces host utilization. This results 

in higher costs and more hosts than HMIP.  mPP allows 

resource sharing, so it uses fewer hosts, but cannot 

guarantee optimality because of the limitation of the 

packing strategy. Moreover, both SGD and mPP do not 

consider the memory and license constraints, but this 

limitation is not critical in this simple example. 

Table 6. Comparison of HMIP, SGD and mPP  

 HMIP SGD mPP 

Response Time 
(Goal: 29ms) 

27.21ms 34.10ms 41.78ms 

Hosts Used 6 13 10 

Total  Cost 11.95 14.28 12.34 

Variable Cost 5.05 6.48 6.34 

Fixed Cost 6.88 7.80 5.99 

Average CPU Utilization  0.76 0.55 0.70 

 
X. CONCLUSIONS 

CloudOpt has been shown to be an effective and 

scalable algorithm for optimizing deployments in clouds. 

It has been shown to be practical (in the sense of 

providing a solution in under two minutes) for deploying 

applications totaling 100-200 processes plus some 

replicas. It honors constraints on user QoS and process 

memory, and can optimize energy use or financial cost. 

License cost is also included, showing flexibility in 

addressing additional concerns.  

HMIP is more effective and more efficient when 

applied to a smaller host pool (which is big enough to 

carry the workload with an average utilization no more 

than 70%). 

CloudOpt can be made still more scalable with a more 

efficient performance model solver. It has also been 

extended to deal with installation of new applications 

and with other dynamic changes. An extended 

description of CloudOpt is given in [17]. 
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