
1

What Can Web Services Bring To
Integrated Management?

Aiko Pras
University of Twente, The Netherlands

Jean-Philippe Martin-Flatin
NetExpert, Switzerland

Since the turn of the millennium, Web services have pervaded the middleware industry, 
despite their technical limitations, their ongoing standardization, the resulting lack of stable 
standards, the different meanings of the term service to different people, and the fact that 
marketing forces have blurred the technical reality that hides behind this term. What is so 
special about Web services and their underlying Service-Oriented Architecture (SOA)?

As a major technology on the software market, Web services deserve to be investigated 
from an integrated management perspective. What does this middleware technology bring to 
management applications? Is it yet another way of doing exactly the same thing? Or does it 
enable management software architects to open up uncharted territories for building a new 
generation of management solutions? Can it help us manage networks, systems and services 
with unprecedented flexibility, robustness and/or scalability?

In this chapter, we first present the technical motivation for shifting toward Web services. 
In Sections 2, 3 and 4, we describe different facets of this middleware technology: its 
architecture, its protocols, and the main standards that make up the so-called Web services 
stack. In Sections 5 and 6, we show that Web services can be used in integrated management 
in an evolutionary manner. The example studied here is network monitoring. We propose a 
fine-grained Web service mapping of SNMP operations and managed objects, and show that 
the same management tasks can be performed with this new middleware to implement 
network monitoring. In Section 6, we go back to the rationale behind SOA and compare it 
with fine-grained Web services. This leads us to propose another perspective, more revolu-
tionary, where services are coarse-grained, wrapping up autonomous programs rather than 
getting and setting managed objects. We analyze the challenges posed by these coarse-
grained Web services to management applications, and the changes that they require in 
today’s management habits. Finally, we give examples showing how management platforms 
could gradually migrate toward SOA in the future.
This paper has been published in the Elsevier Handbook of Network and System Administration, 
editors: J. Bergstra and M. Burgess. 
It should be cited as follows: Pras, A. and Martin-Flatin, J.P.: What Can Web Services Bring To 
Integrated Management? In: Handbook of Network and System Administration. Elsevier, Amsterdam. 
ISBN 978-0-444-52198-9, 2007



2

1 MOTIVATION

The charm of novelty should not obliterate the fact that it is unwise to change a working 
solution. Before jumping on the bandwagon of Web services, supposedly the latest and 
greatest technology in the middleware market, let us review the current state of affairs in 
integrated management and investigate whether we need a new solution at all.

1.1 COMMAND LINE INTERFACE 

Our first observation is that today’s management of networks, systems and services still 
relies to a great extent on protocols and technologies that were developed several decades 
ago. For instance, the most frequently used management tool still seems to be the Command 
Line Interface (CLI), which was introduced in the early days of computing (and later 
networking) to manage computer systems and network devices. In the Internet world, 
network operators still often rely on this rather crude interface to configure their equipment. 
The CLI is not only used interactively (in attended mode) when Network Operations Center 
(NOC) staff log into remote systems to manually monitor and modify their operation, but 
also in unattended mode when management scripts automatically connect to remote 
machines (e.g., using expect [47]) to check their configuration and operation and possibly 
alter them. In large organizations, these scripts are essential to manage and control the 
Information Technology (IT) infrastructure in a cost-effective and reliable manner.

Unfortunately, different CLIs use different syntaxes: there is no widely adopted standard. 
Not only do CLIs vary from vendor to vendor, but also from product line to product line for 
a given vendor, and sometimes even between versions of a given product. Scripts are 
therefore highly customized and equipment specific, and considerable investments are 
needed to maintain them as networks, systems and services evolve and come to support new 
features.

1.2 SNMP PROTOCOL

In the 1970s and early 1980s, when large networks began to be built all over the world, this 
interoperability issue became increasingly serious. In the 1980s, the International Organi-
zation for Standardization (ISO) and the Internet Engineering Task Force (IETF) proposed 
to address it by defining standard management protocols.

To date, the most successful of these protocols has been the IETF’s Simple Network 
Management Protocol (SNMP), which is accompanied by a standard describing how to 
specify managed objects—the Structure of Management Information (SMI)—and a 
document defining standard managed objects organized in a tree structure—the Management 
Information Base (MIB-II). As the latter defines only a small number of managed objects, 
additional MIB modules soon appeared.

The first versions of these SNMP standards were developed in the late 1980s and became 
IETF standards in 1990 (they are now known as SNMPv1 and SMIv1 [85]). Soon afterward, 
they were implemented in many products and tools, and used on a very large scale, much 
larger than expected. In view of this success, the original plan to eventually migrate to ISO 
management protocols was abandoned.



3

Instead, the IETF decided to create a second version of the SNMP standards. This version 
should have better information modeling capabilities, improved performance and, most 
importantly, stronger security.

The work on information modeling progressed slowly but smoothly through the IETF 
standard track; SMIv2, the new version of the Structure of Management Information, became 
a proposed standard in 1993, a draft standard in 1996, and a standard in 1999 [56]. In addition, 
a new Packet Data Unit (PDU) was defined to retrieve bulk data (get-bulk).

Unfortunately, the original developers of SNMPv2 disagreed on the security model and 
failed to find a compromise. In 1994, two competing versions of SNMPv2 were standardized 
(SNMPv2p and SNMPv2u), which utterly confused the network management market. In 
1996, a compromise was standardized (SNMPv2c) [85] with only trivial support for security 
(“community” string, i.e. the clear-text identification scheme implemented in SNMPv1). 
SNMPv2c brought several improvements to SNMPv1 and was widely adopted, but it did not 
address the market’s main expectation: the support for professional-grade security.

In 1996, a new IETF Working Group was created, with different people, to address 
security issues in SNMP. This resulted in SNMPv3, which progressed slowly through the 
standard track and eventually became an IETF standard in 2003.

By the time this secure version of SNMP was released, the market had lost confidence in 
the IETF’s ability to make SNMP evolve in a timely manner to meet its growing demands. 
To date, two decades after work on SNMP began in 1987, there is still no standard mechanism 
in SNMP for distributing management across multiple managers in a portable way... As a 
result, management platforms have to use proprietary “extensions” of SNMP to manage large 
networks.

In last resort, a new IETF group was formed in 2001, called the Evolution of SNMP (EoS) 
Working Group, to resume standardization work on SNMP. But it failed to build some 
momentum and the group was eventually dismantled in 2003, without any achievement.

WAITING FOR A NEW SOLUTION

SNMPv1 was undoubtedly a great success, but it failed to evolve [79]. The frequent use of 
SNMP to manage today’s networks should not hide the fact that many organizations also use 
the CLI and ad hoc scripts to manage their network infrastructure. This not only defeats the 
point of an open and standard management protocol, but also prevents the wide use of 
policy-based management, because CLI-based scripts alter the configuration settings 
supposedly enforced by Policy Decisions Points (PDPs, i.e. policy managers in IETF 
jargon). Today, the market is clearly waiting for a new solution for network management.

SNMP never encountered much success in systems and service management. Since its 
inception, service management has been dominated by proprietary solutions; it still is. The 
situation was similar in systems management until the early 2000s. Since then, the Web-
Based Enterprise Management (WBEM) management architecture of the Distributed 
Management Task Force (DMTF) has built some momentum and is increasingly adopted, 
notably in storage area networks. The DMTF has focused mostly on information modeling so 
far. The communication model of WBEM can be seen as an early version of SOAP.



4

For large enterprises and corporations, the main problem to date is the integration of 
network, systems and service management. These businesses generally run several 
management platforms in parallel, each dedicated to a management plane or a technology 
(e.g., one for network management, another for systems management, a third one for service 
management, a fourth one for the trouble-ticket management system, and a fifth one for 
managing MPLS-based VPNs1). In these environments, management platforms are either 
independent (they do not communicate) or integrated in an ad hoc manner by systems 
integrators (e.g., events from different platforms are translated and forwarded to a single 
event correlator). For many years, the market has been waiting for a technology that would 
facilitate the integration of these platforms. Researchers have been working on these issues 
for years, but turning prototypes into reliable and durable products that can be deployed on a 
very large scale still poses major issues. The market is ripe now for a new technology that 
could make this integration easier.

1.3 FROM SPECIFIC TO STANDARD TECHNOLOGIES

For many years, the IETF encouraged the engineers involved in its Working Groups to 
devise a taylor-made solution for each problem. This led to a plethora of protocols. SNMP 
was one of them: as network bandwidth, Central Processing Unit (CPU) power and memory 
were precious few resources in the late 1980s, their usage had to be fine-tuned so as not to 
waste anything.

Since then, the context has changed [53]. First, the market has learned the hard way what 
it costs to hire, train and retain highly specialized engineers. Second, considerably more 
network and computing resources are available today: there is no need anymore for saving 
every possible bit exchanged between distant machines. Third, software production 
constraints are not the same: in industry, a short time-to-market and reasonable development 
costs are considerably more important than an efficient use of equipment resources.

For integrated management, the main implications of this evolution are twofold. First, it 
is now widely accepted that using dedicated protocols for exchanging management 
information does not make sense anymore: wherever possible, we should reuse existing and 
general-purpose transfer protocols (pipes) and standard ways of invoking service primitives. 
Second, instead of using specific technologies for building distributed management 
applications, we should strive to use standard middleware.

Two platform-independent middleware technologies encountered a large success in the 
1990s: the Common Object Request Broker Architecture (CORBA) [67] and Java 2 
Enterprise Edition (J2EE) [13]; the latter is also known as Enterprise Java Beans (EJBs). Both 
made there way to some management platforms for distributing management across several 
machines, but none of them had a major impact on the integrated management market. Why 
should Web services do any better?

1. MPLS stands for Multi-Protocol Label Switching, VPN for Virtual Private Network.



5

1.4 WEB SERVICES

The main difference between Web services and previous types of middleware is that the 
former support a loose form of integration (loose coupling) of the different pieces of a 
distributed application (macro-components1), whereas the latter rely on their tight 
integration (tight coupling).

The macro-components of a loosely integrated application can work very differently 
internally: they just need to be able to share interfaces and communicate via these interfaces. 
What happens behind each interface is assumed to be a local matter. Conversely, the macro-
components of a tightly integrated application are internally homogeneous. They are all 
CORBA objects, or EJBs, etc.

The concept of loose integration is not new. Not only that, but nothing in CORBA (or 
J2EE) prevents application designers from supporting loose integration, where CORBA 
objects (or EJBs) serve as interfaces to entire applications; indeed, examples of wrapper 
CORBA objects (or EJBs) are described in the literature, and some can be found in real-life. 
But their presence is marginal in the market because this is not how the object-oriented 
middleware industry has developed.

What is new with Web services is that loose integration is almost mandatory, because 
Web services are grossly inefficient for engineering the internals of an application. Reengi-
neering a CORBA application with Web services operating at the object level would be 
absurd: performance would collapse. What makes sense is to wrap up an existing CORBA 
application with one or several Web service(s), to be able to invoke it from a non-CORBA 
application.

What is so great about loose integration?

First, customers love it because it preserves their legacy systems, which allows them to 
cut on reengineering costs. In the past, people working in distributed computing and 
enterprise application integration had the choice between proprietary middleware (e.g., .NET 
or DCOM, the Distributed Object Component Model) or interoperable middleware (e.g., 
CORBA or J2EE). These different types of middleware all assumed a tight integration of 
software; everything had to be an object: a CORBA object, an EJB, a DCOM component, etc. 
Using such middleware thus required either application reengineering or brand new 
developments. Only the wealthiest could afford this on a large scale: stock markets, telecom-
munication operators and service providers prior to the Internet bubble burst, etc. With Web 
services, legacy systems are no longer considered a problem that requires an expensive 
reengineering solution. On the contrary, they are a given, they are part of the solution. When 
distributed computing and enterprise application integration make use of Web services, not 
everything needs to be a Web service.

Second, vendors also love loose integration because it allows them to secure lucrative 
niche markets. Externally, each macro-component of the distributed application looks like a 
Web service. But internally, it can be partially or entirely proprietary. Interoperability is only 
assured by interfaces: vendors need not be entirely compatible with other vendors. The 

1. In Section 6.2, “Loose Coupling”, we will present examples of macro-components for management 
applications.



6

business model promoted by this approach to distributed computing and enterprise 
application integration is much closer to vendors’ wishes than CORBA and J2EE.

In addition to loose integration, Web services present a number of generic advantages that 
pertain to middleware, eXtensible Markup Language (XML) or the use of well-known 
technologies [1][53]. For instance, they can be used with many programming languages and 
many development platforms, and they are included in all major operating systems. Even 
calling Web services from a Microsoft Excel spreadsheet is easy, and the idea of building 
simple management scripts within spreadsheets can be appealing [43]. Last but not least, as 
there are many tools and many skilled developers in this area, implementing Web services-
based management applications is usually easier and less expensive than developing SNMP-
based applications.

2 INTRODUCTION TO WEB SERVICES

Let us now delve into the technical intricacies of Web services. This technology is defined in 
a large and growing collection of documents, collectively known as the Web services stack, 
specified by several consortia. In this section, we present the big picture behind Web 
services, describe the three basic building blocks (SOAP, WSDL and UDDI) and summarize 
the architecture defined by the World-Wide Web Consortium (W3C). In the next two 
sections, we will present a selection of standards that are also part of the Web services stack 
and deal with more advanced features: management, security, transactions, etc.

2.1 COMMUNICATION PATTERNS AND ROLES

Web services implement the Producer-Consumer design pattern [31]. When a Web service 
consumer binds to a Web service provider (see Figure 1), the consumer sends a request to 
the provider and later receives a response from this provider. This communication is 
generally synchronous: even though SOAP messages are one-way, SOAP is often used for 
synchronous Remote Procedure Calls (RPCs), so the application running the Web service 
consumer must block and wait until it receives a response [44]. Asynchronous versions of 
SOAP also exist [73] but are less frequent.

The first difficulty here is that the consumer usually knows the name of the service (e.g., 
it can be hard-coded in the application), but ignores how to contact the provider for that 
service. This indirection makes it possible to decouple the concepts of logical service and 
physical service. For instance, a given service can be supported by provider P1 today and 
provider P2 tomorrow, in a transparent manner for the applications. But this flexibility comes 
at a price: it requires a mechanism to enable the consumer to go from the name of a service 
to the provider for that service.

With Web services, the solution to this problem is illustrated by Figure 1. First, the 
consumer contacts a service description repository and requests a specific service. Second, 
the repository returns a handle to the service provider. Third, the consumer can now directly 
bind to the provider and send a Web service request. Fourth, the provider sends back a Web 
service response.



7

The second difficulty is that a given service may be supported not by one provider at a 
time, as before, but by multiple providers in parallel. For instance, different providers may 
support a variable Quality of Service (QoS) [93], or charge different prices for the same 
service.

In this case, the consumer typically uses a broker instead of a repository. First, the 
consumer contacts a trusted broker and requests the best offering for a given service, with 
parameters that specify what “best” means. Second, the broker builds an ordered list of offers 
(by contacting repositories, providers or other brokers, or by using locally cached 
information). Third, the consumer selects an offer and sends a Web service request to that 
provider. Fourth, the provider sends back a Web service response.

Figure 1: Finding a service offered by just one provider

consumer

provider

1

2 3
4

service 
description 
repository

Figure 2: Finding a service offered by multiple providers

consumer

providerbroker

1

2 3
4



8

2.2 SOAP PROTOCOL

SOAP [32][33] is a protocol that allows Web applications to exchange structured 
information in a distributed environment. It can be viewed as a simple mechanism for 
turning service invocations into XML messages, transferring these messages across the 
network, and translating them into service invocations at the receiving end [1].

SOAP can be used on top of a variety of transfer protocols: HyperText Transfer Protocol 
(HTTP) [29], Blocks Extensible Exchange Protocol (BEEP) [68], etc. The SOAP binding 
used by most applications to date specifies how to carry a SOAP message within an HTTP 
entity-body; with this binding, SOAP can be viewed as a way to structure XML data in an 
HTTP pipe between two applications running on distant machines.

A SOAP message is an envelope that contains a header and a body. The header is optional 
and carries metadata; the body is mandatory and includes the actual application payload. Both 
the header and the body may be split into blocks that can be encoded differently. A SOAP 
message is used for one-way transmission between a SOAP sender and a SOAP receiver, 
possibly via SOAP intermediaries. Multiple SOAP messages can be combined by 
applications to support more complex interaction patterns such as request-response. SOAP 
also specifies how to make RPCs using XML.

In its original definition, the SOAP acronym stood for Simple Object Access Protocol. In 
the version standardized by the W3C, SOAP is no longer an acronym.

2.3 WEB SERVICES DESCRIPTION LANGUAGE

The Web Services Description Language (WSDL) [16][17] is a standard XML language for 
describing Web services. Each Web service is specified by a WSDL description that 
separates the description of the abstract functionality offered by a service (type and interface
components) from concrete details of the service description (binding and service
components); the latter defines how and where this functionality is offered. Multiple WSDL 
descriptions can be published in a single WSDL file, which is sometimes called a WSDL 
repository.

The current version of the standard is WSDL 2.0, released in March 2006. The previous 
version, WSDL 1.1, was standardized in March 2001. Both are widely used today. These 
two versions of WSDL are quite different. For instance, the message component was made 
obsolete in WSDL 2.0. The port type component in WSDL 1.1 evolved into the interface
component in WSDL 2.0. The port component in WSDL 1.1 was renamed endpoint in 
WSDL 2.0. In Section 5.4, we will present the different components of a WSDL description 
while we study a detailed example. 

If we compare Web services with CORBA, the WSDL language corresponds to the 
CORBA Interface Definition Language (IDL); a WSDL repository is similar to an Interface 
Repository in CORBA; applications can discover Web services in a WSDL repository and 
invoke them dynamically, just as CORBA applications can discover an object interface on 
the fly and invoke it using the Dynamic Invocation Interface. However, the underlying 
development paradigm is quite different. CORBA requires a developer to create an interface 
before implementing clients and servers that match this interface, whereas WSDL 
descriptions may be provided after the initial creation of the service. Moreover, it is not 



9

necessary to store all WSDL descriptions in a designated repository (whereas it is mandatory 
in CORBA): the Web service provider may also choose to serve a WSDL description at the 
physical location where the service is offered. 

2.4 UNIVERSAL DESCRIPTION, DISCOVERY AND INTEGRATION

Universal Description, Discovery and Integration (UDDI) [87][88] is a standard technology 
for looking up Web services in a registry. A UDDI registry offers “a standard mechanism to 
classify, catalog and manage Web services, so that they can be discovered and consumed” 
[21]. Here are typical scenarios for using a UDDI registry [21]:

• Find Web services based on an abstract interface definition.
• Determine the security and transport protocols supported by a given Web service.
• Search for services based on keywords.
• Cache technical information about a Web service, and update this cached information 

at run-time.

Three versions of UDDI have been specified to date. UDDIv1 is now considered historic. 
The market is migrating from UDDIv2 [6] to UDDIv3 [21]; both are currently used. The main 
novelties in UDDIv3 include the support for private UDDI registries [1] and registry 
interaction and versioning [87].

The XML schema that underlies UDDI registries consists of six elements [21]:

• businessEntity describes an organization that provides Web services; this information 
is similar to the yellow pages of a telephone directory: name, description, contact 
people, etc.;

• businessService describes a collection of related Web services offered by an organi-
zation described by a businessEntity; this information is similar to the taxonomic 
entries found in the white pages of a telephone directory;

• bindingTemplate provides the technical information necessary to use a given Web 
service advertised in a businessService; it includes either the access point (e.g., a 
Uniform Resource Locator, URL) of this Web service or an indirection mechanism that 
leads to the access point; conceptually, this information is similar to the green pages of 
a telephone directory;

• tModel (technical model) describes a reusable concept: a protocol used by several Web 
services, a specification, a namespace, etc.; references to the tModel’s that represent 
these concepts are placed in a bindingTemplate; as a result, tModel’s can be reused 
by multiple bindingTemplate’s;

• publisherAssertion describes a relationship between a businessEntity and another 
businessEntity; this is particularly useful when a group of businessEntity’s 
represent a community whose members would like to publish their relationships in a 
UDDI registry (e.g., corporations with their subsidiaries, or industry consortia with 
their members);

• subscription enables clients to register their interest in receiving information about 
changes made in a UDDI registry. These changes can be scoped based on preferences 
provided by the client.



10
There are well-known problems with UDDI [1][54]: performance, scalability, 
taxonomies, etc. In practice, this technology is not widely used for publishing and discovering 
Web services; when it is used, it is often “extended” with proprietary enhancements. Web 
service discovery is still a very active research area, particularly in the field of semantic Web 
services (see Section 3.7).

2.5 WEB SERVICES ARCHITECTURE

The Web Services Architecture (WSA) was an attempt by the W3C to “lay the conceptual 
foundation for establishing interoperable Web services” [9]. This document defines the 
concept of Web service, architectural models (the message-oriented model, the service-
oriented model, the resource-oriented model and the policy model), relationships that are 
reminiscent of Unified Modeling Language (UML) relationships, and a hodgepodge of 
concepts grouped under the name “stakeholder’s perspectives”: SOA, discovery, security, 
Peer to Peer (P2P), reliability, etc.). Management is quickly mentioned in Section 3.9 of [9], 
but the W3C seems to have paid little attention to this issue thus far.

A more interesting attempt to define an architecture for Web services can be found in 
Section 5.3 of [1].

3 ADVANCED WEB SERVICES

3.1 STANDARDIZATION

Because interoperability is crucial to Web services, their standardization has been of key 
importance since their inception. So far, two consortia have been particularly active in this 
field: the W3C and the Organization for the Advancement of Structured Information 
Standards (OASIS). More recently, other industrial consortia have worked in this field and 
produced standards or so-called “best practices”, including the Web Services Interopera-
bility Organization (WS-I), the Open Grid Forum (OGF), the Distributed Management Task 
Force (DMTF) and Parlay.

3.2  INTEROPERABILITY

In April 2006, WS-I specified the Basic Profile 1.1 [4], a set of implementation guidelines to 
help people build interoperable Web services. This document contains “clarifications, 
refinements, interpretations and amplifications of those specifications which promote 
interoperability”. The main focus is on SOAP messaging and service description. In 
particular, the guidelines for using SOAP over HTTP are important. A number of Web 
services standards refer to this Basic Profile.

3.3 COMPOSITION

A composite Web service is a group of Web services that collectively offer some 
functionality. Each Web service taking part in a given composite Web service is known as a 
participant. Each participant can itself be a composite Web service, which can lead to a 
nested structure of services of arbitrary depth. The process of bundling Web services 



11
together to form a composite Web service is known as service composition. A Web service 
that is not composite is called atomic (or basic [1]).

There are many ways of specifying composite Web services, expressing constraints 
between participants, and controlling their synchronization and execution. They are usually 
grouped into two categories: static and dynamic. Static composition is the simplest form of 
composition: composite Web services are defined in advance, once and for all.

A generally more useful, but also considerably more complex, form of composition is the 
dynamic composition of Web services. In this case, Web services are composed at run-time: 
the participants of a composite Web service are chosen dynamically based on a variety of 
concerns: availability, load-balancing, cost, QoS, etc. The main challenge here is to build 
composite Web services semi-automatically or in a fully automated manner. Different 
techniques have been proposed in the literature [78]; they borrow heavily from other existing 
and well-established fields (e.g., workflow systems or artificial intelligence planning).

An interesting issue in Web service composition is how to compute the QoS of a 
composite Web service when we know the QoS offered by each participant Web service [71]. 
Complex composite services can lead to situations where the error bars become ridiculously 
large when simple multiplicative techniques are used; reducing these error bars is non-trivial.

Whether a Web service is atomic, statically composed or dynamically composed is 
transparent to its consumers. Service composition is a key characteristic of Web services: 
their success in e-business owes a great deal to service composition.

3.4 ORCHESTRATION AND CHOREOGRAPHY

For many years, the terms orchestration and choreography were used interchangeably in the 
Web services community. There is still no consensus on their exact meaning. The W3C 
proposes to distinguish them as follows [34].

ORCHESTRATION

In the realm of Web services, orchestration is about controlling the execution of a composite 
Web service, viewed as a business process. It specifies how to control, from a central point, 
the execution and synchronization of all the participant Web services (e.g., by triggering the 
execution of Web service WS2 when Web service WS1 completes).

Orchestration is usually implemented by an executable process that interacts with all Web 
services involved. Orchestration languages make it possible to define the order in which the 
participant Web services should be executed, and to express the relationships between Web 
services in a workflow manner.

The most famous orchestration language to date is probably WS-BPEL (Web Service 
Business Process Execution Language) [2], an OASIS draft standard formerly known as 
BPEL4WS (Business Process Execution Language for Web Services) [22] and already 
widely used. The main objectives of WS-BPEL are to describe process interfaces for business 
protocols and define executable process models.



12
CHOREOGRAPHY

Choreography is a declarative way of defining how participants in a collaboration (e.g., a 
composite Web service) should work together, from a global viewpoint, to achieve a 
common business goal. The objective here is to define a common observable behavior by 
indicating in a contract where information exchanges occur, what rules govern the ordering 
of messages exchanged between participants, what constraints are imposed on these 
message exchanges, and when the jointly agreed ordering rules are satisfied [45].

The need for a high-level contract, independent of execution and implementations, stems 
from the fact that enterprises are often reluctant to delegate control of their business processes 
to their partners when they engage in collaborations. Choreographies enable partners to agree 
on the rules of collaboration for a composite Web service without specifying how each 
participant Web service should work. Each participant is then free to implement its own 
portion of the choreography as determined by the global view [45]. For instance, one 
participant may use WS-BPEL for orchestrating business processes, while another participant 
may use J2EE.

The choreography language standardized by the W3C is called the Web Services 
Choreography Description Language (WS-CDL) [45]. With this language, it is supposedly 
easy to determine whether each local implementation is compliant with the global view, 
without knowing the internals of these local implementations.

3.5 TRANSACTIONS

Classic transactions are short-lived operations that exhibit the four ACID properties: 
Atomicity, Consistency, Isolation and Durability. These properties are fulfilled by transac-
tional systems using a coordinator and a two-phase protocol called two-phase commit. 
During the first phase, the coordinator contacts each participant in the transaction and asks 
them to make local changes in a durable manner, so that they can either be rolled back (i.e., 
cancelled) or committed (i.e., confirmed) later. During the second phase, we have two 
options. If a failure occurred on any of the participants during phase one, the coordinator 
sends an abort to each participant and all changes are rolled back locally by the participants; 
the transaction then fails. Otherwise, the coordinator sends a commit to each participant and 
all changes are committed locally by the participants; the transaction completes successfully. 
This two-phase protocol is blocking: once they have completed phase 1 successfully, the 
participants block until the coordinator sends them a commit (phase 2).

This modus operandi is not applicable to Web services [48][70]. First, Web services are 
not necessarily blocking (e.g., when they rely on an asynchronous implementation of SOAP). 
Second, in the realm of Web services, transactions are usually long-lived; using the above-
mentioned protocol may cause resources to remain unavailable for other transactions over 
extended periods of time, thereby impeding concurrency. Third, when composite Web 
services are used across multiple organizations, security policies often prevent external 
entities from hard-locking a local database (allowing it would open the door to denial-of-
service attacks, for instance). Hence another mechanism is needed.

Several techniques were devised in the past [48] to release early the resources allocated 
by a long-lived transaction, and allow other transactions to run in the meantime. In case of 



13
subsequent failure, compensation mechanisms make it possible to bring the transactional 
system to the desired state (e.g., a payment by credit card can be reimbursed). However, these 
compensations do not guarantee all ACID properties. This is the approach generally adopted 
for Web services [1]. Another possibility is to subdivide long-lived transactions into 
independent short-lived transactions that can run independently as classic atomic 
transactions.

Detailing the support for transactions in a Web service environment would require an 
entire book. The OASIS consortium is the main standardization actor in this arena. It adopted 
an approach similar to Papazoglou’s [70], where transactions are part of a bigger framework 
that defines business protocols, coordination protocols, transactions, orchestration of 
business processes, choreography, etc. Several building blocks have already been 
standardized: the business transaction protocol (WS-BTP), atomic transactions (WS-Atomic-
Transaction), business activities (WS-BusinessActivity), coordination protocols (WS-
Coordination), transactions (WS-Transaction), etc. These standards are still evolving and 
should not be considered stable yet. Readers interested in learning more about transactions in 
the context of Web services are referred to the Web site of the OASIS Web Services 
Transaction Technical Committee [65].

3.6 SECURITY

WS-Security specifies how to secure the SOAP protocol. By supporting end-to-end 
application-level security, it nicely complements HTTPS, the secure version of HTTP, which 
can only secure communication on a hop-by-hop basis (with HTTPS, each intermediary can 
decrypt and re-encrypt the HTTP message) [1]. Whereas the entire payload is encrypted 
with HTTPS, WS-Security makes it possible to encrypt only one block of the SOAP body 
(e.g., bank details).

WS-Security was standardized by OASIS in 2004 (version 1.0) and upgraded in 2006 
(version 1.1). It consists of a main document, known as SOAP Message Security, and several 
companion documents.

SOAP Message Security 1.1 [60] specifies SOAP extensions for sending security tokens 
as part of a SOAP message, guaranteeing message integrity (payload) and ensuring message 
confidentiality. This specification makes it possible to secure Web services with various 
security models: Public Key Infrastructure (PKI), Kerberos, Secure Sockets Layer (SSL), etc. 
Per se, it does not provide a complete security solution for Web services; instead, “it can be 
used in conjunction with other Web service extensions and higher-level application-specific 
protocols to accommodate a wide variety of security models and security technologies” [60].

In version 1.1, there are six companion documents: Username Token Profile (to identify 
the requestor by using a username, and optionally authenticate it with a password), X.509 
Certificate Token Profile (to support X.509 certificates), the SAML Token Profile (to use 
Security Assertion Markup Language assertions as security tokens in SOAP headers), the 
Kerberos Token Profile (to use Kerberos tokens and tickets), the REL Token Profile (to use 
the ISO Rights Expression Language for licenses), and the SwA Profile (to secure SOAP 
messages with Attachments).



14
3.7 SEMANTIC WEB SERVICES

In 2001, Berners-Lee launched the Semantic Web with a powerful statement that has 
become famous: “The Semantic Web will bring structure to the meaningful content of Web 
pages” [7]. The idea was to add more metadata to Web pages (using XML) to enable 
software agents to parse them automatically and “understand” their hierarchically structured 
contents (containment hierarchy), as opposed to seeing only flat structures and keywords out 
of context. The main building blocks defined so far for the Semantic Web are the Resource 
Description Framework (RDF) [51] and the Web Ontology Language (OWL) [58].

In the realm of Web services, this vision translated into the concept of semantic Web 
services [59]. Whereas Web services focus mostly on interoperability, semantic Web services 
complement interoperability with automation, dynamic service discovery and dynamic 
service matching. Semantic Web services address the variety of representations (e.g., 
different names for the same concept, or different signatures for semantically equivalent 
operations) by using automated or semi-automated ontology-matching mechanisms [69]. 
This makes it possible, for instance, to compose Web services at run-time with increased 
flexibility. OWL-S (Web Ontology Language for Services) [52] is probably the most famous 
language to date for specifying semantic Web services.

4 WEB SERVICES FOR MANAGEMENT, MANAGEMENT OF WEB 
SERVICES

In this section, we review the main standards pertaining to (i) the use of Web services for 
managing networks, systems and services, and (ii) the management of Web services.

4.1 OASIS: WEB SERVICES FOR DISTRIBUTED MANAGEMENT (WSDM)

Unlike the W3C, OASIS has already paid much attention to management issues in the Web 
services arena. In 2005, the Web Services Distributed Management (WSDM) Technical 
Committee [63] standardized version 1.0 of a group of specifications collectively called 
WSDM. In August 2006, version 1.1 was released. To date, these standards are probably the 
most relevant to the integrated management community as far as Web services are 
concerned. Let us describe the main ones.

Management Using Web Services (MUWS) [11][12] is a two-part series of specifi-
cations that define how to use Web services in distributed systems management. First, 
MUWS defines a terminology and roles. As prescribed by WSDL and WS-Addressing [10], 
a Web service is viewed as an aggregate of endpoints. Each endpoint binds a Web service 
interface (described by a WSDL portType element) to an address (URL). Each interface 
describes the messages that can be exchanged and their format [91]. A manageable resource
is a managed entity (e.g., a network device or a system). A manageability endpoint is bound 
to a manageable resource and can be accessed by a Web service consumer. It acts as a 
gateway between Web services and a given manageable resource. It can interact with the 
manageable resource either directly or via an agent (e.g., an SNMP agent). A manageability 
consumer is a Web service consumer, a Web-enabled managing entity (e.g., a management 
application running on a remote network management system). After discovering Web 



15
service endpoints, it can exchange SOAP messages with these endpoints to request 
management information (monitoring in polling mode), to subscribe to events (e.g., if a PC 
needs to report that the temperature of its mother board is too high), or to configure the 
manageable resource associated with a manageability endpoint [11].

Second, MUWS defines some rules that govern communication between manageability 
endpoints and consumers (i.e., between managing and managed entities). To discover the 
manageability endpoint that enables a given manageable resource to be accessed by a Web 
service, a manageability consumer must first retrieve an Endpoint Reference [10]; next, it 
can optionally retrieve a WSDL file, a policy, etc. Once the discovery phase is over, the 
manageability consumer (managing entity) can exchange messages with a manageability 
endpoint (managed entity) by using information found in the Endpoint Reference [11].

Third, MUWS specifies messaging formats to achieve interoperability among multiple 
implementations of MUWS (e.g., when management is distributed hierarchically over 
different domains [82] controlled by different managing entities) [12].

Management of Web Services (MOWS) [91] specifies how to manage Web services. It 
defines the concept of Manageability Reference (which enables a manageability consumer 
to discover all the manageability endpoints of a manageable resource), and a list of manage-
ability capabilities (metrics for measuring the use and performance of Web services, 
operational state of a managed Web service, processing state of a request to a managed Web 
service, etc.) [91].

4.2 DMTF: WS-MANAGEMENT

WS-Management [23] was standardized by the DMTF in April 2006 to promote Web 
services-based interoperability between management applications and managed resources. It 
is independent of the WBEM management architecture and the Common Information Model 
(CIM).

First, WS-Management defines a terminology and roles. A managed resource is a 
managed entity (e.g., a PC or a service). A resource class is the information model of a 
managed resource; it defines the representation of management operations and properties. A 
resource instance is an instance of a resource class (e.g., a CIM object).

Second, WS-Management specifies mechanisms (i) to get, put, create, and delete resource 
instances; (ii) to enumerate the contents of containers and collections (e.g., logs); (iii) to 
subscribe to events sent by managed resources; and (iv) to execute specific management 
methods with strongly typed parameters [23].

The approach promoted by WS-Management corresponds to what we call fine-grained 
Web services in this chapter. In Section 5, we will see Web services (this time in the SNMP 
world) that similarly perform a get on an Object IDentifier (OID), i.e. a managed object.

The relationship between WSDM and WS-Management is not crystal clear. They do 
overlap but the scope of WSDM is much wider than that of WS-Management, so they are not 
really competitors (at least not for now). It seems that WS-Management could eventually 
provide a migration path for exchanging CIM objects between managing and managed 
entities, from the DMTF’s pre-Web services and pre-SOAP “CIM operations over HTTP” to 
a Web services-based communication model for WBEM. In this case, WS-Management 



16
would only target the WBEM community, not the Web services community at large. This is 
however mere speculation and remains to be seen.

4.3 OASIS: WS-RESOURCE

In 2001, the Global Grid Forum (GGF), now known as the OGF, began working on the 
modeling of Grid resources. This led to the creation of the Open Grid Services Infrastructure 
(OGSI) Working Group. In 2002 and 2003, the concepts of Grid services and Web services 
gradually converged, as the specifics of Grids were separated from features that belonged in 
mainstream standardization. A number of GGF group members got involved in W3C and 
OASIS groups, and several ideas that had emerged within the GGF percolated to these 
groups. GGF focused on its core business (Grid-specific activities) and more generic 
standardization efforts moved to other standards bodies.

In early 2004, a group of vendors issued a draft specification for modelling and accessing 
persistent resources using Web services: Web Services Resource Framework (WSRF) 
version 1.0. It was inspired by OGSI and played an important role in the convergence of Web 
and Grid services. Shortly afterward, this standardization effort was transferred to OASIS, 
which created the WSRF Technical Committee [64] to deal with it. This led to the phasing 
out of OGSI and its replacement by a series of documents collectively known as WSRF. In 
April 2006, version 1.2 of WSRF was released by OASIS. It includes WS-Resource [30], 
WS-ResourceProperties, WS-ResourceLifetime, WS-ServiceGroup and WS-BaseFaults (for 
more details, see Banks [5]).

4.4 PARLAY-X

The multi-vendor consortium called Parlay has defined a number of open service-
provisioning Application Programming Interfaces (APIs) to control various aspects of 
Intelligent Networks. At the same time the Open Service Access (OSA) group of the 3rd 
Generation Partnership Project (3GPP) was working on similar APIs that allowed 
applications to control a Universal Mobile Telecommunications System (UMTS) network. 
These two groups joined their activities and now common Parlay/OSA API standards exist. 
These APIs require detailed knowledge of the Intelligent Networks, however, which means 
that only a limited number of experts are able to use these APIs. The Parlay group therefore 
defined some easier to use APIs, at a higher level of abstraction. These APIs, called Parlay-
X, are defined in terms of Web services. Examples of such services include “connect A to 
B”, “give status of X (on/off)”, “send SMS1”, “give location of mobile handset” and 
“recharge pre-paid card”. The users of a Parlay-X server do not need to know the details of 
the underlying network; the Parlay-X server translates the Web services calls into Parlay/
OSA calls that are far more difficult to understand. It is interesting to note that Web services 
technologies were applied by the Parlay group long before the IETF or the Internet Research 
Task Force (IRTF) even started to think about these technologies.

1. Short Message System.



17
4.5 IETF AND IRTF-NMRG

In the summer of 2002, the Internet Architecture Board (IAB) organized a one-off Network 
Management Workshop to discuss future technologies for Internet management. One of the 
conclusions of this workshop was that time had come to investigate alternative network 
management technologies, in particularly those that take advantage of the XML technology 
[79].

Web services are a specific form of XML technology. The 11th meeting of the IRTF 
Network Management Research Group (NMRG) [38], which was organized three months 
after the IAB workshop, therefore discussed the possible shift toward XML and Web 
services-based management. Although many questions were raised during that meeting, the 
most interesting question was that of performance; several attendees expressed their concern 
that the anticipated high demands of Web services on network and agent resources would 
hinder, or even prohibit, the application of this technology in the field of network 
management. At that time, no studies were known that compared the performance of Web 
services to that of SNMP. Most attendees therefore preferred to take a simpler approach not 
based on Web services (e.g., JUNOScript for Juniper). The idea behind JUNOScript is to 
provide management applications access to the agent’s management data, using a lightweight 
RPC mechanism encoded in XML. As opposed to SNMP, JUNOScript uses a connection-
oriented transport mechanism (e.g., ssh or telnet). An advantage of JUNOScript is that 
related management interactions can be grouped into sessions, which makes locking and 
recovery relatively simple. In addition, contrary to SNMP, management information is not 
limited in size and can be exchanged reliably. JUNOScript provided the basis for a new IETF 
Working Group called NetConf. Details about NetConf can be found in an another chapter of 
this book.

Within the IRTF-NMRG, several researchers continued to study how to use Web services 
in network, systems and service management. Some of the results of this work are presented 
in the next section.

5 FINE-GRAINED WEB SERVICES FOR INTEGRATED 
MANAGEMENT

At first sight, an intuitive approach to introduce Web services in network management 
would be to map existing management operations (e.g., the SNMP operations get, set and 
inform) onto Web services. Is this efficient? Is this the way Web services should be used?

5.1 FOUR APPROACHES

Mapping the current habits in SNMP-based network management onto Web services leads 
to four possible approaches, depending on the genericity and the transparency chosen [83]. 
Genericity characterizes whether the Web service is generic (e.g., a Web service that 
performs a get operation for an OID passed as parameter) or specific to an OID (e.g., 
getIfInOctets). Transparency is related to the parameters of the Web service, which can 
be either defined at the WSDL level or kept as an opaque string that is defined as part of a 



18
higher-level XML schema; this will be referred to as Web services that have either 
transparent or non-transparent parameters. The four resulting forms of Web service are 
depicted in Figure 3.

5.2 PARAMETER TRANSPARENCY

Web service operations are defined as part of the abstract interface of WSDL descriptions. 
An operation may define the exchange of a single message, such as a trap, or multiple 
messages, such as getRequest and getResponse. For each message, the parameters are 
defined in so-called <part> elements. One approach consists in passing multiple 
parameters and defining the syntax of each parameter in a separate <part> element. An 
example of this is a getRequest message, which defines three parameters: oid (object 
identifier), index and filter. This example of non-transparent parameters is showed in 
Figure 4; note that for the sake of simplicity, all parts are of type string in this example.

Another approach is to define just a single parameter, and leave the interpretation of this 
parameter to the (manager-agent) application. In this case, only a single <part> element is 
needed. The syntax of the parameter is of type string, which means that the parameter is 
transparently conveyed by the WSDL layer and no checking is performed at that layer (see 
Figure 5).

An advantage of having parameter transparency is that a clear separation is made between 
the management information and the protocol that exchanges this information. In this case, it 
is possible to change the structure of the management information without altering the 
definition of management operations. From a standardization perspective, this is a good 
selling point. However, this is not a mandatory feature as WSDL supports other constructs 
(e.g., the import statement) to divide a specification over several documents, which can then 
be processed independently along the standardization track.

In case of transparent parameters, the application can exchange management data in the 
form of XML documents. In this case, an XML parser is needed to extract the parameters 

T
ra

ns
pa

re
nc

y

Genericity

full

none

OID-specificgeneric

get(param)

getIfInOctets(index, filter, ...)get(oid, index, filter, ...)

getIfInOctets(param)

Figure 3: Fine-grained Web services: transparency vs. genericity



19
from the document. When the application receives such a document, XPath [20] expressions 
may be used to select the required information. On the manager side, special functionality is 
needed to create such XML documents. As specific parsing is needed in the application, 
transparent parameters should only be used by experienced users who need this flexibility. 
For a PC user, in his home environment, who wants to include some management information 
in an Excel spreadsheet, this is too complicated. In such a case, a simple approach is required 
in which the user does not need to parse XML documents with tools like XPath and XQuery. 
Instead, parsing and checking should be performed at the WSDL layer, thus by the 
spreadsheet itself. Non-transparent parameters are therefore better suited for simple 
management applications, as found in home or small-enterprise environments.

<message name="getRequest">
  <part name="oid" type="string"/>
  <part name="index" type="string"/>
  <part name="filter" type="string"/>
  ...
</message>

<interface name="getInterface">
  <operation name="get">
    <input message="getRequest"/>
    <output message="getResponse"/>
  </operation>
</interface>

WSDL Description

....

Figure 4: Operation with non-transparent parameters

<message name="getRequest">
  <part name="param" type="string"/>
</message>

<interface name="getInterface">
  <operation name="get">
    <input message="getRequest"/>
    <output message="getResponse"/>
  </operation>
</interface>

WSDL Description

....

Figure 5: Operation with transparent parameters



20
5.3 GENERICITY

Another approach is to vary the genericity of operations, as illustrated by this example. 
Assume a managed system provides host-specific information such as SysLocation and 
SysUptime, as well as statistical information for the network interfaces such as 
IfInOctets, IfOutOctets, IfInErrors and IfOutErrors. As the system can have 
multiple interfaces, the four interface-related OIDs can be provided multiple times. Figure 6
shows this information in the form of a containment tree.

To retrieve this information, management operations need to be defined. If these 
operations are defined at a low level of genericity, a dedicated operation is required for each 
variable. The resulting operations then look like getSysUptime or getIfOutOctets (see 
Figure 6). Note that the operations for retrieving network interface information, need to have 
a parameter supplied to identify the interface.

Management operations can also be defined at a higher level of genericity. For example, 
a getSystem operation can be defined to retrieve SysLocation as well as SysUptime, 
and a getInterface(index) operation to retrieve all management information for a 
specific interface. If we push this rationale even further, a single getAll operation can 
retrieve all information contained in the managed system.

An important characteristic of this approach is that the naming of the operations precisely 
defines the functionality. Therefore it is very easy for the manager to determine which 
operation to call to retrieve certain information. Note that the number of parameters 
associated with each operation may be small: no OID is needed because the name of the 

System

Interface (index = 3)

Interface (index = 2)

Figure 6: Containment diagram

SysUptime

IfOutErrors

IfInOctets

IfOutOctets

IfInErrors

SysLocation

Interface (index = 1)

All

getAll

getSystem

getSysUptime

getInterface(index)

getIfOutOctets(index)



21
operation already identifies the object. Only in case multiple instances of the same object 
class exist (e.g., the Interface object in Figure 6) does the manager have to provide an 
instance identifier. 

Like in other management architectures such as OSI Management (the Open Systems 
Interconnection management architecture devised by the ISO) [35] or TMN (the Telecommu-
nications Management Network devised by the International Telecommunication Union, 
ITU) [35], the containment hierarchy can be presented as a tree (see Figure 7). Fine-grained 
operations can be used to retrieve the leaves of the tree, and coarse-grained operations to 
retrieve the leaves as well as their higher-level nodes. In SNMP, conversely, only the leaves 
of the MIB trees are accessible. In general, however, it is not possible to select in a single 
operation objects from different trees; if the manager wants to retrieve, for example, the OIDs 
System and IfInErrors, two separate SNMP operations are needed.

To restrict an operation to specific objects, it is possible to use Web services in 
combination with filtering. Theoretically, filtering allows usage of getAll to retrieve every 
possible variable, provided that an appropriate filter (and possible index) is given. In 
combination with filtering, getAll can thus be considered an extreme form of genericity, 
useful for all kinds of task. In practice, however, filtering can be expensive. When it is 
performed on the agent side, it may consume too many CPU cycles and memory. When 
filtering is performed on the manager side, bandwidth may be wasted and the management 
platform may become overloaded. Although filtering is very flexible and powerful, it should 
be used with care.

5.4 EXAMPLE OF WEB SERVICES-BASED MANAGEMENT

To illustrate the use of Web services for integrated management, let us now study an 
example of Web services-based network monitoring system. The example is about the 
SNMP Interface table (ifTable), which is part of the Interfaces Group MIB (IF-MIB) 
[57]. The ifTable provides information on the operation and use of all network interfaces 
available in the managed entity. These interfaces can be physical interfaces (e.g., Ethernet 
and Wireless Local Area Network cards) or virtual interfaces (e.g., tunnels or the loop-back 
interface). For each interface, the table includes a separate row; the number of rows is 
therefore equal to the number of interfaces. The table consists of 22 columns and includes 

getAll

getInterface(index)

getSysUptimegetSysLocation

getSystem

getIfOutOctets(index)getIfInOctets(index)

getIfInErrors(index) getIfOutErrors(index)

Figure 7: Containment tree



22
information such as the interface index (ifIndex), the interface description (ifDescr), the 
interface type (ifType), etc. Figure 8 shows a summary of this table.

Before we can come up with a WSDL description for retrieving the Interface table, we 
must choose the genericity of the WSDL operations. Three levels of genericity are possible, 
ranging from high genericity to low genericity.

At the highest level of genericity, a single operation can be defined to retrieve all objects 
of the ifTable. We call this Web service operation getIfTable.

Instead of retrieving the entire ifTable in a single call, it is also possible to define Web 
service operations that retrieve only a single row or a single column. The operation that 
retrieves a single row of the Interface table is called getIfRow. This operation gets all 
information related to a single network interface and requires as parameter the identifier of 
that interface; a possible choice for this parameter is the value of ifIndex. The operation 
that retrieves a single column is called getIfColumn. To identify which column should be 
retrieved, a parameter is needed that can take values such as ifIndex, ifDescr, ifType, 
etc. Alternatively, it is possible to define separate operations per column; in that case, the 
resulting operations would be getIfIndex, getIfDescr, getIfType, etc.

Finally, at the lowest level of genericity, separate operations are defined to retrieve each 
individual ifTable object. This approach is somehow comparable to the approach used by 
the SNMP get operation (although the latter allows multiple objects to be retrieved in a 
single message). Depending on the required parameter transparency, again two choices are 
possible. The first possibility is to have a generic getIfCell operation; this operation 
requires as input parameters an interface identifier to select the row (interface), as well as a 
parameter to select the column (e.g., ifIndex, ifDescr or ifType). The second 
possibility is to have special operations for each column; these operations require as input 
parameter the identifier of the required interface. An example of such an operation is 
getIfType(interface1).

Figure 9 summarizes the choices that can be made to retrieve table information; they range 
from high genericity (getIfTable) to low genericity (getIfCell). Note that this figure 
does not show the choices that are possible with respect to parameter transparency. 

Let us now discuss the main parts of the WSDL descriptions of these operations. These 
descriptions are a mix of WSDL 2.0 and WSDL 1.1, as WSDL was not yet finalized when 

ifI
nd

ex

ifD
es

cr

ifT
yp

e

ifO
ut

Q
Le

n

ifS
pe

ci
fic

ifM
tu

ifS
pe

ed

ifO
ut

D
is

ca
rd

s

ifO
ut

E
rr

or
s

Interface 1

Interface 2

Interface 3

Figure 8: Interface Table



23
this work was performed. In the gSOAP toolkit that we used [25], the WSDL descriptions 
consist of the following (container) elements: 

• The <types> element (WSDL 2.0), to define new data types.
• The <message> elements (WSDL 1.1), to specify the data that belongs to each message.
• The <interface> element (WSDL 2.0), to combine one or more messages and ease the 

generation of programming stubs. 
• The <binding> element (WSDL 2.0), to associate the interface element with a transport 

protocol.
• The <service> element (WSDL 2.0), to associate the interface element with a web address 

(URL). 

THE <TYPES> ELEMENT

XML supports two types for defining elements: <simpleType> and <complexType>. A 
<simpleType> element contains a single value of a predefined form (e.g., an integer or a 
string). A <complexType> element groups other elements (e.g., an address element can 
contain street, postal code, and city sub-elements).

The WSDL descriptions of our examples use <complexType> elements to group certain 
objects within the ifTable. Which object are taken together depends on the genericity of the 
Web service. For example, all columns of the ifTable can be grouped together, yielding a 
single <complexType> that can be used to retrieve entire ifTable rows. This complex 
type is called ifEntry in our example (see Figure 10), and can be used by the getIfTable
as well as getIfRow operations. Note that for the getIfRow operation, the <sequence>
element should be left out, as only one row can be retrieved at a time. 

THE <MESSAGE> ELEMENTS

The <message> elements are used in WSDL 1.1 to describe the information that is 
exchanged between a Web service producer and its consumers. There are <message>
elements for request (input) and response (output) messages. These messages consist of zero 
or more <part> elements. In request messages, the <part> elements represent the 
parameters of the Web service. In response messages, these elements describe the response 
data.

The getIfTable Web service supports a single operation: retrieving the complete table. 
Figure 11 shows the <message> elements for this operation. The figure shows a request 
message that contains a “community” string; this string is used for authentication purposes in 
SNMPv1 or SNMPv2c. The response message contains an element of type ifEntry, which 
was defined in Figure 10, as well as an integer representing the number of table rows. 

Figure 9: Different choices to retrieve table objects

getIfTable getIfRow getIfColumn getIfCell



24
All other Web services in this section support multiple operations. The getIfRow Web 
service can be defined to support two operations: retrieve a specified row, and retrieve a list 
of valid row index numbers (which correspond to the network interfaces in the agent system). 
The getIfColumn and getIfCell Web services can be defined in terms of operations (one 
per ifTable column). 

Figure 12 shows the messages for two of the operations used by the getIfCell Web 
service. The request messages have an index element for referencing the correct cell. 

<types> 
  <complexType name="ifEntry"> 
    <sequence> 
      <element name="ifIndex" type="xsd:unsignedInt"/> 
      <element name="ifDescr" type="xsd:string"/> 
      <element name="ifType" type="xsd:unsignedInt"/> 
      <element name="ifMtu" type="xsd:unsignedInt"/> 
      <element name="ifSpeed" type="xsd:unsignedInt"/> 
      <element name="ifPhysAddress" type="xsd:string"/> 
      <element name="ifAdminStatus" type="xsd:unsignedInt"/> 
      <element name="ifOperStatus" type="xsd:unsignedInt"/> 
      <element name="ifInOctets" type="xsd:unsignedInt"/> 
      <element name="ifInUcastPkts" type="xsd:unsignedInt"/> 
      <element name="ifInDiscards" type="xsd:unsignedInt"/> 
      <element name="ifInErrors" type="xsd:unsignedInt"/> 
      <element name="ifOutOctets" type="xsd:unsignedInt"/> 
      <element name="ifOutUcastPkts" type="xsd:unsignedInt"/> 
      <element name="ifOutDiscards" type="xsd:unsignedInt"/> 
      <element name="ifOutErrors" type="xsd:unsignedInt"/> 
      <element name="ifOutQLen" type="xsd:unsignedInt"/> 
      <element name="ifSpecific" type="xsd:string"/> 
    </sequence> 
  </complexType> 
  ... 
</types> 

Figure 10: The ifEntry type

<message name="getIfTableRequest"> 
  <part name="community" type="xsd:string"/>
</message> 

<message name="getIfTableResponse"> 
  <part name="sizeTable" type="xsd:int"/> 
  <part name="ifEntry" type="utMon:ifEntry"/>
</message> 

Figure 11: Message definitions for getIfTable



25
<message name="getIfIndexRequest">
  <part name="index" type="xsd:unsignedInt"/> 
  <part name="community" type="xsd:string"/> 
</message>

<message name="getIfIndexResponse">
  <part name="ifIndex" type="xsd:unsignedInt"/>
</message>

<message name="getIfDescrRequest">
  <part name="index" type="xsd:unsignedInt"/> 
  <part name="community" type="xsd:string"/>
</message>

<message name="getIfDescrResponse">
  <part name="ifDescr" type="xsd:string"/>
</message>

Figure 12: Message definitions for getIfCell



26
THE <INTERFACE> ELEMENT 

An <interface> element defines the operations that are supported by the Web service. 
Each operation consists of one or more messages; the <interface> element therefore 
groups the previously defined <message> elements into <operation> elements. In 
addition, the <interface> element may define <description> elements. In general, 
four types of operation exist: one way, request-response, solicit response and notification. In 
our example, they are all of the request-response type. Figure 13 shows the <interface>
element for the getIfTable Web service. 

The other Web services support multiple operations. Figure 14 shows part of the 
<interface> element for the getIfColumn Web service.

THE <BINDING> ELEMENT 

A <binding> element specifies which protocol is used to transport the Web service 
information, and how this information is encoded. Similar to the <interface> element, it 
also includes the operations that are supported by the Web service, as well as the request and 
response messages associated with each operation. In principle, there are many choices for 

<interface name="getIfTableServicePortType">
  <operation name="getIfTable">
    <documentation>function utMon__getIfTable</documentation>
    <input message="tns:getIfTableRequest"/>
    <output message="tns:getIfTableResponse"/>
  </operation>
</interface>

Figure 13: Interface definition for getIfTable

<interface name="getIfColumnServiceInterface">
  <operation name="getIfIndex">
    <documentation>function utMon__getIfIndex</documentation>
    <input message="tns:getIfIndexRequest"/>
    <output message="tns:uIntArray"/>
  </operation>
  <operation name="getIfDescr">
    <documentation>function utMon__getIfDescr</documentation>
    <input message="tns:getIfDescrRequest"/>
    <output message="tns:stringArray"/>
  </operation>
  <operation name="getIfType">
    <documentation>function utMon__getIfType</documentation>
    <input message="tns:getIfTypeRequest"/>
    <output message="tns:uIntArray"/>
  </operation> 
  ... 
</interface>

Figure 14; Interface definition for getIfColumn



27
the transport protocol; in practice, SOAP over HTTP is by far the most popular choice. 
Figure 15 shows part of the <binding> element for the getIfColumn Web service. 

THE <SERVICE> ELEMENT 

The <service> element is used to give the Web service a name and specify its location (a 
URL). Figure 16 shows this element for the example of the getIfRow Web service. The 
name is getIfRowService, the location is http://yourhost.com/ and the transport 
protocol is defined by the getIfRowServiceBinding. 

<binding name="getIfColumnServiceBinding"
      type="tns:getIfColumnServiceInterface">
  <SOAP:binding style="rpc"
      transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getIfIndex">
  <SOAP:operation soapAction=""/>
  <input>
    <SOAP:body use="encoded" namespace="urn:utMon"
      encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
  </input>
  <output> 
    <SOAP:body use="encoded" namespace="urn:utMon"
      encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
  </output>
</operation>

<operation name="getIfDescr">
  <SOAP:operation soapAction=""/> 
  <input>
    <SOAP:body use="encoded" namespace="urn:utMon"
      encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
  </input> 
  <output>
    <SOAP:body use="encoded" namespace="urn:utMon"
      encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
  </output>
</operation>
...
</binding>

Figure 15: Binding definition for getIfColumn

<service name="getIfRowService">
  <documentation>getIfRow service</documentation>
  <endpoint name="getIfRowService"
     binding="tns:getIfRowServiceBinding">
    <SOAP:address location="http://yourhost.com/"/>
  </endpoint>
</service>

Figure 16: Service element definition for getIfRow



28
5.5 PERFORMANCE

One of the main arguments against using Web services in network management is that the 
performance of Web services is inferior to that of SNMP. We show in this section that this 
argument is invalid. Although there are scenarios in which SNMP provides better 
performance, there are other scenarios in which Web services perform better. In general, the 
following statements can be made:
• In case a single managed object should be retrieved, SNMP is more efficient than Web 

services.
• In case many objects should be retrieved, Web services may be more efficient than SNMP.
• The encoding and decoding of SNMP PDUs or WSDL messages is less expensive (in 

terms of processing time) than retrieving management data from within the kernel. The 
choice between Basic Encoding Rules (BER) or XML encoding is therefore not the main 
factor that determines performance.

• Performance primarily depends on the quality of the implementation. Good implemen-
tations perform considerably better than poor implementations. This holds for SNMP as 
well as Web services implementations.

In the literature, several studies can be found on the performance of Web services-based 
management. Choi and Hong published several papers in which they discuss the design of 
XML-to-SNMP gateways. As part of their research, the performance of XML and SNMP-
based management software was investigated [18][19]. To determine bandwidth, they 
measured the XML traffic on one side of the gateway, and the corresponding SNMP traffic 
on the other side. In their test setup, separate SNMP messages were generated for every 
managed object that had to be retrieved; the possibility to request multiple managed objects 
via a single SNMP message was not part of their test scenario. The authors also measured the 
latency and resource (CPU and memory) usage of the gateway. They concluded that, for their 
test setup, XML performed better than SNMP. 

Whereas the previous authors compared the performance of SNMP to XML, Neisse and 
Granville focused on SNMP and Web services [61]. As the previous authors, they 
implemented a gateway and measured traffic on both sides of this gateway. Two gateway 
translation schemes were used: protocol level and managed object level. In the first scheme, 
a direct mapping exists between every SNMP and Web services message. In the second 
scheme, a single, high-level Web service operation (e.g., getIfTable) maps onto multiple 
SNMP messages. These authors also investigated the performance impact of using HTTPS 
and zlib compression [94]. The Web services toolkit was NuSOAP. For protocol-level 
translation, they concluded that Web services always require substantial more bandwidth than 
SNMP. For translation at the managed-object level, they found that Web services perform 
better than SNMP if many managed objects were retrieved at a time.

Another interesting study on the performance of Web services and SNMP was conducted 
by Pavlou et al. [75][76]. Their study is much broader than a performance study and also 
includes CORBA-based approaches. They consider the retrieval of Transmission Control 
Protocol (TCP) MIB variables and measure bandwidth and round-trip time. Unlike in the 
previous two studies, no gateways are used, but a dedicated Web services agent was 
implemented using the Systinet WASP toolkit [90]. The performance of this agent was 
compared to a Net-SNMP agent [62]. The authors neither investigated alternate SNMP 



29
agents, nor the effect of fetching actual management data in the system. They concluded that 
Web services causes more overhead than SNMP.

In the remainder of this section, we discuss a study performed in 2004 at University of 
Twente by one of the authors of this chapter; more details can be found in [77]. For this study, 
measurements were performed on a Pentium 800 MHz PC running Debian Linux. The PC 
was connected via a 100 Mbit/s Ethernet card. Four Web services prototypes were build: one 
for retrieving single OIDs of the ifTable, one for retrieving ifTable rows, one for 
retrieving ifTable columns and one for retrieving the entire ifTable (see Section 5.4). To 
retrieve management data from the system, we decided to use the same code for the SNMP 
and Web services prototypes. In this way, differences between the measurements would only 
be caused by differences in SNMP and Web services handling. For this reason, the Web 
services prototypes incorporated parts of the Net-SNMP open-source package. All SNMP-
specific code was removed and replaced by Web services-specific code. This code was 
generated using the gSOAP toolkit version 2.3.8 [25][26], which turned out to be quite 
efficient. It generates a dedicated skeleton and does not use generic XML parsers such as the 
Document Object Model (DOM) or the Simple API for XML (SAX). For compression, we 
used zlib [94]. The performance of the Web services prototypes was compared to more than 
twenty SNMP implementations, including agents on end-systems (Net-SNMP, Microsoft 
Windows XP agent, NuDesign and SNMP Research’s CIA agent) as well as agents within 
routers and switches (Cisco, Cabletron, HP, IBM and Nortel). 

BANDWIDTH USAGE

One of the main performance parameters is bandwidth usage. For SNMP, it can be derived 
analytically as the PDU format of SNMP is standardized. For Web services, there were no 
standards when we conducted this study, so we could not derive analytical formulae that 
would give lower and upper bounds for the bandwidth needed to retrieve ifTable data. In 
fact, the required bandwidth depends on the specific WSDL description, which may be 
different from case to case. This section therefore only discusses the bandwidth 
requirements of the prototype that fetches the entire ifTable in a single interaction; the 
WSDL structure of that prototype was presented in Section 5.4.

Figure 17 shows the bandwidth requirements of SNMPv1 and Web services as a function 
of the size of the ifTable. Bandwidth usage is determined at the application (SNMP/SOAP) 
layer; at the IP layer, SNMP requires 56 additional octets, whereas Web services require 
between 273 and 715 octets, depending on the number of retrieved managed objects and the 
compression mechanism applied. In case of SNMPv3, an additional 40 to 250 octets are 
needed.

Figure 17 illustrates that SNMP consumes far less bandwidth than Web services, partic-
ularly in cases where only a few managed objects should be retrieved. But, even in cases 
where a large number of objects should be retrieved, SNMP remains two (get) to four 
(getBulk) times better than Web services. The situation changes, however, when 
compression is used. Figure 17 shows that, for Web services, compression reduces bandwidth 
consumption by a factor 2 when only a single object is retrieved; if 50 objects are retrieved, 
by a factor 4; for 150 objects, by a factor 8.



30
The threshold where compressed Web services begin to outperform SNMP is 70 managed 
objects. This number is not ridiculously high:  it is easily reached when interface data needs 
to be retrieved for hundreds of users, for example in case of access switches or Digital 
Subscribe Line Access Multiplexers (DSLAMs). Figure 17 also shows that the bandwidth 
consumption of compressed SNMP, as defined by the IETF EoS Working Group, is approx-
imately 75% lower than non-compressed SNMPv1. This form of SNMP compression is 
known under the name ObjectID Prefix Compression (OPC).

CPU TIME

Figure 18 shows the amount of CPU time needed for coding (decoding plus the subsequent 
encoding) an SNMP message (encoded with BER) or Web services (encoded in XML) 
encoded messages. As we can see, the different curves can be approximated by piecewise 
linear functions. For an SNMP message carrying a single managed object, the BER coding 
time is roughly 0.06 ms. A similar XML-encoded message requires 0.44 ms, which is seven 
times more. Coding time increases if the number of managed objects in the message 
increases. Coding an SNMP message that contains 216 objects requires 0.8 ms; coding a 
similar Web services message requires 2.5 ms. We can therefore conclude that XML 
encoding requires 3 to 7 times more CPU time than BER encoding. Figure 18 also shows the 
effect of compression: compared to XML coding, Web services compression turns out to be 
quite expensive (by a factor 3 to 5). In cases where bandwidth is cheap and CPU time 
expensive, Web services messages should not be compressed.

 To determine how much coding contributes to the complete message handling time, the 
time to retrieve the actual data from the system was also measured. For ifTable, this 

4000

1000

2000

3000

5000

6000

7000

objects

octets

0 67 133 20016610033

compressed
Web services

Figure 17: Bandwidth usage of SNMP and Web Services

compressed
SNMP

Web services

get

getBulk

getNext



31
retrieval requires, among other things, a system call. We found out that retrieving data is 
relatively expensive; fetching the value of a single object usually takes between 1.2 and 2.0 
ms. This time is considerably larger than the time needed for coding.

1

2

3

4

5

objects0 67 133 20016610033

6

7

Figure 18: CPU time for coding and compression

time (ms)

WS compression

XML coding

BER coding

1

2

3

4

5

objects0 67 133 20016610033

6

7

Figure 19: CPU time for coding and data retrieval

time (ms)

SNMP data retrieval

WS data retrieval

BER coding

XML coding



32
The results are depicted in Figure 19; to facilitate the comparison, the BER and XML 
coding times are mentioned as well. The figure shows that data retrieval times for Net-SNMP 
increase quite fast; five managed objects already require more than 6 ms; for retrieving 54 
managed objects, 65 ms were needed; and retrieving 270 managed objects from the operating 
system took 500 ms! These staggering times can only be explained by the fact that Net-SNMP 
performs a new system call every time it finds a new ifTable object within the get or 
getBulk request; Net-SNMP does not implement caching. The conclusion must therefore be 
that data retrieval is far more expensive than BER encoding; CPU usage is not determined by 
the protocol handling, but by the quality of the implementation.

MEMORY USAGE

Memory is needed for holding program instructions (“instruction memory”) and data (“data 
memory”). For data memory, a distinction needs to be made between static and dynamic 
memory. Static memory is allocated at the start of the program and remains constant 
throughout the program lifetime. Dynamic memory is allocated after a request is received 
and released after the response is transmitted. If multiple requests arrive simultaneously, 
dynamic memory is allocated multiple times.

Figure 20 shows the memory requirements of Net-SNMP and our Web services prototype. 
We see that Net-SNMP requires roughly three times as much instruction memory than the 
Web services prototype. Net-SNMP requires 20 to 40 times more data memory, depending 
on the number of objects contained in the request. These large numbers, much larger than 
their Web services counterparts, should not be misinterpreted: the functionality of Net-SNMP 
is much richer than that of our Web services prototype. For instance, Net-SNMP supports 
three different protocol versions, includes encryption, authentication and access control, and 
is written in a platform-independent way.

ROUND-TRIP TIME

In the previous subsections, the performance of the getIfTable Web service was 
compared to that of Net-SNMP. This subsection compares the performance of this Web 
services prototype to other SNMP implementations. As we could not add code to existing 
agents code for measuring BER encoding and data retrieval times, we measured instead the 

instructions
data

static dynamic

SNMP 1972 KB 128 KB 70 - 160 KB

Web services 580 KB 470 B 4 KB

Figure 20: Memory requirements



33
round-trip time, as a function of the number of retrieved managed objects. This time can be 
measured outside the agent and thus does not require any agent modification.

Figure 21 shows the results for 12 different SNMP agents, as well as the getIfTable
Web service prototype. It is interesting to note that the round-trip time for normal Web 
services increases faster than that of compressed Web services. For most SNMP 
measurements, we used getBulk with max-repetition values of 1, 22, 66 and 270; for agents 
that do not support getBulk, a single get request was issued, asking for 1, 22, 66 or 270 
objects. Not all agents were able to deal with very large size messages; the size of the 
response message carrying 270 managed objects is such that, on an Ethernet Local Area 
Network, the message must be fragmented by the IP protocol. As the hardware for the various 
agents varied, the round-trip times showed in Figure 21 should be used with great care and 
only considered purely indicative. Under slightly different conditions, these times may be 
quite different. For example, the addition of a second Ethernet card may have a severe impact 
on round-trip times. Moreover, these times can change if managed objects other than 
ifTable OIDs are retrieved simultaneously. In addition, the first SNMP interaction often 
takes considerably more time than subsequent interactions.

Despite these remarks, the overall trend is clear. With most of the SNMP agents that we 
tested, the round-trip time heavily depends on the number of managed objects that are 
retrieved. It seems that several SNMP agents would benefit from some form of caching; after 
more than 15 years of experience in SNMP agent implementation, there is still room for 
performance improvements. From a latency point of view, the choice between BER and XML 
encoding does not seem to be of great importance. Our Web services prototype performs 
reasonably well and, for numerous managed objects, even outperforms several commercial 
SNMP agents.

1 22 66 270 

WS 1,7 2,6 10,3 36,5

WS-Comp 3,3 4,3 5,6 11,8

SNMP-1 1,0 2,5

SNMP-2 1,0 2,7

SNMP-3 1,1 3,2 6,9 14,9

SNMP-4 2,0 15,2

SNMP-5 3,7 18,3

SNMP-6 1,3 18,9 53,0

SNMP-7 2,9 58,0 167,0 695,0

SNMP-8 3,1 58,2 168,8 700,0

SNMP-9 3,5 62,0 183,8 767,0

SNMP-10 5,0 80,9

SNMP-11 12,0 86,9 244,3

SNMP-12 12,4 257,9

Figure 21: Round-trip time (in ms)



34
6 TOWARD COARSE-GRAINED WEB SERVICES FOR 
INTEGRATED MANAGEMENT

In the previous section, Web services were used in SNMP-based network management as 
getters and setters of fine-grained MIB OIDs. Similarly, in a WBEM environment, they 
could be used as getters and setters of CIM object properties, or they could be mapped to 
fine-grained CIM operations. This is the granularity at which Web services-enabled 
management platforms generally operate today. For instance, HP’s Web Service 
Management Framework [14] specifies how to manipulate fine-grained managed objects 
with Web services. But is this the way Web services are meant to be used as management 
application middleware?

Web services did not come out of the blue, context free: they were devised with SOA in 
mind. SOA is an IT architectural style, to use Fielding’s terminology [28], and Web services 
implement it. In this section, we go back to the rationale behind SOA, consider management 
applications from this perspective, and show that Web services could be used differently in 
integrated management. We illustrate this claim with examples of coarse-grained Web 
services for integrated management.

6.1 SERVICE-ORIENTED ARCHITECTURE

Defining SOA poses two problems. First, there is no single and widely shared definition. No 
one clearly defined this concept before it began pervading the software industry. This 
concept grew and spread by hearsay in the software engineering community, as a conceptu-
alization of what Web services were trying to achieve. The definitions proposed by the W3C 
and OASIS came late, and despite the credit of these organizations in the community, none 
of their definitions are widely accepted.

Second, since 2004–2005, SOA has turned into a buzzword in the hands of marketing 
people. Today, there are almost as many definitions of this acronym as vendors in the 
software industry. There are also countless examples of software tools and packages that have 
been re-branded “SOA-enabled” without supporting all the features that engineers generally 
associate with this acronym.

In an attempt to distinguish between a stable technical meaning and ever-changing 
marketing blurb, some authors use the term Service-Oriented Computing (SOC) [71][80] to 
refer, among engineers, to the distributed computing paradigm, leaving SOA to hype. Other 
authors consider that SOC is a distributed computing paradigm whereas SOA is a software 
architecture; the subtle difference between the two is not always clear. In this chapter, we 
consider these two acronyms synonymous and use SOA in its technical sense.

So, what is SOA about? Because no one “owns” its definition, we reviewed the literature 
and browsed a number of Web sites to form an opinion.

In WSA [9] (defined in Section 2.5), the W3C defines SOA as “a form of distributed 
systems architecture” that is “typically characterized” (note the implied absence of 
consensus) by the following properties:



35
• logical view: the service is an abstract view of actual programs, databases, business 
processes, etc.;

• message orientation: the service is defined in terms of messages exchanged between 
consumers and providers;

• description orientation: the service is described by machine-parsable metadata to 
facilitate its automated discovery;

• granularity: services generally use a small number of operations with relatively large 
and complex messages;

• network orientation: services are often used over a network, but this is not mandatory;
• platform neutral: messages are sent in a standard format and delivered through 

interfaces that are independent of any platform.

In August 2006, OASIS released its Reference Model for SOA (SOA-RM) [50]. This 
specification was long awaited by the industry. Unfortunately, this version 1.0 is quite 
verbose and rather unclear, and often proposes overly abstract definitions; we hope that 
OASIS will solve these teething problems in subsequent versions. Difficult to read as it is, 
this document still clarifies three important points:

• “SOA is a paradigm for organizing and utilizing distributed capabilities that may be 
under the control of different ownership domains”;

• a service is accessed via an interface;
• a service is opaque: its implementation is hidden from the service consumer.

Channabasavaiah et al. [15] are more practical and define SOA as “an application 
architecture within which all functions are defined as independent services with well-defined 
invokable interfaces, which can be called in defined sequences to form business processes”. 
They highlight three aspects:

• all functions are defined as services;
• all services are independent and operate as black boxes;
• consumers just see interfaces; they ignore whether the services are local or remote, what 

interconnection scheme or protocol is used, etc.

IBM’s online introduction to SOA [37] lists the following characteristics:

• SOA is an IT architectural style;
• integrated services can be local or geographically distant;
• services can assemble themselves on demand; they “coalesce to accomplish a specific 

business task, enabling (an organization) to adapt to changing conditions and 
requirements, in some cases even without human intervention”; coalescence refers to 
automated service composition at run-time;

• services are self-contained (i.e. opaque) and have well-defined interfaces to let 
consumers know how to interact with them;

• with SOA, the macro-components of an application are loosely coupled; this loose 
coupling enables the combination of services into diverse applications;

• all interactions between service consumers and providers are carried out based on 
service contracts.



36
Erl [27] identifies four core properties and four optional properties for SOA:

• services are autonomous (core);
• loose coupling (core);
• abstraction: the underlying logic is invisible to service consumers (core);
• services share a formal contract (core);
• services are reusable;
• services are composable;
• services are stateless;
• services are discoverable.

O’Brien et al. [66] complement this list of properties with the following two:

• Services have a network-addressable interface: “Service (consumers) must be able to 
invoke a service across the network. When a service (consumer) and service provider 
are on the same machine, it may be possible to access the service through a local 
interface and not through the network. However, the service must also support remote 
requests.”

• Services are location transparent: “Service (consumers) do not have to access a service 
using its absolute network address. (They) dynamically discover the location of a 
service looking up a registry. This feature allows services to move from one location to 
another without affecting the (consumers).”

Singh and Huhns [80] characterize SOA as follows:

• loose coupling;
• implementation neutrality: what matters is the interface; implementation details are 

hidden; in particular, services do not depend on programming languages;
• flexible configurability: services are bound to one another late in the process;
• long lifetime: interacting entities must be able to cope with long-lived associations; 

services should live “long enough to be discovered, to be relied upon, and to engender 
trust in their behavior”;

• coarse granularity: actions and interactions between participants should not be 
modeled at a detailed level;

• teams: participants should be autonomous; instead of a “participant commanding its 
partners”, distributed computing in open systems should be “a matter of business 
partners working as a team”.

For these authors, the main benefits of SOA are fourfold [80]:

• services “provide higher-level abstractions for organizing applications in large-scale, 
open environments”;

• these abstractions are standardized;
• standards “make it possible to develop general-purpose tools to manage the entire 

system lifecycle, including design, development, debugging, monitoring”;
• standards feed other standards.

All these definitions (and many others not mentioned here) draw a fairly consistent 
picture. SOA is a software paradigm, an IT architectural style for distributing computing with 
the following properties:



37
• Loose coupling: In SOA, distributed applications make use of loosely coupled services.
• Coarse-grained: Services have a coarse granularity, they fulfill some functionality on 

their own.
• Autonomous: Services are stateless and can be used by many applications or other 

services.
• Interfaces and contracts: Services are opaque entities accessed via interfaces on the 

basis of a high-level contract; implementation details are hidden.
• Network transparency: Services can be local or remotely accessed via the network. The 

location of the service provide may change over time.
• Multiple owners: Services can be owned by different organizations.
• Service discovery: Services are discovered dynamically, possibly automatically, at run-

time; service providers are not hard-coded in applications.
• Service composition: Services can be composed transparently, possibly dynamically at 

run-time.

There is also a large consensus about three things. First, Web services are just one 
technology implementing SOA. Other technologies may come in the future that could 
implement SOA differently, perhaps more efficiently. For instance, one could imagine that 
SOA be implemented by a new variant of CORBA that would (i) define services as high-level 
CORBA objects wrapping up CORBA and non-CORBA legacy applications, (ii) use the 
Internet Inter-ORB Protocol (IIOP) instead of SOAP and HTTP to make service consumers 
and providers communicate, (iii) advertise services in the form of interfaces (expressed in 
CORBA IDL) in standard external registries (as opposed to CORBA-specific registries), 
(iv) enable these services to be discovered and composed dynamically at run-time using 
semantic metadata, and (v) solve the poor interoperability and the performance problems of 
multi-vendor inter-ORB communication.

Second, nothing in SOA is new. For instance, interfaces that make it possible to access 
opaque entities were already defined in Open Distributed Processing [39]. What is new is that 
we now have the technology to make it work: “SOAs are garnering interest, not because they 
are a novel approach, but because Web services are becoming sufficiently mature for 
developers to realize and reevaluate their potential. The evolution of Web services is at a 
point where designers can start to see how to implement true SOAs. They can abstract a 
service enough to enable its dynamic and automatic selection, and Web services are finally 
offering a technology that is rich and flexible enough to make SOAs a reality” [49].

Third, a key difference between Web services and distributed object middleware is that 
Web services are not objects that need other objects for doing something useful: they are 
autonomous applications fulfilling some functionality on their own. As a result, Web services 
should not be regarded as yet another type of object-oriented middleware competing with 
CORBA or J2EE [89]: they are supposed to operate at a higher level of abstraction.

It should be noted that this coarse-grained approach to middleware poses problems to the 
software industry, because hordes of engineers are used to thinking in terms of tightly coupled 
objects, and a plethora of tools work at the object level [89]. Even some academics struggle 
to adjust their mindframe [8].



38
6.2 COMPARISON BETWEEN SOA AND CURRENT PRACTICE

Now that we better understand the SOA approach to distributed computing, let us compare, 
one by one, the principles that underpin Web services with the current practice in integrated 
management. By “practice”, we mean the management platforms that enterprises actually 
use to manage their networks, systems and services, as opposed to the latest commercial 
offerings from vendors who may claim to support SOA.

APPLICATIONS MAKE USE OF SERVICES

SOA and integrated management both have the concept of service; they give it slightly 
different but reasonably consistent meanings. For both, we have low-level services that 
abstract certain parts of the IT infrastructure (e.g., a network service for an MPLS-based 
VPN) and high-level services that are user-centered and achieve a specific business goal 
(e.g., a business service for online book ordering).

A Web service does not necessarily pertain to Service-Level Management (SLM): it may 
be a building block for fulfilling network management tasks, or systems management tasks. 
In this case, the SOA concept of service corresponds roughly to the concept of management 
task in integrated management.

In integrated management, a high-level service embodies a contract between an end-user 
(a person) and a service provider (a vendor). In TMN, a network service is captured by the 
Service Management Layer (SML), while the contract between a user and a vendor belongs 
to the Business Management Layer [35]. The SML is where network and business services 
are tied together. In SOA, the service contract binds a service consumer to a service producer.

Both in SOA and integrated management, services can be characterized by a Service-
Level Agreement (SLA), which captures the end-users’ perception of whether the IT 
infrastructure works well for achieving a specific business goal. High-level services serve as 
intermediaries between business views and IT views; they enable end-users to abstract away 
the infrastructure and consider it as a black box.

LOOSE COUPLING

Integrated management platforms use both tight and loose forms of integration. We can 
distinguish five cases.

First, communication between managed entities (agents) and managing entities 
(managers) is loosely coupled. It relies on standard management protocols (e.g., SNMP) that 
hide implementation details by manipulating abstractions of real-life resources known as 
managed objects.

Second, the macro-components of a monitoring application (event correlator, event filter, 
event aggregator, data analyzer, data filter, data aggregator, data poller, topology discovery 
engine, network map manager, etc. [53]) are tightly integrated. They are provided by a single 
vendor. Communication between these macro-components is proprietary, using all sorts of 
programming tricks to boost performance (e.g., the maximum number of events that can be 
processed per time unit).



39
Third, when management is distributed over multiple domains (e.g., for scalability 
reasons in large enterprises, or budget reasons in corporations with financially independent 
subsidiaries), manager-to-manager communication is proprietary and relies on tight coupling 
in the SNMP world; in the WBEM world, it is usually loosely coupled and based on standard 
management protocols. Note that exchanging management information with external third 
parties requires sophisticated firewalls in the case of tight coupling, and simpler firewalls in 
the case of loose coupling.

Fourth, communication between the monitoring application and the data repository is 
sometimes loosely coupled, sometimes tightly coupled. The data repository is logically 
unique but can be physically distributed; it consists typically of a relational database for 
monitoring data and a Lightweight Directory Access Protocol (LDAP) repository for config-
uration data; sometimes it may also include an object base, or an XML repository, or a 
knowledge base, etc. An example of loose coupling1 is when the monitoring application 
accesses a relational database via a standard interface such as Open Data Base Connectivity 
(ODBC) using a standard query language such as the Structured Query Language (SQL); the 
actual data repository used underneath (Oracle database, Sybase database, etc.) is then 
transparent to the application. An example of tight coupling is when the application uses a 
proprietary query language (e.g., a so-called “enhanced” version of SQL, with proprietary 
extensions to the language). Vendor lock-in always implies tight coupling.

Fifth, in large enterprises or corporations, people not only use monitoring applications, 
but also data mining applications that perform trend analysis, retrospective pattern analysis, 
etc. Examples include Enterprise Resource Planning (ERP) to anticipate the saturation of 
resources, security analysis to search for attack patterns, event analysis to identify the 
important cases that need to be fed to a case-based reasoning engine, etc. Communication 
between the data repository and these data mining applications is usually loosely coupled: 
people use standard interfaces and protocols for exchanging data because these applications 
are generally provided by third-party vendors. For performance reasons, data mining 
applications may occasionally be tightly coupled to the data repository.

SERVICES ARE COARSE-GRAINED

How do the SOA concepts of “fine-grained services” and “coarse-grained services” translate 
into integrated management? In the SOA approach to distributed computing, we saw that 
applications make use of services, which isolate independent pieces of the application that 
can be reused elsewhere (e.g., by other applications or other services). Some of these 
services are conceptually at a high level of abstraction (e.g., “Balance the load of virtual 
server VS among the physical servers PS1, PS2, PS3 and PS4”), others at a low level (e.g., 
“Set the administrative status of CPU C to down”). Functionality is thus split between the 
application and reusable services of varying levels of abstraction.

In integrated management, this corresponds to management tasks in the functional model 
[53]. Functionality is split into management tasks, some of which are low level, some of 
which are high level. Some of these functions are generic (e.g., see the standard TMN 

1. Note that we use “loose coupling” in a flexible manner here, compared to SOA: by using SQL, the 
application cannot interact with a generic data repository, but only with a relational database.



40
management functions [41]) and can in principle be separated from the application. The 
common practice in telecommunications is that management applications are based on 
CORBA and implement a mixture of OSI Management, TMN and SNMP. Generic functions 
are accessed via CORBA interfaces as independent low-level services, which can be 
considered coarse-grained because they do not simply operate at the managed object level. In 
enterprises, however, the situation is very different: today’s management platforms are based 
on SNMP or WBEM (which do not define standard generic functions), not on OSI 
Management or TMN; they are typically implemented in C, C++, Java or C#, and based 
neither on CORBA nor on J2EE. As a result, they do not handle separate services.

In short, in the enterprise world, management tasks are not implemented in the form of 
independent coarse-grained services. This is a major difference with SOA.

From outside, management applications appear to operate at only two scales: the managed 
object level (when interacting with managed entities), and the management application level 
(the monitoring application globally supports some functionality as a big black box). There 
are no intermediaries that could easily be mapped to Web services.

Internally, management applications actually operate at more scales. When they are coded 
in an object-oriented programming language, these scales are: managed object, object, 
software component, thread, process, and complete application. With procedural 
programming languages, these scales are: managed object, function, thread, process, and 
complete application.

SERVICES ARE AUTONOMOUS

We saw in Section 1.2 that large enterprises generally run several management platforms in 
parallel. These applications are autonomous in the SOA sense, but they are not packaged as 
services. They usually do not communicate directly (there are exceptions), but they all (at 
least supposedly) send meaningful events to the same event correlator, which is in charge of 
integrating management for the entire enterprise. In some cases, this logically unique event 
correlator can be physically distributed [54].

Network management platforms (e.g., HP Openview and IBM Tivoli) often accept 
equipment-specific graphical front-ends (so-called “plug-ins”) provided by third-party 
vendors. These extensions can be seen as autonomous services that are statically discovered 
and integrated.

INTERFACES AND CONTRACTS

Integrated management applications work with two types of interface: interfaces to their 
internal components, and interfaces to managed entities (managed objects). The former do 
not hide implementation details (on the contrary, these components can expect other 
components to support programming language-specific features such as Java exceptions, for 
instance), but the latter do (managed objects are standard and hide the idiosyncrasies of the 
underlying managed resource).

In SOA, services accessed via interfaces form the basis for a contract. In integrated 
management, contracts are captured in the form of SLAs.



41
NETWORK TRANSPARENCY

In SOA, network transparency means that services can be local or remote. This transparency 
has no equivalent in management platforms. For obvious confidentiality and robustness 
reasons, no one wants a monitoring application to discover automatically, and later use, an 
event correlator provided by an unknown organization on the opposite side of the planet!

MULTIPLE OWNERS

In integrated management, the monitoring and data mining applications are generally run by 
the same organization, in which case there is only one owner. In large organizations, these 
applications can be distributed over a hierarchy of domains; different management 
applications are then run by different teams, possibly attached to different profit centers; but 
they all really belong to the same organization, the same owner from an SOA standpoint.

When organizations outsource partially or totally the management of their IT 
infrastructure and/or the management of their services, there are clearly multiple owners. 
Relationships between them are controlled by business contracts, and not just Web services 
contracts.

Extranets and subsidiaries are typical examples where we have different owners. In an 
extranet, a corporation works closely with a large set of subcontractors and/or retailers. This 
requires the IT infrastructures of different owners to be tightly coupled. The situation is 
similar in corporations that have financially independent subsidiaries. Although the latter are 
different enterprises, different owners, they have strong incentives for cooperating as if they 
were a single organization, a single owner in SOA parlance.

SERVICE DISCOVERY

In today’s integrated management applications, only very simple forms of service discovery 
are generally implemented, primarily for retrieving configuration settings. In systems 
management, LDAP repositories are commonly used.

SERVICE COMPOSITION

Integrated management platforms generally found in businesses today do not use dynamic 
service composition at run-time. Management tasks are composed statically in the 
monitoring application or the data mining applications, and cast in iron in static code.

6.3 ANALYSIS

The first outcome of our comparison is that the management platforms deployed in real life 
are far from implementing SOA natively. Instead of simply using Web services to exchange 
managed objects or events, as suggested by recent standardization activities such as WSDM 
or WS-Management, we should rethink (i.e., re-architect and re-design) management 
applications to make them SOA compliant. This is a classic mission for software architects.



42
The main differences between SOA and today’s practice in integrated management are 
(i) the absence of autonomous coarse-grained management tasks in management platforms, 
(ii) the tight coupling of the monitoring application (most if not all of its macro-components 
communicate via proprietary mechanisms), and (iii) the quasi absence of service discovery 
(except for retrieving configuration settings).

A fourth difference, the lack of dynamic service composition at run-time, is less of a 
problem because, strictly speaking, service composition is not a requirement in SOA: it is 
simply desirable, and the odds are that when the first three problems are solved, people will 
find ways of composing these new services.

Reconciling the first three differences identified above requires modifying not only the 
way management applications are structured, but also the management architectures that 
underpin them (notably SNMP and WBEM).

CHANGES IN THE MANAGEMENT ARCHITECTURE

In integrated management, it is customary to decompose a management architecture (also 
known as management framework) into four models [30]: (i) an organizational model, 
which defines the different entities involved in a management application and their roles; 
(ii) an information model, which specifies how resources are modeled in the management 
domain; (iii) a communication model, which defines how to transfer data (e.g., a communi-
cation pipe and service primitives for exchanging data across this pipe); and (iv) a functional 
model, which defines functions (management tasks) that do real work; these functions can 
be fine-grained (e.g., a generic class for managing time series) or coarse-grained (e.g., an 
event correlator). Migrating to SOA requires changes in all but one of these models.

First, the communication model needs to migrate to SOAP. This migration would be 
straightforward for WBEM, whose communication model is close to SOAP. For SNMP, as 
we saw in Section 5, it would imply the adoption of another standard communication pipe 
(typically HTTP, possibly another one) and new communication primitives (SOAP RPCs).

Second, SOA challenges the organizational model of the management architectures used 
to date: SNMP, WBEM, TMN, OSI Management, etc. The management roles (defined in the 
manager-agent paradigm [74]) need to be revisited to make integrated management comply 
with SOA. First and foremost, the concept of coarse-grained autonomous service needs to be 
introduced. Migrating to SOA is also an invitation to stop interpreting the manager-agent 
paradigm as meaning “the manager should do everything and the agent nothing”, as already 
advocated by Management by Delegation [92] in the 1990s but never quite enforced.

As far as the functional model is concerned, SOA encourages a new breakdown of 
management tasks among all actors involved. Instead of bringing all monitoring data and all 
events to the monitoring application and doing all the processing there, in a large monolithic 
application, SOA suggests to define intermediary tasks and wrap them as independent and 
reusable services that can run on different machines. This too is somewhat reminiscent of 
Management by Delegation [92], the Script MIB [46] in SNMP or the Command Sequencer 
[40] in OSI Management, except that Web services should be full-fledged applications, not 
just small scripts with a few lines of code.



43
CHANGES IN THE MANAGEMENT APPLICATIONS

Assuming that the main management architectures used to date (SNMP and WBEM) are 
updated, what should be changed in management applications to make them implement 
autonomous coarse-grained services, loosely coupled services and service discovery?

The first issue (autonomous coarse-grained services) is about delegation granularity in a 
management application, i.e. how this application is subdivided into management tasks and 
how these tasks are allotted to different entities for execution. A few years ago, one of the 
authors of this chapter used organization theory to identify four criteria for classifying 
management architectures: semantic richness of the information model, degree of granularity, 
degree of automation of management, and degree of specification of a task [53]. Based on 
that, we defined an “enhanced” taxonomy of network and systems management paradigms. 
For the delegation granularity, four scales were proposed in our taxonomy: no delegation, 
delegation by domain, delegation by microtask and delegation by macrotask. Fine-grained 
Web services correspond to microtasks; coarse-grained Web services correspond to 
macrotasks. To be SOA compliant, management applications should therefore support a new 
form of delegation: macrotasks.

More specifically, we propose that management applications use Web services at three 
scales, three levels of granularity. First, simple management tasks are slightly coarser-grained 
than Web services operating at the managed-object level. Instead of merely getting or setting 
an OID, they can execute small programs on a remote managed entity. Their execution is 
instantaneous. The Web service providers have a low footprint on the machine where they 
run. Second, elaborate management tasks operate at a higher level of granularity and consist 
of programs that do something significant. Their execution is not instantaneous and may 
require important CPU and memory resources. Third, macro-components (see examples in 
Section 6.2, “Loose Coupling”) communicate via Web services instead of proprietary 
mechanisms. This last change makes it easy to distribute them across several machines, 
which complements domain-based distributed hierarchical management.

Once we have autonomous coarse-grained services, the second issue (loosely coupled 
services) is easy to deal with: management applications just need to use Web services and 
SOAP for communicating with these services. This guarantees a loose coupling of the 
management tasks.

To address the third issue (service discovery), we propose to let managing and managed 
entities discover one another at run-time, using Web services. This enables managed entities 
to be associated dynamically with a domain, instead of being configured once and for all. This 
change is also in line with recent standardization activities (e.g., WSDM).

6.4 HOW TO MAKE MANAGEMENT PLATFORMS SOA COMPLIANT

Let us now go through a series of examples that illustrate how an SOA-enabled management 
platform could work.



44
TYPE 1: SIMPLE MANAGEMENT TASKS AS WEB SERVICES

Two examples of simple management tasks are the invocation of non-trivial actions and the 
execution of simple scripts.

Example 1: Remote execution of a non-trivial action

Non-trivial actions can be seen as RPCs bundled with a bit of code. The reboot of a remote 
device is a good example of action that can be invoked by a management application as a 
Web service delegated to a third party (neither the manager, nor the agent in SNMP 
parlance). In this Web service, we first try to do a clean (“graceful”) reboot by setting an 
OID or invoking an operation on a CIM object. If it does not work, we then trigger a power-
cycle of the machine. This operation can translate into a number of finer-grained operations, 
depending on the target machine to be rebooted. For instance, to power-cycle a remote PC 
that is not responding to any query anymore, we can look for an electromagnet that controls 
its power. If we find one (e.g., in a configuration database or a registry), we then set an OID 
or invoke a CIM operation on this electromagnet, depending on the management 
architecture that it supports, to force the power-cycle. A few moments later, the Web service 
checks whether the PC has resumed its activities; it sends back a response to the 
management application, with status succeeded or failed.

Using a Web service for this task allows the management application to abstract away this 
complexity, which is equipment specific. Binding a given piece of equipment to the right 
reboot Web service then becomes a matter of configuration or publication in a registry.

Example 2: Simple script

An example of simple script is the retrieval of routing tables from a group of routers. If 
multiple routing protocols are supported by a router, all of its routing tables need to be 
downloaded. This information can be subsequently exploited by the management 
application for debugging transient routing instabilities in the network. Alternatively, this 
Web service can also be used on a regular basis for performing routing-based event masking, 
for instance in networks where routes change frequently (“route flapping”) and network 
topology-based event masking does not work satisfactorily.

In this example, the Web service providers can be the routers themselves; another 
possibility is to have a single Web service provider that runs on a third-party machine (e.g., 
an SNMP gateway or proxy) and interacts via SNMP with the different routers concerned by 
this task [72].

TYPE 2: ELABORATE MANAGEMENT TASKS AS WEB SERVICES

We now go one level up in abstraction and present four examples of elaborate management 
tasks: core problem investigation, ad hoc management, policy enforcement check and long-
lasting problem investigation. 

Example 1: Core problem investigation

In a management platform, when the event correlator has completed the root-cause analysis 
phase, we are left with a small set of core problems that need to be solved as soon as 
possible. When the solution to the problem is not obvious, we then enter a phase known as 



45
problem investigation. Different technologies can be used during this phase: an Event-
Condition-Action (ECA) rule-based engine, a case-based reasoning engine, etc. On this 
occasion, the management application can launch programs1 to retrieve more management 
information to further investigate, and hopefully solve, each outstanding problem.

Assuming that we do not have performance constraints that impose to keep all processing 
local2, these programs can be delegated to other machines in the form of Web services, 
thereby contributing to balance the load of the management application across multiple 
machines and to improve scalability. They run autonomously, gather data independently, 
access the data repository on their own, etc.

For instance, when the response time of a Web server is unacceptably long for an 
undetermined reason, it can be useful to monitor in great detail the traffic between this server 
and all the hosts interacting with it. This can be achieved by a Web service monitoring, say, 
for 30 minutes all inbound and outbound traffic for this server and analyzing this traffic in 
detail afterward, using fast data mining techniques. This task can involve many fine-grained 
operations; for instance, it can retrieve Remote MONitoring (RMON) MIB [85] OIDs in bulk 
at short time intervals, or it can put a network interface in promiscuous mode and sniff all 
traffic on the network. The duration of this debugging activity can be a parameter of the Web 
service operation. Upon successful completion, the Web service returns the cause of the 
problem; otherwise, it may be able to indicate whether it found something suspicious.

Example 2: Ad hoc management

Ad hoc management tasks [53] are not run regularly by the monitoring application. Instead, 
they are executed on an ad hoc basis to investigate problems as they show up. These tasks 
can be triggered interactively (e.g., by staff in a NOC), or automatically by the management 
application (see example 1 with the slow Web server). These tasks are good candidates for 
Web services: it makes sense to delegate these self-contained and independent programs to 
third-party machines that do not have the same constraints, in terms of resource availability, 
as the main management platform that runs the bulk of the management application3.

For instance, if the administrator suspects that the enterprise is currently undergoing a 
serious attack, he/she may launch a security analysis program that performs pattern matching 
on log files, analyzes network traffic, etc. This program will run until it is interrupted, and 
report the attacks that it detects (or strongly suspects) to the administrator using SMS 
messaging, paging, e-mail, etc.

Example 3: Policy enforcement check

Another interesting case of elaborate management task is to check that policies used in 
policy-based management [81] are enforced durably. For instance, let us consider a classic 
source of problems for network operators: telnet, the main enemy of policies. The bottom 
line of this scenario is invariably the same, with variations in the details.

1. These programs can be executable binaries, byte-code for virtual machines, scripts, etc.
2. For instance, that would be the case if we had to interact with thousands of finite state machines only 

accessible from the address space of the event correlator.
3. We do not assume a centralized management platform here. When management is distributed hierar-

chically over multiple managers, the problem is the same as centralized management: each manager 
can be a bottleneck for its own sub-domain.



46
A technician in a NOC is in charge of debugging a serious problem. Customers are 
complaining, the helpdesk is overwhelmed, his boss called him several times and is now 
standing next to him, watching over his shoulder, grumbling, doing nothing but stressing our 
technician. The latter feels he is alone on earth. All the management tools at his disposal 
indicate that there is an avalanche of problems, but they all fail to find the cause of these 
problems. After checking hundreds of configuration settings on many devices, our technician 
decides to stop services and reconfigure network cards one by one, hoping that this will 
eventually point to the problem. Using telnet, he modifies the configuration of many 
operational routers, trying all sorts of things... Doing so, he gradually starts to build a picture 
of what is going on: he had a similar problem several years ago, a misconfigured router was 
reinjecting routes when it should not. Today’s problem is in fact very different, but our 
technician is now convinced he knows what is going on. Against all odds, after an hour of 
frantic typing, the situation starts to improve. Everything is still slow, but there seems to be a 
way out of this serious problem. And when he modifies the 27th router, bingo, the problem 
is gone and everything comes back to normal! His boss applauds, thanks the Lord for sending 
him such a great man, goes back to his office and phones his own boss, to make sure he does 
not get the blame for this major outage...

Is the incident closed? Yes, because things work again. Is the problem solved? No, 
because our technician still does not know what the problem was. Is the situation back to 
normal? Not at all: first, the same problem could resurface at any time; second, by changing 
the configuration of dozens of devices, our technician has placed several timed bombs in the 
network, without his knowing it. These timed bombs are big potential problems that are just 
waiting for an occasion to go off. And why so? Because he cannot roll back all the 
unnecessary changes that he made. Under stress, he did many things that he cannot remember 
anymore; and because he is dealing with operational networks, he is now very cautious about 
modifying anything. Yet he did several changes that he may soon regret. He changed config-
uration settings that are supposed to be entirely controlled by PDPs, and that will disappear 
in a few hours because they are overwritten everyday, at the same time, during slack hours. 
Will the problem resume immediately after the next policy update? He also changed many 
configuration settings that have nothing to do with the actual problem. Will they cause new 
problems in the future?

All network operators, all corporations, and presumably most large enterprises have been 
through this one day. This problem is as old as telnet. Under stress, NOC staff can modify 
(and break) just about everything, irrespective of their skills. One solution is to regularly copy 
the configuration settings (notably those that enforce policies and are generated automat-
ically) of all network devices in a data store, at least once a day, and analyze every day the 
changes that were made in the past 24 hours. This process can be partially automated; it is a 
self-contained and coarse-grained activity, independent of the rest of the management 
application; it does not have to run on the main management platform. In other words, it 
should lend itself very well to being ported to Web services. In fact, not only some, but all 
configuration settings that are under the control of a PDP should systematically be checked 
like this, by Web services or other means.

In this case, the Web service providers should probably be third-party machines, not 
operational routers, to avoid temporarily saturating them with management tasks.



47
Example 4: Long-lasting problem investigation

If we go back to example 1, some of the outstanding core problems may not be solved within 
a predefined time (e.g., 10 minutes). In such cases, it is appropriate to systematically 
outsource the resolution of these problems to third-party machines, which take over these 
investigations and run them as background tasks, possibly taking hours or days to come to a 
conclusion. Transferring these problem investigations to external entities can be achieved in 
a loosely coupled and portable manner using Web services. The objective here is to conserve 
precious few resources on the machine running the bulk of the management application, 
while not giving up on important but hard problems.

TYPE 3: MACRO-COMPONENTS AS WEB SERVICES

This time, we break up the management application into very large chunks that can be 
physically distributed over multiple machines. The idea is to implement the network 
transparency recommended by SOA to improve the scalability of the management 
application.

Example 1: Distributed monitoring application

In today’s management platforms, the main building block of the management application is 
the monitoring application. We propose to break up this large, monolithic, single-vendor 
monitoring application into large chunks (macro-components) wrapped up with coarse-
grained Web services. These macro-components can be provided by several vendors and 
integrated on a per-organization basis, depending on site-specific needs and customer-
specific price conditions.

This integration seldom requires dynamic binding at run-time, because presumably the 
macro-components that make up management software will not change often. This restruc-
turing of the monitoring application brings more competition among vendors and can drive 
costs down (feature-rich management applications capable of integrating the management of 
networks, systems and services are still incredibly expensive).

For instance, one vendor can provide elaborate graphical views of the network with 3D 
navigation, while another provides an event correlator with a smart rule description language, 
and a third provides the rest of the monitoring application. Standard Web service-based 
communication would enable these loosely-coupled services to work together.

Example 2: Integration of management

Web services can also be useful to integrate the different management platforms in charge of 
network management, systems management, service management, the trouble-ticket system, 
technology-specific platforms, etc. Doing so, they have the potential to nicely complement 
today’s management solutions, for instance when the management platforms used in an 
enterprise cannot use the same event correlator due to integration problems (a serious 
problem that prevents management from being integrated).



48
TYPE 4: WEB SERVICES BETWEEN MANAGING/MANAGED ENTITIES

The fourth type of coarse-grained Web services is different from the previous three. Instead 
of focusing on the delegation granularity, it addresses the issue of service discovery. We 
present three examples: dynamic discovery of the manager, transparent redundancy of the 
managing entity, and dynamic discovery of the top-level manager.

Example 1: Dynamic discovery of the manager

In this example, instead of configuring the address of the managing entity in each agent of 
its domain, administrators rely on Web services for managed entities to discover their 
managing entity dynamically at run-time. This discovery typically uses a standard registry, 
either configured in the managed entity or discovered at boot time (e.g., with a multicast 
operation).

Example 2: Transparent redundancy during discovery

When managed entities think they bind directly to their managing entity, they can in fact 
connect to an intermediary Web service in charge of improving the robustness of 
management. This intermediary can transparently support two redundant managers with a 
hot stand-by (i.e., two machines that receive and analyze the same management data in 
parallel). The primary is active, the secondary is passive. If the primary fails, the secondary 
can take over transparently at very short notice. Alternatively, this intermediary can balance 
the load between multiple managers (which are all active). This can be useful in 
environments where managers experience important bursts of activity.

Example 3: Dynamic discovery of the top-level manager

In distributed hierarchical management (a technique commonly adopted in large enterprises 
and corporations [53]), the management domain is under the responsibility of a managing 
entity known as the top-level manager. The domain is logically split into sub-domains, 
usually for scalability reasons, and each sub-domain is under the responsibility of a 
managing entity called the sub-level manager.

In this scenario, instead of configuring the address of the top-level manager in each sub-
level manager, administrators rely on Web services for the sub-level managers to discover 
automatically the top-level manager of their domain. This operation typically uses a registry.

6.5 MIGRATING TO SOA: IS IT WORTH THE EFFORT?

After studying the changes that the migration to SOA requires in management applications, 
let us ponder over these changes. Are they reasonable? Do the advantages of SOA outweigh 
the drawbacks of reengineering existing management applications?

WE NEED SOMETHING NEW

In the last decade, we have seen a number of proposals that challenged the organizational 
models of existing management architectures: Management by Delegation [92], mobile code 
[3], intelligent agents [42], multi-agent systems [36], and more recently P2P [86] and Web 
services. So far, none of them have succeeded in durably influencing the architecture and 



49
design of the management applications used in real life. Why should Web services succeed 
where other technologies failed?

As we saw in Section 1.2, the main problem with today’s management platforms is that 
we are prisoners of habits that date back to an era when networks were small and simple to 
manage, resources were scarce, dependencies were not highly dynamic, event correlation was 
simple because we did not bother to integrate the management of networks, systems and 
services, etc.

Today, architecting an integrated management application for a corporation is very 
difficult, and the tools available on the market often fall short of customers’ expectations. 
Designing these complex applications boils down to designing large and highly dynamic 
distributed applications. This requires the state of the art in software engineering, and the 
reengineering of integration management applications. Migrating to SOA can be the occasion 
for this clean slate approach.

Another important reason for adopting coarse-grained Web services is that they offer a 
solution for integrating multi-vendor dedicated management platforms (e.g., a platform 
dedicated to network management with another platform specialized in service management). 
This integration is a weak point of many of today’s management platforms, and a number of 
corporations or large enterprises currently struggle to achieve this integration.

NO GUARANTEE OF SUCCESS

Businesswise, migrating integrated management platforms to SOA is not a guaranteed win. 
There is much uncertainty. The market of management applications needs to change its 
habits, and whether this will happen is difficult to predict. Decision makers in the IT 
industry are told every year that a new “revolution” has just occurred, so they tend to be 
skeptical. Convincing them will not be easy.

Oddly enough, the main non-technical driver for change may be the comfort offered by 
homogeneity: if everyone in the software industry adopts SOA, then there is a strong 
incentive for management applications to also migrate to SOA: few people enjoy being the 
last dinosaur in town...

PARADOX

Migrating management platforms to Web services leads to an apparent paradox. On the one 
hand, SOA is about preserving investments in legacy systems by wrapping up existing 
applications with Web services. The goal here is to avoid the high cost of reengineering 
applications, especially complex ones. Based on this principle, using Web services in 
management applications should not require profound changes in these applications: we 
should not have to reengineer them. On the other hand, using Web services as getters and 
setters of managed objects defeats the point of coarse-grained and autonomous services in 
SOA. What is the catch?

This paradox is only apparent. It is due to a confusion between applications and services 
in SOA parlance. Services are meant to be reusable by several applications or other services; 
applications themselves are not. Management applications are not used as services by other 



50
applications: they are at the top of the food chain, so to say. Once SOA-enabled, applications 
can make use of different Web services without being entirely reengineered. But there is no 
free lunch in IT: they need to be made SOA-enabled in the first place.

PERFORMANCE, LATENCY

The performance of Web service-based management solutions is still very much an open 
issue. Web services use SOAP messages underneath. This messaging technology, based on 
the exchange of XML documents, is notoriously inefficient [44]. In corporations and large 
organizations, integrated management platforms have drastic requirements in terms of 
performance. Breaking the management application into Web services-enabled macro-
components, elaborate management tasks and simple management tasks may turn out to be 
totally impractical for performance reasons.

The question is particularly acute for communication between macro-components. For 
instance, wrapping up the event filter, the event aggregator and the event correlator with 
different Web services could lead to a sharp decrease in performance, because these macro-
components need to exchange many events per time unit in large environments, latency must 
be kept low, and SOAP message exchanges are slow compared to the current tightly coupled 
practice. A performance analysis of management platforms using coarse-grained Web 
services is outside the scope of this chapter, but this matter deserves attention in follow-up 
work.

7 CONCLUSION

In this chapter, we summarized the main standards pertaining to Web services and presented 
different ways of using this middleware technology in integrated management. Fine-grained 
Web services are a direct mapping of current habits in management: each Web service 
operates at the managed object level. This is the approach currently adopted by standards 
bodies (e.g., in WSDM and WS-Management). We showed that it is efficient when many 
compressed managed objects are transferred in bulk. Unfortunately, it does not comply with 
SOA, the distributed computing architectural style that underpins Web services. Coarse-
grained Web services, conversely, are SOA compliant and work at a higher level of 
abstraction. Each Web service corresponds to a high-level management task (e.g., balancing 
the load of a virtual resource across multiple physical resources) or a macro-component of a 
management application (e.g., an event correlator). Coarse-grained Web services are 
autonomous (each of them fulfills some functionality on its own), loosely coupled with the 
rest of the management application, and coarse-grained. We distinguished several categories 
of Web service for integrated management and illustrated them by examples.

In the future, will integrated management adopt the vision of Web services promoted by 
SOA? Answering this question is difficult because the market is only partially driven by 
technical considerations. From a business standpoint, adopting Web services makes sense 
because the software industry is massively adopting this technology, so there are many tools 
available and many experts in the field. From an engineering standpoint, Web services make 
it possible to organize management applications differently. This is appealing for architecting 



51
integrated management applications aimed at large organizations. It also opens new horizons 
regarding the organizational model of standard management architectures: we now have the 
technology to do without the “manager does everything, agent does nothing” principle. Web 
services make it possible to break up management platforms into independent macro-
components, packaged as services, which can bring more competition among vendors and 
drive costs down. For instance, one vendor may provide elaborate views with Graphical User 
Interfaces (GUIs) while another may provide the event correlator. They also facilitate the 
integration of network, systems and service management tasks. But the performance of 
coarse-grained Web services for building management solutions is still an open issue that 
deserves thorough investigations. The same problem was true of CORBA and J2EE a few 
years ago, and satisfactory solutions appeared a few years later. Can we count on this for Web 
services too?

ACKNOWLEDGMENTS

The work presented in this paper was supported in part by the EMANICS Network of 
Excellence (#26854) of the IST Program funded by the European Commission. Early 
versions of this material were published in [24], [54] and [77].

REFERENCES

[1]  G. Alonso, F. Casati, H. Kuno and V. Machiraju, Web Services: Concepts, Architectures and 
Applications, Springer, 2004.

[2]  A. Alves, A. Arkin, S. Askary et al. (Eds.), Web Services Business Process Execution Language 
Version 2.0, Public Review Draft, OASIS, August 2006. Available at: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.html

[3]  M. Baldi and G.P. Picco, “Evaluating the Tradeoffs of Mobile Code Design Paradigms in 
Network Management Applications”, in R. Kemmerer and K. Futatsugi (Eds.), Proc. 20th 
International Conference on Software Engineering (ICSE 1998), Kyoto, Japan, April 1998, pp. 
146–155.

[4]  K. Ballinger, D. Ehnebuske, C. Ferris et al. (Eds.), Basic Profile Version 1.1, Final Material, Web 
Services Interoperability Organization, April 2006. Available at 
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html

[5]  T. Banks, Web Services Resource Framework (WSRF) – Primer v1.2, Committee Draft 02, May 
2006. Available at: http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-
02.pdf

[6]  T. Bellwood, UDDI Version 2.04 API Specification, UDDI Committee Specification, OASIS, 
July 2002. Available at:  
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf

[7]  T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web”, Scientific American, May 2001.
[8]  K.P. Birman, “Like It or Not, Web Services Are Distributed Objects”, Communications of the 

ACM, Vol. 47, No. 12, pp. 60–62, December 2004.
[9]  D. Booth, H. Haas, F. McCabe et al., (Eds.), Web Services Architecture, W3C Working Group 

Note, World Wide Web Consortium, 2004. Available at: 
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/



52
[10]  D. Box, E. Christensen, F. Curbera et al., Web Services Addressing (WS-Addressing), W3C 
Member Submission, August 2004. Available at: http://www.w3.org/Submission/2004/
SUBM-ws-addressing-20040810/

[11]  V. Bullard and W. Vambenepe (Eds.), Web Services Distributed Management: Management 
Using Web Services (MUWS 1.1) Part 1, OASIS Standard, August 2006. Available at: 
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.htm

[12]  V. Bullard and W. Vambenepe (Eds.), Web Services Distributed Management: Management 
Using Web Services (MUWS 1.1) Part 2, OASIS Standard, August 2006. Available at: 
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.htm

[13]  B. Burke and R. Monson-Haefel, Enterprise JavaBeans 3.0, 5th edition, O’Reilly, 2006.
[14]  N. Catania, P. Kumar, B. Murray et al., Overview—Web Services Management Framework, 

Version 2.0, July 2003. Available at: http://devresource.hp.com/drc/specifications/
wsmf/WSMF-Overview.jsp

[15]  K. Channabasavaiah, K. Holley and E. Tuggle, “Migrating to a Service-Oriented Architecture, 
Part 1”, IBM, December 2003. Available at: http://www-128.ibm.com/developerworks/
webservices/library/ws-migratesoa/

[16]  R. Chinnici, J.J. Moreau, A. Ryman et al. (Eds.), Web Services Description Language (WSDL) 
Version 2.0 Part 1: Core Language, W3C Candidate Recommendation, March 2006. Available 
at: http://www.w3.org/TR/2006/CR-wsdl20-20060327/

[17]  R. Chinnici, H. Haas, A.A. Lewis (Eds.), Web Services Description Language (WSDL) Version 
2.0 Part 2: Adjuncts, W3C Candidate Recommendation, March 2006. Available at:  
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327/

[18]  M. Choi, J.W. Hong and H. Ju, “XML-Based Network Management for IP Networks”, ETRI 
Journal, Vol. 25, No. 6, pp. 445-463, December 2003.

[19]  M. Choi and J.W. Hong, “Performance Evaluation of XML-based Network Management”, 
Presentation at the 16th IRTF-NMRG Meeting, Seoul, Korea, 2004, http://www.ibr.cs.tu-
bs.de/projects/nmrg/meetings/2004/seoul/choi.pdf

[20]  J. Clark and S. DeRose, XML Path Language (XPath) Version 1.0, W3C Recommendation, 
November 1999. Available at: http://www.w3.org/TR/1999/REC-xpath-19991116/

[21]  L. Clement, A. Hately, C. von Riegen et al. (Eds.), UDDI Version 3.0.2, UDDI Spec Technical 
Committee Draft, OASIS, October 2004. Available at: http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

[22]  F. Curbera, Y. Goland, J. Klein et al., “Business Process Execution Language for Web Services 
(BPEL4WS) Version 1.1”, May 2003. Available at: http://www-106.ibm.com/
developerworks/library/ws-bpel/

[23]  DMTF, Web Services for Management (WS-Management), Version 1.0.0a, DSP0226, April 2006. 
Available at: http://www.dmtf.org/standards/published_documents/DSP0226.pdf

[24]  T. Drevers, R. v.d. Meent and A. Pras, “Prototyping Web Services based Network Monitoring”, 
in J. Harjo, D. Moltchanov and B. Silverajan (Eds.), Proc. of the 10th Open European Summer 
School and IFIP WG6.3 Workshop (EUNICE 2004), Tampere, Finland, June 2004, pp. 135–142.

[25]  R. v. Engelen, “gSOAP Web services toolkit”, 2003, http://www.cs.fsu.edu/~engelen/
soap.html

[26]  R. v. Engelen and K.A. Gallivany, “The gSOAP Toolkit for Web Services and Peer-To-Peer 
Computing Networks”, in Proc. of the 2nd IEEE/ACM International Symposium on Cluster 
Computing and the Grid (CCGrid 2002), Berlin, Germany, May 2002, pp. 128–135.

[27]  T. Erl, Service-Oriented Architecture: Concepts and Technology, Prentice Hall PTR, 2005.



53
[28]  R.T. Fielding, Architectural Styles and the Design of Network-Based Software Architectures, 
Ph.D. Thesis, University of California, Irvine, CA, USA, 2000. Available at: http://
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[29]  R. Fielding, J. Gettys, J. Mogul et al. (Eds.), RFC 2616: Hypertext Transfer Protocol -- HTTP/
1.1, IETF, June 1999.

[30]  S. Graham, A. Karmarkar, J. Mischkinsky et al. (Eds.), Web Services Resource 1.2 (WS-
Resource), OASIS Standard, 1 April 2006.

[31]  M. Grand, Patterns in Java, Volume 1: A Catalog of Reusable Design Patterns Illustrated with 
UML, Wiley, 1998.

[32]  M. Gudgin, M. Hadley, J.J. Moreau et al. (Eds.), SOAP 1.2 Part 1: Messaging Framework, W3C 
Candidate Recommendation, World Wide Web Consortium, 2002. Available at: 
http://www.w3.org/TR/soap12-part1/

[33]  M. Gudgin, M. Hadley, J.J. Moreau et al. (Eds.), SOAP 1.2 Part 2: Adjuncts, W3C Candidate 
Recommendation, World Wide Web Consortium, 2002. Available at: 
http://www.w3.org/TR/soap12-part2/

[34]  H. Haas and C. Barreto, “Foundations and Future of Web Services”, Tutorial presented at the 3rd 
IEEE European Conference on Web Services (ECOWS 2005), Växjö, Sweden, November 2005.

[35]  H.G. Hegering, S. Abeck and B. Neumair, Integrated Management of Networked Systems: 
Concepts, Architectures, and Their Operational Application, Morgan Kaufmann, 1999.

[36]  M.N. Huhns and M.P. Singh (Eds.), Readings in Agents, Morgan Kaufmann, 1998.
[37]  IBM developerWorks, New to SOA and Web Services. Available at:  

http://www-128.ibm.com/developerworks/webservices/newto/

[38]  IRTF-NMRG, Minutes of the 11th IRTF-NMRG Meeting, Osnabrück, Germany, September 2002. 
Available at: http://www.ibr.cs.tu-bs.de/projects/nmrg/minutes/minutes-
011.txt

[39]  ISO/IEC 10746-1, Information Technology—Open Distributed Processing—Reference Model: 
Overview, International Standard, December 1998.

[40]  ITU-T, Recommendation X.753, Information Technology—Open Systems Interconnection—
Systems Management: Command Sequencer for Systems Management, ITU, October 1997.

[41]  ITU-T, Recommendation M.3400, Maintenance: Telecommunications Management Network—
TMN Management Functions, ITU, February 2000.

[42]  N.R. Jennings and M.J. Wooldridge (Eds.), Agent Technology: Foundations, Applications, and 
Markets, Springer, 1998.

[43]  P. Kalyanasundaram, A.S. Sethi, C.M. Sherwin et al., “A Spreadsheet-Based Scripting 
Environment for SNMP”, in A. Lazar, R. Saracco and R. Stadler (Eds.), Integrated Network 
Management V—Proc. of the 5th IFIP/IEEE International Symposium on Integrated Network 
Management (IM 1997), San Diego, CA, USA, May 1997, pp. 752–765.

[44]  J. Kangasharju, S. Tarkoma and K. Raatikainen, “Comparing SOAP Performance for Various 
Encodings, Protocols, and Connections”, in Proc. of the 8th International Conference on 
Personal Wireless Communications (PWC 2003), Venice, Italy, September 2003, Springer, 
LNCS, Vol. 2775, pp. 397–406.

[45]  N. Kavantzas, D. Burdett and G. Ritzinger (Eds.), Web Services Choreography Description 
Language Version 1.0, W3C Candidate Recommendation, World Wide Web Consortium, 
November 2005. Available at: http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

[46]  D. Levi and J. Schoenwaelder (Eds.), RFC 3165: Definitions of Managed Objects for the 
Delegation of Management Scripts, IETF, August 2001.

[47]  D. Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs, O’Reilly, 
1994.



54
[48]  M. Little, “Transactions and Web Services”, Communications of the ACM, Vol. 46, No. 10, pp. 
49–54, October 2003.

[49]  K. Ma, “Web Services: What’s Real and What’s Not?”, IEEE Professional, Vol. 7, No. 2, pp. 14–
21, March-April 2005.

[50]  C.M. MacKenzie, K. Laskey, F. McCabe et al. (Eds.), Reference Model for Service Oriented 
Architecture 1.0, Committee Specification 1, OASIS, August 2006.

[51]  F. Manola and E. Miller, RDF Primer, W3C Recommendation, February 2004. Available at: 
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[52]  D. Martin, M. Burstein, D. McDermott et al., “Bringing Semantics to Web Services with  
OWL-S”, World Wide Web: Internet and Web Information Systems, to appear in 2007.

[53]  J.P. Martin-Flatin, Web-Based Management of IP Networks and Systems, Wiley, 2003.
[54]  J.P. Martin-Flatin, “Distributed Event Correlation and Self-Managed Systems”, in O. Babaoglu et 

al. (Eds.), Proc. of the International Workshop on Self-* Properties in Complex Information 
Systems (Self-Star 2004), Bertinoro, Italy, May 2004, pp. 61–64.

[55]  J.P Martin-Flatin, P.A. Doffoel and M. Jeckle, “Web Services for Integrated Management: a Case 
Study”, in L.J. Zhang and M. Jeckle (Eds.), Web Services—Proc. of the 2nd European Conference 
on Web Services (ECOWS 2004), Erfurt, Germany, September 2004, Springer, LNCS, Vol. 3250, 
pp. 239–253.

[56]  K. McCloghrie, D. Perkins, and J. Schoenwaelder (Eds.), RFC 2578: Structure of Management 
Information Version 2 (SMIv2), IETF, April 1999.

[57]  K. McCloghrie and F. Kastenholz (Eds.), RFC 2863: The Interfaces Group MIB, IETF, June 
2000.

[58]  D.L. McGuinness and F. van Harmelen,  OWL Web Ontology Language Overview, W3C 
Recommendation, February 2004. Available at: http://www.w3.org/TR/2004/REC-owl-
features-20040210/

[59]  S. McIlraith., T.C. Son and H. Zeng, “Semantic Web Services”, IEEE Intelligent Systems, Vol. 
16, No. 2, pp. 46–53, March-April 2001.

[60]  A. Nadalin, C. Kaler, R. Monzillo et al., Web Services Security: SOAP Message Security 1.1 (WS-
Security), OASIS Standard Specification, February 2006.

[61]  R. Neisse, R. Lemos Vianna, L. Zambenedetti Granville et al., “Implementation and Bandwidth 
Consumption Evaluation of SNMP to Web Services Gateways”, Proc. of the 9th IEEE/IFIP 
Network Operations and Management Symposium (NOMS 2004), Seoul, Korea, April 2004, pp. 
715–728.

[62]  Net-SNMP home page, http://net-snmp.sourceforge.net/
[63]  OASIS Web Services Distributed Management (WSDM) Technical Committee,  

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

[64]  OASIS Web Services Resource Framework (WSRF) Technical Committee,  
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

[65]  OASIS Web Services Transaction (WS-TX) Technical Committee,  
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx

[66]  L. O’Brien, L. Bass and P. Merson, Quality Attributes and Service-Oriented Architectures, 
Technical Report CMU/SEI-2005-TN-014, Software Engineering Institute, Carnegie Mellon 
University, PA, USA, September 2005. Available at: http://www.sei.cmu.edu/pub/
documents/05.reports/pdf/05tn014.pdf

[67]  R. Orfali, D. Harkey and J. Edwards, Client/Server Survival Guide, 3rd edition, Wiley, 1999.
[68]  E. O’Tuathail and M. Rose, RFC 4227: Using the Simple Object Access Protocol (SOAP) in 

Blocks Extensible Exchange Protocol (BEEP), IETF, January 2006.



55
[69]  C. Pahl, “A Conceptual Framework for Semantic Web Services Development and Deployment”, 
in L.J. Zhang and M. Jeckle (Eds.), Web Services—Proc. of the 2nd European Conference on Web 
Services (ECOWS 2004), Erfurt, Germany, September 2004, Springer, LNCS, Vol. 3250, pp. 
270–284.

[70]  M.P. Papazoglou, “Web Services and Business Transactions”, World Wide Web: Internet and Web 
Information Systems, Vol. 6, No. 1, pp. 49–91, March 2003.

[71]  M.P. Papazoglou and D. Georgakopoulos (Eds.), Special issue on “Service-Oriented 
Computing”, Communications of the ACM, Vol. 46, No. 10, October 2003.

[72]  M.P. Papazoglou and W.J. van den Heuvel, “Web Services Management: A Survey”, IEEE 
Internet Computing, Vol. 9, No. 6, pp. 58–64, November-December 2005.

[73]  S. Parastatidis,  S. Woodman, J. Webber et al., “Asynchronous Messaging between Web Services 
Using SSDL”, IEEE Internet Computing, Vol. 10, No. 1, pp. 26–39, January-February 2006.

[74]  G. Pavlou, “Chapter 2. OSI Systems Management, Internet SNMP, and ODP/OMG CORBA as 
Technologies for Telecommunications Network Management”, in S. Aidarous and T. Plevyak 
(Eds.), Telecommunications Network Management: Technologies and Implementations, pp. 63–
110, IEEE Press, 1998.

[75]  G. Pavlou, P. Flegkas and S. Gouveris, “Performance Evaluation of Web Services as Management 
Technology”, Presentation at the 15th IRTF-NMRG Meeting, Bremen, Germany, January 2004.

[76]  G. Pavlou, P. Flegkas, S. Gouveris et al., “On Management Technologies and the Potential of 
Web Services”, IEEE Communications, Vol. 42, No. 7, July 2004

[77]  A. Pras, T. Drevers, R. v.d. Meent and D. Quartel, “Comparing the Performance of SNMP and 
Web Services-Based Management”, IEEE e-Transactions on Network and Service Management, 
Vol. 1, No. 2, December 2004.

[78]  J. Rao and X. Su, “A Survey of Automated Web Service Composition Methods”, in J. Cardoso 
and A. Sneth (Eds.), Proc. of the 1st International Workshop on Semantic Web Services and Web 
Process Composition (SWSWPC 2004), San Diego, CA, USA, July 2004, Springer, Vol. 3387, 
pp. 43–54.

[79]  J. Schönwälder, A. Pras and J.P. Martin-Flatin, “On the Future of Internet Management 
Technologies”, IEEE Communications Magazine, Vol. 41, No. 10, pp. 90-97, October 2003.

[80]  M. Singh and M.N. Huhns, Service-Oriented Computing: Semantics, Processes, Agents, Wiley, 
2005.

[81]  M. Sloman, “Policy Driven Management for Distributed Systems”, Journal of Network and 
Systems Management, Vol. 2, No. 4, pp. 333–360, December 1994.

[82]  M. Sloman and K. Twidle. “Chapter 16. Domains: A Framework for Structuring Management 
Policy”. In M. Sloman (Ed.), Network and Distributed Systems Management, Addison-Wesley, 
1994, pp. 433–453.

[83]  J. v. Sloten, A. Pras and M.J. v. Sinderen, “On the Standardisation of Web Service Management 
Operations”, in J. Harjo, D. Moltchanov and B. Silverajan (Eds.), Proc. of the 10th Open 
European Summer School and IFIP WG6.3 Workshop (EUNICE 2004), Tampere, Finland, June 
2004, pp. 143–150.

[84]  Soapware.org, http://www.soapware.org/
[85]  W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd Edition, Addison-Wesley, 1999.
[86]  R. Steinmetz and K. Wehrle (Eds.), Peer-to-Peer Systems and Applications, Springer, LNCS, 

Vol. 3485, 2005.
[87]  The Stencil Group, The Evolution of UDDI—UDDI.org White Paper, July 2002. Available at: 

http://www.uddi.org/pubs/the_evolution_of_uddi_20020719.pdf

[88]  UDDI.org, UDDI Technical White Paper, September 2000. Available at:  
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf



56
[89]  W. Vogels, “Web Services Are Not Distributed Objects”, Internet Computing, Vol. 7, No. 6, pp. 
59–66, November-December 2003.

[90]  WASP UDDI, http://www.systinet.com/products/wasp_uddi/overview/
[91]  K. Wilson and I. Sedukhin (Eds.), Web Services Distributed Management: Management of Web 

Services (WSDM-MOWS) 1.1, OASIS Standard, 01 August 2006. Available at: 
http://docs.oasis-open.org/wsdm/wsdm-mows-1.1-spec-os-01.htm

[92]  Y. Yemini, G. Goldszmidt and S. Yemini, “Network Management by Delegation”, in I. Krishnan 
and W. Zimmer (Eds.), Proc. of the 2nd IFIP International Symposium on Integrated 
Management (ISINM 2001), Washington, DC, USA, April 1991, pp. 95–107.

[93]  C. Zhou, L.T. Chia and B.S. Lee, “Semantics in Service Discovery and QoS Measurement”, 
IEEE Professional, Vol. 7, No. 2, pp. 29–34, March-April 2005.

[94]  Zlib home page, http://www.zlib.org/


	1 Motivation
	1.1 Command Line Interface
	1.2 SNMP Protocol
	Waiting for a New Solution
	1.3 From Specific To Standard Technologies
	1.4 Web Services
	2 Introduction to Web Services
	2.1 Communication Patterns and Roles
	2.2 SOAP Protocol
	2.3 Web Services Description Language
	2.4 Universal Description, Discovery and Integration
	2.5 Web Services Architecture
	3 Advanced Web Services
	3.1 Standardization
	3.2 Interoperability
	3.3 Composition
	3.4 Orchestration and Choreography
	Orchestration
	Choreography
	3.5 Transactions
	3.6 Security
	3.7 Semantic Web Services
	4 Web Services for Management, Management of Web Services
	4.1 OASIS: Web Services for Distributed Management (WSDM)
	4.2 DMTF: WS-Management
	4.3 OASIS: WS-Resource
	4.4 Parlay-X
	4.5 IETF and IRTF-NMRG
	5 Fine-Grained Web Services for Integrated management
	5.1 Four approaches
	5.2 Parameter Transparency
	5.3 Genericity
	5.4 Example of Web Services-Based Management
	The <types> element
	The <message> elements
	The <interface> element
	The <binding> element
	The <service> element
	5.5 Performance
	Bandwidth Usage
	CPU Time
	Memory Usage
	Round-Trip Time
	6 Toward Coarse-Grained Web Services for Integrated management
	6.1 Service-Oriented Architecture
	6.2 Comparison between SOA and Current Practice
	Applications Make Use of Services
	Loose Coupling
	Services are Coarse-Grained
	Services are autonomous
	Interfaces and Contracts
	Network Transparency
	Multiple Owners
	Service Discovery
	Service Composition
	6.3 Analysis
	Changes in the Management Architecture
	Changes in the Management Applications
	6.4 How To Make Management Platforms SOA Compliant
	Type 1: Simple Management Tasks as Web Services
	Example 1: Remote execution of a non-trivial action
	Example 2: Simple script
	Type 2: Elaborate Management Tasks as Web Services
	Example 1: Core problem investigation
	Example 2: Ad hoc management
	Example 3: Policy enforcement check
	Example 4: Long-lasting problem investigation
	Type 3: Macro-Components as Web Services
	Example 1: Distributed monitoring application
	Example 2: Integration of management
	Type 4: Web Services between Managing/Managed Entities
	Example 1: Dynamic discovery of the manager
	Example 2: Transparent redundancy during discovery
	Example 3: Dynamic discovery of the top-level manager
	6.5 Migrating to SOA: Is It Worth The Effort?
	We Need Something New
	No Guarantee of Success
	Paradox
	Performance, Latency
	7 Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


