
Automatic Generation of IPSec/VPN
Security Policies In an Intra-Domain
Environment
Zhi (Judy) Fu1 and S. Felix Wu2

1Networks and Infrastructure Research Lab, Motorola, 1301 East Algonquin Rd. MS IL02-2246,
Schaumburg, IL 60196, USA.
Email: jfu@labs.mot.com (Was Computer Science Dept., North Carolina State University)
23057 Engineering II, Computer Science Dept., University of California, Davis, One Shields Avenue,
Davis, CA 95616, USA
Email:wu@cs.ucdavis.edu

Abstract: IPSec [1] policies are widely deployed in firewalls or security gateways to protect information property.
The security treatment (e.g. deny, allow or encrypt etc.) of all inbound or outbound traffic will be determined by the
security policies, and thus it is critical for policies to be specified and configured correctly. IPSec policies are manually
configured to individual security gateway in current practice, which could be very inefficient and error-prone. In this
research, we focus on two questions: 1) How to ensure policy correctness? 2) How to systematically specify correct
policies instead of manually configuring? Apparently, policies are correct if they do what they are wanted to do.
However, there is vague relationship between what they are wanted and what they really do. In our research, we clearly
defined a higher level policy, called security requirement, and clearly defined their satisfaction. Therefore, policies are
correct only if they satisfy all requirements. Furthermore, we designed algorithms to automatically generate correct
policies given security requirements. People can specify their requirements at a high level without concerning specific
low level parameters, and then correct low level policies will be automatically generated. The automation can not only
save tremendous administrative labor but also guarantee the policies are correct.

Keyword: Security Policy Management, IPSec Policy, Security Policy Specification, Security Requirement, Firewall

1. Introduction
IPSec (Suite of protocols for IP layer Security) [1] policies are widely deployed in firewalls or security

gateways to restrict access or selectively enforce security operations. We first illustrate a typical scenario of
intra-domain communications for a large distributed organization.

 Satellite Office Headquarter

 Satellite Office Satellite Office

 Figure 1: Scenario for intra-domain site-to-site communications

In figure 1, a large organization is composed of multiple distributed sites, which can communicate with
each other through VPN tunnels. Each site can have firewalls with specific security policies to protect their
property. Furthermore, some sub-domains, like financial department etc., can have their own firewall with
their specific policies to protect their sensitive data.

The security treatment (e.g. deny, allow or encrypt etc.) of all inbound or outbound traffic will be
determined by the security policies, and thus it is critical for policies to be specified and configured
correctly. IPSec policies are manually configured to individual security gateway in current practice, which

O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and Management
DSOM'2001 Nancy France, October 15-17, 2001.

Zhi Fu and S. Felix Wu

could be very inefficient and error-prone. For a large distributed organization with complex hierarchy and
many security gateways or firewalls, there will be excessive amount of work to specify and configure
security policies for each node. Small or subtle errors in the process may expose massive holes in the
overall security of the network. Furthermore, as we will analyze in next section, even if each policy is
correct individually, the interactions among policies might cause unexpected security breach, which is very
difficult to check even with careful and experienced administrators. Although various policy issues
attracted a lot of attention [2,3,4], two important problems have not been carefully studied so far: 1) How
to ensure correctness of security policies? 2) What are ways to systematically specify and distribute
correct policies instead of manually configuring each node?

Policies are correct if they do what they are wanted to do. Current IPSec specification can be so
specific that it is hard to understand what it is really intended for. It is realized in IPSec security policy
working group of IETF that we need a higher-level policy language with well-defined and clear semantics.
In our research, we clearly defined a higher level policy, we call security requirements, whose functions
can be clearly understood and rigorously proven. The low-level policies are correct only when they satisfy
all requirements. In addition, we developed a system, in which people can specify their security
requirements at a higher level to a central policy database, and correct low-level policies will be
automatically generated and distributed to appropriate nodes to enforce. The automation can not only save
administrators tremendous labor but also guarantee the correctness of low-level policies.

In summary, this research presents the following contributions:
• We carefully analyzed potential problems in policy enforcement due to interactions;
• We formally defined implementation-independent security requirement at a higher level;
• We clearly defined correctness of policies;
• We developed scalable algorithms to systematically generate policies to satisfy desired security

requirements.
The rest of the document is organized as follows. Section 2 analyzes potential policy problems and

discusses requirement for policy management, which motivated the definition of security requirements at a
higher level in section 3. Then section 4 develops three different approaches to determine policies based on
requirements and analyzes their pros and cons. Finally section 5 summarizes the research and outlines
future directions.

2. IPSec Policy Management: Problem Analysis and Requirement
Statement

2.1 A Brief Overview Of IPSec And IPSec Policies
IPSec, standardized in IETF, defines a suite of protocols such as ESP, AH, ISAKMP, IKE etc., which

forms a security architecture to protect traffic at IP layer. The basic functions of IPSec are access control
and selective security enforcement, i.e. only selected IP packets are allowed to pass and only selected IP
packets are protected with specific security function. The selection of IP packets and specification of
security actions are defined in IPSec policies. An IPSec policy consists of two parts: condition and action,
i.e. if condition is met, then the action will be taken. The condition in a policy maps values with header
fields in selecting an IP packet. For example, if (src=A, dst=B) is in condition part of a policy, then all IP
packets with source address A and destination address B in IP header will be selected. There are generally
three actions: deny, allow, ipsec_action, meaning the selected packet should be dropped, allowed to pass or
applied with certain security function as specified in ipsec_action. Typically the attributes of an
ipsec_action include security protocols (encryption or authentication), algorithms, mode (we explain it
below), the node “from” at which the security enforcement starts and the node “to” at which the security
enforcement ends. Combining condition and action, a simple representation of policy can be like (src=A,
dst=B à allow). This kind of representation is informally used in our policy examples in the following
subsections. To simplify policy processing, policies can be specified to be order-dependent and packets will
be selected by a policy of the first match. For example, only packets from A to B are allowed can be
specified as (src=A, dst=B à allow) (src=* dst=* à deny). The packets will be mapped against policies
one by one orderly until find the first applicable one.

Now we can further elaborate the attributes of ipsec_action. IPSec has two security protocols, namely,
Encapsulating Security Payload (ESP) and Authentication Header (AH). ESP is for encryption with
authentication while AH is for authentication only. There are two modes in ipsec_action: transport and

Automatic Generation of IPSec/VPN Security Policies

tunnel mode. In transport mode, only payload is secured (encrypted or authenticated) and the header part is
left in clear. In tunnel mode, the whole IP packet is secured and a new IP header is added (encapsulation).
In the new header, tunnel entry and exit points are new source and destination addresses and the security
protocol is the new protocol. The packet will then be encapsulated at tunnel entry point and sent to tunnel
exit point where the packets are decapsulated and recovered to previous state. Attributes for the security
enforcement are conveyed in extension headers with fields like Security Parameter Index (SPI), Sequence
Number (for anti-replay purpose) etc. The policy condition part can specify fields in original header as well
as new encapsulated outer header or new ESP or AH extension header.

2.2 Policy Problem Analysis
An erroneous policy could lead to communication blockade or serious security breach. Some problems

might be caused by careless human error while some others might arise from interactions that can not be
easily detected even with careful and experienced administrators. We will illustrate three scenarios of
policy problems below.

 Scenario 1 and 2: Conflicts and Selector Confusion Scenario 3: Tunnel Overlaps

 H1 FW1 ENC Tunnel SG2 H2 SG1.1 SG1 ENC SG2 SG2.1

Figure 2: Examples of Policy Problems

In the scenario 1, an encryption tunnel is built between H1 and SG2 to protect their sensitive
communication. In IPSec policy, policies can be specified to deny encrypted packet by denying all packets
with ESP protocol like (src=* dst=* prot=esp à deny). Therefore, if Firewall FW1 has policy to deny all
encrypted traffic because of the need to examine the content of the traffic, all packets will be dropped in the
middle of the transmission.

In the scenario 2, H1 has policy to encrypt all packets from H1 to SG2. FW1 is a firewall to perform
access control or selective security enforcement. We assume FW1 has simple access control policy as
(src=H1, dst=H2 à allow) and (others à deny)1. However, because of the encryption tunnel that changes
destination to be SG2 in outer header, the FW1 will mistakenly drop all traffic from H1 to H2 that should
be allowed. Similarly, it can also mistakenly allow some traffic to pass due to confusion with selectors.

In the scenario 3, there are financial department 1.1 in site 1 and financial department 2.1 in site 2. We
assume each department has its security gateways and has authority to make security policies to protect
their property. In this example, department 1.1 decides that all traffic from 1.1 to site 2 must be encrypted
through a tunnel from SG1.1 to SG2. At the same time, the administrator for site 1 decides that all traffic
from site1 to department 2.1 must be encrypted through a tunnel from SG1 to SG2.1. Therefore, the traffic
from SG1.1 to SG2.1 shall be governed by two policies and should be protected from SG1.1 all the way to
SG2.1. However, the policies might not work as desired. First, if the administrator does not adjust the
selector for the upper tunnel in specifying policies in SG1, then the traffic might skip lower tunnel
completely such that it lacks the required protection from SG2 to SG2.1. On the other hand, if it is indeed
adjusted to include the tunneled traffic, then the traffic will go through two tunnels. With this configuration,
traffic is encapsulated with a new header by SG1.1 and then encapsulated with another new header by SG1
to send to SG2.1. When SG2.1 decapsulates and finds out the destination is SG2, SG2.1 will send traffic
back to SG2. Finally SG2 will decapsulate and send traffic to its real destination. Although it is originally
intended to encrypt traffic from SG2 to SG2.1, the traffic is eventually sent in clear from SG2 to SG2.1
because of tunnel interaction.

The above results are obviously undesirable and incorrect. The interaction of policies can lead to
outcome that deviates from the original intention. What makes correct policy specification very difficult is
two folds: First, tunnel operations cause complications in selector choices. Second, Lack of high-level view
of overall objectives although each individual policy may appear to satisfy its individual goal. Therefore, it
is important to specify policy at a higher level that maps to low level policies efficiently and
unambiguously.

1 This is for example only. Real access control policies will be much more complex than this example.

Zhi Fu and S. Felix Wu

Based on requirement draft [6] in IPSP working group of IETF, IPSec policy management has the
following requirements. First, we need to clearly define policy at a higher level. We should be able to
understand what the policy does. The semantics must capture the relationship between IPSec SAs and
higher-level security policies are clearly well defined. Second, we should have confidence that the policy
does what it claims to and its implementation is correct. Third, it must scale to support complex policy
administration schemes. Administrator must have ability to control and change policies for several different
devices remotely at the same time. Fourth, in larger networks with complex hierarchy, different entities
must be delegated with authorities to decide their own policies. Fifth, the mechanisms used must not
require any protocol modification in any of the IPSec standards (ESP, AH, IKE). The mechanisms must be
independent of the SA negotiation protocol.

2.3 Related Work
A working group IP security policy (IPSP) [5] is formed in IETF to address complex IPSec security

policy problems. No complete solution has been developed to meet all the objectives specified in the
requirement draft yet. A Security Policy Specification Language (SPSL) [2] was proposed in the working
group to standardize policy specification, which currently only address one level (low-level policy)
specification. Similarly, other proposed drafts such as policy information base [3] and data model [4] have
been focused on low-level policies. A protocol called Security Policy Protocol (SPP) [7] was proposed to
systematically resolve IPSec policies with Policy Servers. It defines protocol message exchange format and
process. However, without consideration of potential conflicts and interactions as analyzed in section 2.2,
the resolution algorithm may not provide assurance in policy correctness.

There are many firewall and IPSec VPN vendors. (See [9] for a long list of VPN vendors.) Many of the
firewall and VPN router product offerings include policy configuration and management tools with varying
degree of sophistication, such as Cisco’s security policy manager [10], Indus River’s Policy Vision4 [11],
Xedia’s VPN manager [12] etc. Typically, with a state-of-art VPN management tool, the policies can be
centrally specified (and stored in LDAP) and automatically distributed to appropriate devices. Although the
centralized management tools greatly eased administrators, it is still far from hassle-free without a clear
high-level policy language. Furthermore, none of the policy management products seemed to focus on the
potential conflicts. The problem is that some people defining some policies may not know other people
defining other policies in large organization with complex hierarchy, hence the conflicts are inevitable.
Without a rigorous way to verify correctness of policy specifications, large-scale VPN deployment is going
to be troublesome due to possible unexpected security breaches.

The research effort closest to ours is probably firewall management toolkit [13] and filtering postures
[14], in the sense of defining higher level policies centrally and distributing the policies to enforce. While
they only focus on access control policies, we focus on interacted IPSec policies, i.e. VPN tunnel policies
as well as access policies. Currently most firewalls are equipped with VPN capabilities such that the VPN
policies and access control policies are processed together.

The needs of separating high-level requirements and low-level policies were addressed in [15, 16]. Our
work applied the concepts to a specific policy service by defining IPSec security requirements at a high
level. Some recent work [17,18] analyzed two types of conflicts: one is co-existence of both positive and
negative policies, which can be detected by checking syntax; the other one is application specific conflicts.
In this research, we analyzed IPSec specific conflicts caused by topological interaction etc.

3. Security Requirements and Their Satisfaction
Clearly, there is need to define a security policy at a higher level with well-defined semantics. For

simplicity, in the context of this paper, the higher level policy is called the security requirement2.
Requirement is high level objective while implementation policies are low level specific plans to meet the
objective. One important task of IPSec policy management is to represent security requirements at a high
level efficiently and unambiguously.

Because of size limit, we will present security requirements only in an informal way here. Interested
readers can find rigorous and complete definitions on security requirements and their satisfaction in [21]. In
security requirement, people can clearly specify their intention of security treatment on certain traffic

2 We focus on two-level specification and transformation in this research, which does not exclude policy specification
in more levels in policy hierarchy.

Automatic Generation of IPSec/VPN Security Policies

without concerning specific low-level parameters. Therefore, the attributes of flow identities specified in
requirements are those of original flows. There are four main security requirements for IPSec policies.

• Access Control Requirement (ACR) One fundamental function of security is to conduct access
control that is to restrict access only to trusted traffic. A simple way to specify an ACR is: flow id.3 à
deny | allow

• Security Coverage Requirement (SCR) Another important function is to apply security
functions to prevent traffic from being compromised during transmission across certain area, which
requires the security protection of the traffic to cover all links and nodes within the area. Optionally, users
can authorize certain nodes in the area to access content since some nodes on the path may need to examine
content. For example, an authorized firewall is allowed to access plain text content and examine content for
intrusion detection purpose. Various algorithms can be specified in low-level policy while strength is
specified in requirement level to indicate strength level of protection. We expect that appropriate
algorithms can be selected in low level policies to be with sufficient strength4. A simple way to specify a
SCR to protect traffic from “from” to “to” by a security function with certain strength could be: flow id. à
protect (sec_function, strength, from, to, trusted_nodes) The requirement is satisfied only if the traffic is
with sufficient security protection on every link and node in protection area from “from” to “to”, except
that the trusted nodes can be left uncovered by the function.

• Content Access Requirement (CAR) Some nodes may need to access content of certain traffic,
for example, a firewall with an intrusion detection system (IDS) may need to examine content to determine
the characteristic of the traffic. However, one node is not able to view the content of traffic if an encryption
tunnel is built across it. As exemplified in Section 2.2, a policy can be specified to deny all encrypted
traffic like (src=* dst=* prot=esp à deny). Similarly, some nodes might need to modify content for special
processing but can not if authentication tunnels are built across them. We allow CAR to be explicitly
specified to express the need for specific nodes to access content of certain traffic. CAR can be expressed
as denying certain security function to prevent the nodes from accessing certain traffic as follows: flow id.
à deny_sec (sec_function, access_nodes). The requirement is satisfied only if the traffic is not secured
with the function “sec_function” on any node specified in “access_nodes”.

• Security Association Requirement (SAR) Security Associations (SA) [1] need to be formed to
perform encryption/authentication function. There might be needs to specify that some nodes desire or not
desire to set up SA of certain security function with some other nodes because of public key availability,
capability match/mismatch etc. A simple way to specify a SAR could be: flow id. à deny_SA (SA_peer1,
SA_peer2, sec_function). The requirement is satisfied only if none of nodes specified in “SA_peer1” forms
SA with any of nodes specified in “SA_peer2” with function “sec_function”.

4. Determining Policies to Satisfy Security Requirements
Given a set of requirements, the problem is to find a set of policies to satisfy all of the requirements, or

return a “failure” message if there is no such a set of policies. The problem could be very complex. We will
subsequently present three different approaches to solve the problem and analyze their strengths and
weaknesses. We expect the policy set generated by each approach to be correct, i.e. the policy set indeed
satisfies all requirements. In addition, The algorithm to determine policies is desired to be complete, i.e. the
algorithm can find a solution if there is one. Furthermore, we want the algorithm to be efficient. It is very
important to have algorithm that can scale to large network size. Because of size limit, we omitted a lot of
detail on algorithms and proofs. Interested readers can refer to [21] for more detail.

We first explain the mapping from requirements to policies. Low-level policies are specific
implementations of high level requirements. One requirement might be satisfied by different policies. For
example, a SCR specifying the protection of traffic from H1 to H2 as represented by (src=H1, dst=H2 à
protect (sec_func[ENC], strength[strong], from[H1], to[H2], trusted_nodes[Ra, Rb])), can be satisfied by
one tunnel or chain of tunnels that connect to each other. The trusted connecting nodes can de-apply certain
security function and apply it again for the next tunnel. Chained tunnel is sometimes preferable to one non-
stop tunnel for CAR or SAR satisfaction. Obviously no any CAR or SAR is violated if there is no tunnel.
Both CAR and SAR are only restricting where and how to build tunnels. Furthermore, access control

3 Flow is typically identified by 5-tuple (source address, destination address, source port, destination port, protocol).

4 We can safely assume the mapping from strength to algorithms is deterministic.

Zhi Fu and S. Felix Wu

policies can be easily determined after the tunnel configurations are determined, and thus we omit access
control requirement in policy generation algorithms. Therefore, central part of policy determination is to
determine tunnel policies that satisfy all SCRs without violating CARs and SARs.

For example, there are a set of three requirements: Three_Reqs = {Req1 (src = 1.* dst = 2.* à ENC
Weak 1.* 2.* {all}), Req2 (src = 1.1.*, dst = 2.* à AUTH Strong 1.1.* 2.* {all}), Req3 (src = 1.*, dst =
2.1.* à ENC Strong 1.* 2.1.* {all})}, in which {all} means all enroute security gateways are trusted. In
figure 4 1), the middle bar illustrates weak encryption protection area for Req1. The top bar illustrates
protection area for Req2 and the bottom bar illustrates the protection area for Req3. Figure 4 2) shows the
relationship among traffic selectors of the three requirements (traffic filters F1, F2 and F3). The question is
what are policies to satisfy the three requirements. We will use this simple example throughout the paper to
illustrate different approaches.

 SG1.1 SG1 SG2 SG2.1

 Figure 4: 1) Three_Reqs Example: Protection Areas 2) Three_Reqs Traffic Filters

4.1 Bundle Approach: Policies to Satisfy Requirements for Every Bundle of
Flows

We can separate entire traffic into several disjoint traffic flow sets, we call bundles, each of which is
subject to a unique set of security requirements. For example, in Three_Reqs example, there are four
bundles that are governed by different set of requirement actions: (src = 1.1.*, dst = 2.1.*) subject to
{Req1.action, Req2.action, Req3.action}, (src = 1.1.*, dst = 2.* – 2.1.*) subject to {Req1.action,
Req3.action}, (src = 1.* – 1.1.*, dst = 2.1.*) subject to {Req2.action, Req3.action} and (src = 1.* – 1.1.*,
dst = 2.* – 2.1.*) subject to {Req3.action}. In bundle approach, we will generate policies to satisfy all
requirements for each bundle. For one particular bundle, the condition part of policies contains bundle
selectors and action part contains appropriate security actions to meet all requirements for the bundle.

Using bundle approach, the problem is resolved in two steps. First, from given requirements, we will
group entire traffic flows into a number of disjoint bundles and find out the subset of the requirements that
are applied to each bundle. Second, for each bundle, given a set of requirement actions for the bundle, we
will generate action part of policies for the bundle, and use bundle filters as selector part of the policies. We
will first focus on the second step: how to generate correct policy actions given a set of requirement actions
for one bundle.

4.1.1 Policy Actions To Satisfy A Set Of Security Requirement Actions
We design a polynomial algorithm to solve this problem. The basic idea is that one tunnel or chained

tunnels across protection area are needed to fulfill security coverage requirement of the area, as illustrated
in the following.

 N1 N2 N3 N4

Figure 5: Tunnel Examples

In the figure 5, assume the upper tunnels are for authentication and lower tunnels are for encryption.
The packets are encapsulated at N1, then encapsulated again at N2, and send to N3, where the packets are
decapsulated and encapsulated again to sent to N4, and so on. With this configuration, the upper chain of
tunnels provides authentication coverage from N1 to N4 while the lower chain of tunnels provides
encryption coverage from N1 to N4. Because of restriction posed by SARs, CARs or tunnel overlaps, one
non-stop tunnel across protection area is not always possible. If we call the inner most tunnels to carry
packets primary tunnels, and the corresponding SA primary SA, then the primary tunnels need to be
chained together across an area to provide coverage for the area. On top of the primary tunnels, the tunnels
to provide the other function are called secondary tunnels. Therefore, to satisfy all SCRs, at least we need
to find allowed SA pairs that concatenate together to cover all required areas. If we depict allowed SAs as

F2 F1

F3

Automatic Generation of IPSec/VPN Security Policies

edges, then we are to find a SA path. If there is no such a SA path to carry packet across the protection area
for a set of requirements, the requirement set is certainly unsatisfiable.

Based on SCR satisfaction definition, one SCR is satisfied only when coverage requirement on every
link and node within protection area is satisfied. First, combining three SCRs, we can obtain coverage
requirements for each link and node. We use arrays sec_link and sec_node to store protection requirement
for each link or node. For example, sec_link[1] is the coverage requirement for link 1-2. Then for the
Three_Reqs example, we have the following protection requirements: sec_link[1]=(auth, strong),
sec_link[2]=(enc, strong) and (auth, strong), sec_link[3] = (enc, strong); sec_node[1]=none,
sec_node[2]=none, sec_node[3]=none, sec_node[4]=none.

We will do a CAR conflict check first. If one node is required to access content (packets can not be
encrypted) based on a CAR and is distrusted for encryption (packets must be encrypted) based on a SCR,
then there is a conflict and the requirements are unsatisfiable with any set of policies.

Next we start to construct graphs. To find eligible primary SAs, we need three graphs: ENC graph,
AUTH graph and primary graph, in which ENC and AUTH graphs are needed in determining secondary
SA paths. In the initial graphs, the edges are all allowed SAs. Dashed lines represent zero SA links, on
which no security coverage is required for the particular security function. In primary graph, lighter links
are primary AUTH edges and darker links are primary ENC links.

 a) Secondary ENC Graph b) Secondary AUTH Graph c) Primary Graph

Figure 6: Building SA Digraphs: 1) Initial Graphs

For CAR node, all edges crossing the node have to be deleted from all three graphs to prevent it from
being either primary SA or secondary SA. For distrusted node, all edges stopping and starting at the node
should be deleted from primary graph. Furthermore, the edges stopping and starting at the node should also
be deleted from AUTH or ENC graph to eliminate the possibility for those edges to be secondary SAs.

Next we will examine all edges in primary graphs one by one to see if they are eligible primary edges.
One edge is eligible primary edge only if there is SA path in secondary function graph over the link span.
For example, edge 1-3 ENC in primary graph is eligible because we can find path 1-3 or 1-2-3 in AUTH
graph. In this example, all edges are eligible because each of them can have secondary SAs to provide
necessary security coverage for the other security function. Finally, among eligible SAs, we find a shortest-
path through 1-4. A tunnel configuration to satisfy all requirements is shown in the figure 5, in which the
upper ones are AUTH tunnels and lower ones are ENC tunnels. There is no tunnel of AUTH function over
link 3-4 because we’ve chosen the zero SA edge over the link in AUTH graph. The overall algorithm is as
follows. To better understand the algorithm, readers can refer to [21] for more explanation and illustrations.
Algorithm Policy_Action_Generation (Req_actions)
1. Link_Node_Coverage(SCRs) // Calculate link node coverage
2. CAR_Conflict_Check (CARs, sec_node)
3. Initialize_Graphs (SARs) // Initial three graphs with all SAs allowed by SARs
4. CAR_Preprocessing (CARs) // Delete edges crossing CAR nodes
5. Distrusted_Nodes_Preprocessing (sec_node) // Delete edges connecting at distrust nodes
6. Finding_Eligible_Primary_SAs (Graphs) // Check secondary SA path on every primary edge
7. path = Dijkstra_Single_Source_Shortest_Path(Primary_graph, N1) // Shortest path from N1
8. if (path[NodeN] = infinity)
9. return(“No path found! Requirements are unsatisfiable.”)
End Of Algorithm

4.1.2 Bundling and Ordering

2

1

4 3

2

1

4 3

2

1

4 3

Zhi Fu and S. Felix Wu

With bundle approach, we can resolve policies in two steps. In first step, we group traffic into disjoint
bundles and find requirement list for each bundle. Then in second step, we can use
Policy_Action_Generation algorithm to determine action part of the policies. Having developed the policy
action generation algorithm, we focus on the first step in this subsection.

We need to calculate filter intersection and difference in order to separate traffic into bundles. For
example, in figure 4 of Three_Reqs example, the intersection of F1 ∩ F2 ∩ F3 is subject to all
Req1.action, Req2.action and Req3.action, F2 – F3 is subject to Req1.action and Req2.action while F3 – F2
is subject to Req1.action and Req2.action etc. A straightforward way to calculate intersections among K
filters is to compare each filter with existing filters to determine intersections one by one, which takes
1+2+…+K=O(K2). What we do for intersection calculation is to do string matching to find out those filters
with common prefix in all fields. Performance can be greatly improved by using a trie-based algorithm.
The detail description of a trie-based algorithm to calculate filter intersection can be found in [20].

It appears to be not too difficult to separate traffic flows into bundles and find requirement list for each
bundle. However, there is performance concern as follows. To group traffic flows into bundles, we need a
lot of filter difference calculation. The difference calculation could be very time consuming and space
consuming. For example, (1.* - 1.1*) might result in filters of 1.2.* 1.3.* 1.4.* and so on. It is undesirable
to make policy set unnecessarily large. In addition, the selectors of existing policies have to be modified
every time when a new requirement is added in. For instance, in Three_Reqs example, assume initially
there is only Req1, and a tunnel is built for traffic 1.* to 2.*. When the new requirement Req2 comes up,
the old tunnel has to be torn down in order to build new tunnel for traffic (1.*-1.1.*, 2.*) because SPI is
already set up for old selector.

We will develop an algorithm to achieve the same result as generating policies for each disjoint bundle
without need of difference calculation. To achieve best efficiency, the approach we take is to add new
filters and policies while keep old policies as much as possible. For example, a tunnel is already built for
traffic (1.* 2.*) and we have a new requirement for traffic (1.1.* 2.*). We will not change the existing
tunnel but we add new policies on top of the existing policy to be with filter (1.1.* 2.*). Therefore, the new
filter will be checked first and only traffic of (1.*-1.1.*, 2.*) can be selected by the bottom policies, which
is exactly the same result as if we build policies for disjoint bundles (1.* 2.*) and (1.*-1.1.*, 2.*).

There are three main issues. First is how to calculate bundle filters in order to generate selector part of
policies. Second is how to get requirement list for every bundle before we can use
Policy_Action_Generation algorithm to generate action part of policies. Third is how to ensure policies are
inserted at right place to guarantee the correctness of policies. As exemplified, we utilize the order of the
policies to simplify filter calculation, and thus the order becomes critical.

To facilitate requirements and order tracking, we developed relationship tree mechanisms. For
instance, in Three_Reqs example, there are three filters F1 = (1.* 2.*) F2 = (1.1.* 2.*) and F3 = (1.* 2.1.*).
We will illustrate how to construct relationship tree as follows.

 1) Traffic Filters 2) Relationship Tree 3) Three All-Overlapping Filters
Figure 8: Example of Constructing Relationship Tree

In the example, we first process filter F1 with Req1. When Req2 with filter F2 comes up, new node F2
is a child of F1 since F2 is contained with F1. When Req3 with F3 comes up, we will calculate overlap and
generate filter F4 with Req3 and insert as child of F2 since F4 is contained by F2. Then new node F3 will
be inserted as child of F1 since it is contained by F1.

With the relationship tree, we solve the three issues as follows. We will generate a set of policies for
each node in the relationship tree with selectors to be the node filter. The requirement list of each node is
the concatenation of requirement identity associated with the node itself and all its ancestors. Policy order
is correct as long as the policies for one particular node are inserted right on top of the policies for its

F2 F1

F4

F3

Req1, F1

Req2, F2

Req3, F4

Req3, F3

 Root

F2 F1

F4

F3

F5F6
F7

Automatic Generation of IPSec/VPN Security Policies

closest containing node. Therefore, with the above example relationship tree, we will generate four policy
set {policy_set1, policy_set2, policy_set3, policy_set4} to satisfy requirement set {{Req1}, {Req1, Req2},
{Req1, Req3}, {Req1, Req2, Req3}}. The order of the policy sets will be {policy_set4, policy_set2,
policy_set3, policy_set1} and the filters of the policy sets are {F4, F2, F3, F1}. The results will be exactly
the same as if we calculate policies for disjoint bundles {F4, F2-F4, F3-F4, F1-F2-F3}.

Algorithm Bundle_Approach (Reqs)
1. For every Reqi in Reqs
2. new_req_ID = i
3. overlaps_set = GetOverlappingFiltersInTrie(Reqi.filter)
4. filter_set = Reqi.filter ∪ overlaps_set
5. for every filterj in filter_set
6. if (filterj is Reqi.filter) // original filter
7. new_filter = filterj

8. closest_containing_filter = GetClosestContainingFilterInTrie(new_filter)
9. else // overlapping filter
10. new_filter = Intersection (filterj, Reqi.filter)
11. closest_containing_filter = filteri

12. InsertTrie (new_filter)
13. InsertRelaTree (new_filter, new_req_ID, closest_containing_filter -> rela_ptr)
14. req_list = GetReqList (new_filter -> rela_ptr)
15. new_policies.actions = Policy_Action_Generation (new_filter, req_list)
16. new_policies.selector = new_filter
17. InstallPolicy(new_filter, new_policies)
18. UpdateContainedPolicies (new_filter -> rela_ptr)
End Of Algorithm

With relationship tree to keep track of requirements and policy order, the performance is much
improved. We present our performance test result in section 4.4.

For the Three_Reqs example, there are four bundles {(1.1.*, 2.1.*), (1.*-1.1.*, 2.1.*), (1.1.*, 2.*-
2.1.*), (1.*-1.1.*, 2.*-2.1.*)} which subject to requirements {(Req1, Req2, Req3), (Req1, Req3), (Req1,
Req2), (Req1)} respectively. If in addition to three SCRs, SG1 and SG2 are CAR nodes for both encryption
and authentication, then the resultant policies using bundle approach are those shown in the figure 9. In the
figure 9, there are four groups of tunnels for four bundles. The group of four pink tunnels selects traffic
(1.1.*, 2.1.*) and satisfies Req1, Req2 and Req3. The group of blue tunnels select traffic (1.1.*, 2-2.1.*)
and satisfied Req1 and Req2. The group of purple tunnels selects traffic (1.*-1.1.*, 2.1.*) and satisfies
Req1 and Req3. The yellow tunnel is for all other traffic and satisfies Req1.

 SG1.1 SG1 SG2 SG2.1

Figure 9: Solutions For Three_Reqs Example Using Bundle Approach

4.2 Direct Approach: Building Chained Tunnels For Each SCR
Although the bundle approach is complete and correct, it is still less ideal in its efficiency and

scalability. Specifically, we have to calculate bundle filters and then generate policies for each bundle. We
can see from figure 9 that tunnels have to be built separately for different bundles. In addition, a new
requirement can trigger a lot of SA reestablishment. In this section, we develop algorithm to generate
policies to correspond to each SCR without separating traffic into bundles, which is more efficient and
requires less update. The reason is that in most cases tunnels can directly work together to provide
necessary protection. Only when there are overlaps between interacted tunnels (i.e. selectors have non-nil
intersection) can tunnels together cause requirement violation. We will develop algorithm to generate non-
interacted-overlapping tunnel policies for each SCR.

For instance, in Three_Reqs example, we do not bother to separate traffic into bundles. We simply
build tunnels for each SCR and make sure the new tunnels do not overlap with any of existing tunnels. The

Zhi Fu and S. Felix Wu

following figure showed the solutions using direct approach. We have three SCRs. For Req1, we first build
a middle tunnel from border of SG1 to border of SG2. Then for Req2, we will build the top tunnel from
SG1.1 to SG2 that does not overlap with the existing middle tunnel. Last for Req3, since one nonstop
tunnel will be overlapping with the top tunnel, we build two connecting bottom tunnels that do not overlap
with any existing tunnels. Each tunnel selects all traffic of the corresponding SCR. The four tunnels
together can satisfy all three requirements.

 SG1.1 SG1 SG2 SG2.1

Figure 10: Solutions For Three_Reqs Example Using Direct Approach

Direct approach has two advantages over bundle approach, i.e. efficient policy generation and efficient
requirement update. In bundle approach, we generate policies for each bundle. There might be much more
bundles than SCRs. It will be more efficient to generate policies to correspond to SCR rather than bundles.
Furthermore, the policies generated using direct approach will be less than those using bundle approach,
which ultimately makes policy management easier. For Three_Reqs example, in direct approach solution,
the middle tunnel will govern all traffic from SG1 to SG2, while we have to build Req3 into each bundle
using bundle approach.

Direct approach is also more efficient in regard to requirement update. In bundle approach, a new
requirement may trigger series of policy change due to requirement list change for contained bundles. In
direct approach, new tunnels for new requirement will be selecting all traffic of the requirement, and thus
the new requirement will be automatically applied to all contained traffic without need to change existing
policies. To make sure the new tunnel applies to all traffic in requirement selector, the only additional work
to do is to adjust selectors to include the encapsulated traffic. For example, if the middle tunnel’s original
selector is (src = 1.* dst = 2.*), to include the traffic encapsulated by the top tunnel, the new selectors could
be (src = 1.*, dst = 2.*) and (src = 1.1.*, dst = 2.* prot = ESP).

The focus of the direct approach is then how to build chained tunnels for each SCR that satisfy the
SCR and relevant CARs and SARs, and do not overlap with any existing tunnels. Again, because of size
limit, interested readers can find detail algorithms in [21].

4.3 Combined Approach: Combining Direct Approach With Bundle Approach
Although the bundle approach is complete and correct, it is less ideal in its efficiency and scalability.

Direct approach is very efficient but not complete. There is no solution using direct approach if it can not
find non-overlapping solution for one SCR, while there might be solution using bundle approach. By
combining the two approaches, we can achieve both efficiency and completeness. In the combined
approach, we will first test if there is solution using direct approach. Only when direct approach can not
find a non-overlapping solution, we will use bundle approach to find a solution. In combined approach, we
use direct approach as much as possible for maximal efficiency and use bundle approach to deal with
problems that can not be solved by direct approach to achieve completeness.

4.4 Implementation
Having developed the algorithms, we implemented them in C on Linux platform. The software takes a

requirement file as input, and outputs a policy file containing automatically generated policies. We test
performance of the algorithms using randomly generated requirements, i.e. a random sub-domain in source
domain requires secure communication with a random sub-domain in destination domain with random
protocol and strength. Domains in our research are hierarchically organized, i.e. each domain contains
several sub-domains, which may contain smaller sub-domains. Security gateways locate at borders of sub-
domains to protect the sub-domains’ communications.

We implemented bundle and direct approach. The performance is shown as the following.

Automatic Generation of IPSec/VPN Security Policies

Figure 12: Experimental Results

In the experiment, we randomly generate 50, 100, 150, …, until 1000 requirements and use
bundle/direct approach to process the requirement file respectively. The time it takes to generate all policies
for different number of requirements are shown in the figure 12 1). Please note that the time we recorded
here is only policy generation cost without including SA establishment cost. From the result, we can see
that bundle approach takes longer generation time than direct approach does. The second figure shows
policy numbers generated using two approaches. As we analyzed before, the bundle approach will generate
more policies than those generated by direct approach.

5 Conclusion and Future Work
IPSec/VPN security policies are widely used in firewalls or security gateways to protect information

property. The security treatment (e.g. deny, allow or encrypt etc.) of all inbound or outbound traffic will be
determined by the security policies such that it is critical for policies to be specified and configured
correctly. IPSec policies are manually configured to individual security gateway in current practice, which
could be very inefficient and error-prone. Even each individual policy appears to be correct, the policies
together may interact to cause security breach. In this research, we focus on one important question: How
to ensure correctness of policies?

We analyzed potential problems in IPSec policy specification and found correct IPSec policy
specification difficult to achieve due to three reasons. First, Encapsulation in IPSec makes it hard to specify
correct selectors. Second, even every policy is correct by its own, policies together might interact (e.g.
overlapping tunnels) and cause undesired security violation. Third, there is vague relationship between
objective and specific policies to meet the objective, and there is lack of overall view in policy
specification. Because of the selector changes for encapsulation and tunnel interactions, the above problems
cannot be resolved in one level. To solve the problems, we first clearly defined security policies in two
levels: requirement level security policy and implementation level security policy. Requirement level
policies reflect security objective and are implementation independent. Therefore, security requirements
become criteria in evaluating policy correctness, i.e. low-level policies are correct if and only if they satisfy
all security requirements.

We developed algorithms to automatically generate correct low level policies to meet all requirements.
Therefore, people can just specify the desired requirements for protection then correct low level policies
will be automatically generated and delivered to appropriate devices to enforce, which will greatly improve
policy management. The input of the algorithm is a set of requirements and the output of the algorithm is a
set of policies that satisfies all the requirements or return “failure” message if there is no such a set of
policies. We developed three different approaches. The first is bundle approach in which we generate
policies for a set of flows that are subject to a unique set of requirements (we call it a bundle of flows). The
approach is correct and complete but not very efficient. In the second approach, we build non-overlapping
policies for each SCR respectively, and then the resultant policies can satisfy all requirements. This
approach is correct and very efficient but not complete. Then in the third approach, we combine the bundle
and direct approach to achieve correctness, completeness and efficiency. The experiment results
demonstrated the performance of the developed algorithms.

Zhi Fu and S. Felix Wu

In the future, the research can be extended from several aspects. First of all, we focused on centralized
policy management in this research. The research can be extended for distributed policy management in
which distributed policy servers can communicate and make joint decision on correct policies. The
constraint and optimization of policy generation for distributed architecture need further study.
Furthermore, we developed algorithm to automatically generate correct policies to satisfy all given
requirements. If no policies can satisfy all requirements, then we will generate a failure message. In this
case, the conflict may reside at requirement level. The requirement conflict resolution techniques will
demand further research. Last, we’ve specified a higher-level security policy that is implementation
independent. More levels of security policy may be specified until the whole hierarchy is clearly
established.

6. References

[1] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401, Internet Society, Network
Working Group, Nov. 1998
[2] M. Condell, C. Lynn, J. Zao, “Security Policy Specification Language”, <draft-ietf-ipsp-spsl-00.txt>, Internet Draft,
March, 2000
[3] J. Jason, “IPsec Configuration Policy Model”, Internet Draft, <draft-ietf-ipsp-config-policy-model-00.txt>, March,
2000
[4] R. Pereira, P. Bhattacharya, “IPSec Policy Data Model”, Internet Draft, <draft-ietf-ipsec-policy-model_00.txt>,
Feb. 1998
[5] See http://www.ietf.org/ipsp_charter.html
[6] M. Blaze, A. Keromytis, M. Richardson, L. Sanchez, “IPSP Requirements”, <draft-ietf-ipsp-requirements_00.txt>,
Internet Draft, July, 2000
[7] L.A. Sanchez, M.N. Condell, “Security Policy Protocol”, <draft-ietf-ipsp-spp-00.txt>, Internet Draft, July, 2000
[8] A. Durand, P. Fasano, I. Guardini, D. Lento, “Ipv6 Tunnel Broker”, <draft-ietf-ngtrans-broker-00.txt>, Internet
Draft, Sept. 2000
[9] Alphabetical VPN Vendor List, http://www.timberlinetechnologies.com/products/vpn.html
[10] http://www.cisco.com
[11] http://www.indusriver.com
[12] http://www.xedia.com
[13] Y. Bartal, A. Mayer, K. Nissim, A. Wool. “Firmato: A novel firewall management toolkit”. In Proc. 20th IEEE
Symp. On Security and Privacy, pp. 17-31, Oakland, CA, May 1999
[14] J. D. Guttman, “Filtering Postures: Local enforcement for global policies”. In Proc. IEEE Symp. on Security and
Privacy, Oakland, CA, 1997
[15] J. D. Moffett and M. S. Sloman, “Policy Hierarchies for Distributed Systems Management”, IEEE Journal on
Selected Areas in Communication, vol. 11, pp. 1404-1414, 1993
[16] J. D. Moffett, “Requirements and Policies”, Position paper for Policy Workshop 1999
[17] E.C. Lupu and M. Sloman. “Conflict Analysis for Management Policies”. Proc. 5th IFIP/IEEE International
Symposium on Integrated Network Management, pp. 430-443, 1997
[18] E.C. Lupu and M. Sloman. “Conflicts in Policy-Based Distributed Systems Management”. IEEE Transaction on
Software Engineering. Vol. 25, No. 6, pp. 852-869, Nov./Dec. 1999
[19] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel, “Fast and Scalable Layer Four Switching,” Proceedings of
the ACM SIGCOMM’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, 1998, pp. 191-202
[20] A. Hari, S. Suri, G. Parulkar, “Detecting and Resolving Packet Filter Conflicts”, Infocom 2000, Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings, IEEE, pp. 1203-1212,
Vol.3.
[21] Z. Fu, Technical Report, Automatic Generation of Security Policies,
http://shang.csc.ncsu.edu/papers/secpolicy.pdf
[22] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, “IPSec/VPN Security Policy: Correctness, Conflict Detection and
Resolution”, IEEE Policy 2001 Workshop, Jan. 2001.

