
Towards a CIM Schema for
RunTime Application Management

Alexander Keller, Heather Kreger, Karl Schopmeyer

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, alexk@us.ibm.com
IBM Corporation, P.O. Box 12195, Research Triangle Park, NC 27709, USA, kreger@us.ibm.com
The OpenGroup, k.schopmeyer@opengroup.org

We describe new extensions to the Core, Application and System Schemas of the Common Information Model (CIM).
While previous work on the CIM Application Schema mainly dealt with the distribution, deployment and installation
aspects of software, a recent effort within the Distributed Management Task Force (DMTF) is targeted at defining
schema extensions capable of dealing with the full lifecycle of distributed applications, especially the runtime stage.
These application runtime extensions are currently developed by the DMTF Application Working Group in which
the authors actively participate. In order to serve as a basis for a runtime model of distributed applications, various
extensions had to be applied to the existing schemas. These schema extensions, described in this paper, have been
adopted by the CIM Technical Committee and are part of the recently released version 2.5 of the CIM schema.

Keywords: Common Information Model, Runtime Application Management, Application Schema

1 Introduction
With over 700 object classes, a model for interoperability and the completetion of the event model, the
acceptance of the Common Information Model (CIM) [1, 2, 8] by leading vendors of devices, systems and
network components is gaining momentum throughout the industry. However, despite a large amount of
work on the CIM Application Schema [3], CIM has not yet been widely deployed for managing distributed
applications. One reason is that the current version of the Application Schema mainly focuses on the
software deployment, distribution and installation aspects of applications, but does not address the issue
of monitoring and managing applications at runtime, i.e., once they get instantiated. On the other hand,
the need for a standardized model, capable of managing distributed applications and services throughout
their complete lifecycle becomes increasingly important in today’s distributed environments [9], where
Application Service Providers (ASP) offer managed services and applications to users on the Internet.

This paper describes the efforts of the DMTF Application Working Group in which the authors participate,
that aim at extending the existing CIM Application Schema so that it becomes a solid basis for managing
distributed applications throughout their lifecycle and – in particular – at runtime. An important prerequisite
for this is to ensure that the CIM Core, System and Application schemas are able to express the various
types of distributed applications and to enhance the schemas, where needed. The goal of our work is to
reuse the existing schemas as much as possible and to make the new extensions seamlessly fit into the
existing framework. The paper describes our experiences with extending the CIM schemas and discusses
the reasons behind our design.

The paper is structured as follows: Section 2 briefly states the requirements for CIM-based application
management. Section 3 introduces the core modeling principles of CIM and describes the CIM Application
Schema and its most important classes, the main targets of our effort. The schema extensions, developed by
the working group and adopted by the CIM Technical Committee for publication in CIM 2.5, are described
in detail in section 4. Section 5 concludes the paper by discussing the lessons we learned during the design
of the schema extensions and presents current work items of the group.

O. Festor

O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and Management
DSOM'2001 Nancy France, October 15-17, 2001.

Alexander Keller, Heather Kreger, Karl Schopmeyer

2 Requirements for CIM-based Application Management

In today’s distributed environments, applications provide the business functions directly and form the basis
for much of the technical function of our information technology (IT) systems. Therefore, applications
bring us closer to the real interests of the users, the services delivered and the business systems imple-
mented: Clearly, the goal of IT is to deliver services and to provide effective implementation of business
functions. Applications are the embodiment of these services and business functions. Thus, the goals of
application management incorporate not only the management of the individual applications themselves
but of the services and business functions they provide. One should require a minimal knowledge of the
application function in order to provide generalized management of the application. Mapping a business
service offered to customers to its implementation (i.e., the products used) and mapping the implementation
to the running instance is crucial for the management of large-scale distributed applications. An informa-
tion model for applications must be able to express the various logical and physical representations of a
distributed application. In addition, it should provide navigation facilities by means of associations.

That said, an information model must be able to unambiguously identify multiple installations of the same
software product on a system. In addition, it must be guaranteed that multiple instances of the same software
element can be distinguished the one from the other. A similar situation (later in the software lifecycle)
occurs if many users run the same software simultaneously, i.e., the same software element has multiple
instances. The CIM Application Schema must be able to distinguish between these instances despite the
fact that applications are very diverse in form, structure and organization: Application structure covers
everything from simple scripts to complex structures of dynamically loadable classes. The dynamics of
applications appear in several ways:

� they typically change more rapidly than the other components of the IT environment,

� they are often used in a temporary manner (loaded, unloaded, restarted many times),

� they are often created from components that are dynamically bound together.

Finally, it should be recognized that the form and structure of applications is changing today: With the
advent of the Internet, component-based development, dynamic server environments, and service-oriented
architectures, the structure, organization and operation of applications is changing rapidly today. Extensions
to the CIM Application Schema must consider these emerging architectures.

3 Existing CIM Work related to Application Management

This section gives a brief overview of the CIM schemas (section 3.1) and modeling principles (section 3.2)
and describes the current version of the Application Schema in section 3.3. Although it is not our goal
to provide a tutorial on CIM within the scope of this paper, the discussion of our work and our resulting
design choices in the following sections are better appreciated if the implications of the underlying modeling
principles and schemas are well understood.

3.1 Overview of the CIM Schemas

CIM follows an object-oriented approach and defines managed resources as object classes with properties
and methods that can be further refined by means of strict inheritance. In order to circumvent multiple
inheritance, CIM makes extensive use of relationships, namely associations and aggregations; both are
modeled as association classes (see [2]). CIM uses the Unified Modeling Language (UML) [10] as notation
for specifying the various schemas, thus leveraging existing general-purpose development and software
engineering tools. It is therefore possible to transform the managed object classes – derived from the Core
and Common Schemas – into widely used programming and description languages (OMG IDL, C++, Java,
XML). The CIM syntax for management information, the Managed Object Format (MOF), however, is

Towards a CIM Schema for RunTime Application Management

specific to CIM and thus not supported by the code generators of off-the-shelf CASE tools. In addition,
CIM introduces several extensions to the UML, which are thus unsupported in current CASE tools, but
crucial for the proper functioning of a CIM based management system. The nature and purpose of these
extensions is described in section 3.2.

The Core Schema defines basic terms as abstract classes such as service access point, service, product,
system, logical element etc., and provides a means for associating context (e.g., setting, configuration) with
them. It is the basis for the various common schemas; currently, CIM comprises more that 15 different
common schemas that relate to various resource types. An excellent detailed description of the CIM Core
Schema and the modeling principles can be found in [4].

The System Schema is one of the various Common Schemas and refines the root classes of the Core Schema
in order to deal with jobs, hosts, operating systems, processes, threads and file systems.

The Application Schema, the Common Schema that we are most interested in for our work, refines the Core
Schema with respect to software packages and applications. We will discuss it in greater detail in section
3.3.

Finally, the Distributed Application Performance Schema (DAP) relates the definition, the metrics and the
logical element that is instantiated to a so-called “unit of work”. The DAP schema provides a means to run
synthetic transactions against a distributed application and to measure its response time.

In total, the amount of managed object classes defined in CIM comes close to 750. It is therefore fair to say
that even if CIM is still evolving, it represents a solid basis for integrated management. The exchange of
management information between managed resources, management systems and management applications
is done by encoding the CIM object descriptions in XML according to [6] and executing CIM operations
over HTTP, as specified in [5]. A white paper [7] describes the details on using XML for representing
management information in CIM.

3.2 CIM Extensions to UML

We will now describe some of the core modeling principles of CIM that go beyond the UML and thus need
to be taken into account when extending the CIM schemas.

3.2.1 Qualifiers

Qualifiers are the way how meta-data is added to all artifacts of CIM, namely classes, properties, methods,
associations and aggregations. CIM distinguishes three types of qualifiers (a detailed description is given
in [2]):

� Meta Qualifiers describe general-purpose and syntactical elements, such as whether a MOF element
is a description, or whether a class represents an association (recall that relationships are modeled as
classes in CIM).

� Standard Qualifiers add additional semantics to the elements of a MOF description, such as whether
a class is abstract, an association is an aggregation, or if the property has been defined in the scope
of another management architecture (such as the IETF Structure of Management Information or the
DMTF Distributed Management Interface (DMI)) and can be retrieved from an appropriate translator
(“mappingstrings”). Other examples of standard qualifiers are “key” (further described in section
3.2.2) or “weak” and “propagated” (see the discussion in section 3.2.3).

� Optional Qualifiers contain useful information for management applications, such as whether an
operation requires a considerable amount of computation time (“expensive”) and space (“large”), or
whether an element is not supposed to be displayed by a management console because it is used for
internal purposes only (“invisible”).

Alexander Keller, Heather Kreger, Karl Schopmeyer

3.2.2 CIM Naming: Keys

In CIM, keys are the mechanism for uniquely naming and identifying managed objects and their associa-
tions. The properties of a managed object class that carry the “key” qualifier are used for constructing the
key of an object; typical examples of such properties are “Name”, “Version” or “ID”. In case these proper-
ties are not sufficient to uniquely identify an instance, further properties need to be added to the key, such as
the property “SoftwareElementState” for uniquely identifying instances of the class CIM SoftwareElement
in the CIM Application Schema. In order to further distinguish instances whose different classes have a
common superclass, the key-qualified property “CreationClassName” is added.

Associations (and aggregations) are identified by having at least two properties that carry the references to
the (two) associated objects. Since associations are objects themselves, they may carry further information
relating to the association itself in additional properties.

As a corollary to the foregoing descriptions, it is important to note that all concrete managed object classes
in CIM must inherit a key structure and must not change it.

3.2.3 “Weak” Associations and Propagated Keys

“Weak” associations (identified by a “w” within schema diagrams) are used in CIM to express that an
object does not exist on its own and, if instantiated, is subject to the lifecycle of another object. “Weak”
objects exist only within the scope of an instance of exactly one associated class. The cardinality of the
association on the side of this associated class must always be “1” because any different cardinality would
imply that the “weak” object instance(s) would have to adopt keys from multiple objects (or no keys at
all), which clearly does not make sense. Typical examples of “weak” objects are instances of CIM File
that can only exist when the CIM Filesystem class is instantiated. CIM Filesystem, on the other hand, is
weak to CIM ComputerSystem because file systems are hosted by computer systems and cannot exist as
“standalone” objects. The managed object classes of “weak” objects therefore need to provide additional
scoping information, which is done in CIM by propagating the keys of the class on the other side of a
“weak” association to them. Such “propagated keys” carry the PROPAGATED qualifier and a reference to
the property of the object class from which the key stems. Consequently, it is neither possible to change
propagated keys, nor to modify the inheritance relationships of a “weak” class (i.e., moving it under another
class in the model). Ignoring weak associations (e.g., when implementing a CIM provider) implies that
CIM-based management applications will not be able to find and address the objects offered by a CIM
provider because the keys will not match.

3.3 The CIM Application Schema

Since our work mainly deals with extending the CIM Application Schema, we will now describe its main
object classes and associations. The schema is depicted in figure 1.

CIM ApplicationSystem is oriented towards a business function of an application and helps to group its
various components. Typical examples for application systems are: “e-business storefront application”,
“database system” or “word processor”. Note that CIM ApplicationSystem is able to aggregate various
other CIM ManagedSystemElements (and, thus, can contain other CIM ApplicationSystems) because it is
subclassed from CIM System, which is related to CIM ManagedSystemElement by means of the aggregation
CIM SystemComponent. We can therefore express that an “e-business storefront application” comprises
e.g., a “database system”. In addition, CIM ApplicationSystem collects software features (see below) from
one or more products to fulfill a business function.

CIM Product, defined in the Core Schema (and not depicted in Figure 1), deals with defining the units of ac-
quisition and contains information related to licensing, support and warranty. An example of a CIM Product
is “DB2 Universal Database v7.1”.

CIM SoftwareFeature defines a particular function or capability of a CIM ApplicationSystem or
CIM Product that is meaningful to a customer or a user. It reflects functions or roles of an application

Towards a CIM Schema for RunTime Application Management

CreationClassName:string
Name:string
NameFormat:string
PrimaryOw nerContact:string
PrimaryOw nerName:string
Roles[]:string

CIM_Sys tem

NameFormat:string
OtherIdentifyingInfo: string[]
IdentifyingDescriptions: string[]
Dedicated: uint16[]

CIM_ComputerSys tem
CIM_Application

System

CreationClassName:string
Name:string
StartMode:string
Started:boolean
SystemCreationClassName:string
SystemName:string
StartService():uint32
StopService():uint32

CIM_Service

Name:string
Version:string
Softw areElementState:uint16
Softw areElementID:string
TargetOperatingSystem:uint16
OtherTargetOS:string
Manufacturer:string
BuildNumber:string
SerialNumber:string
CodeSet:string
Identif icationCode:string
LanguageEdition:string

CIM_Softw areElement

IdentifyingNumber:string
ProductName:string
Vendor:string
Version:string
Name:string

CIM_Softw areFeature

CIM_HostedService

CIM_Softw areFeatureSoftw areElements

CIM_Softw areFeatureServiceImplementation

CIM_ApplicationSystem
Softw areFeature

CIM_Installed
Softw areElement

*

*

*

*

1
*

*

*

*

0..1

*

CIM_Softw areFeatureComponent

CIM_Softw areElementServiceImplementation

*

*

*

w
*

CIM_ServiceService
Dependency

*

*

CIM_Service
Component

*

*

Fig. 1: Relevant Classes of the CIM Application Schema (without CIM Check and CIM Action)

component and defines the units of component management. For example, the CIM ApplicationSystem
“database system” consists of various parts that are meaningful to a user: DB2 Engine, DB2 Runtime En-
vironment, DB2 JDBC Driver, DB2 Replication, DB2 Parallel Extension, DB2 Administration Server are
all examples of CIM SoftwareFeatures. The aggregation CIM ApplicationSystemSoftwareFeature groups
instances of these CIM SoftwareFeatures under a specific instance of CIM ApplicationSystem. In the con-
crete case of DB2, the features mentioned above are also the “high-level” parts of the database product,
meaning that the aggregation CIM ProductSoftwareFeatures ties instances of CIM SoftwareFeature and
CIM Product together.

CIM SoftwareElements are the most fined-grained objects in the Application Schema; they represent
units of deployment, such as collections of files and associated details being individually managed. Ex-
amples of CIM SoftwareElement are the various files that are collected by means of the aggregation
CIM SoftwareFeatureSoftwareElements under an individual CIM SoftwareFeature, such as configuration
files, scripts, binaries or (shared) libraries. CIM SoftwareElement provides information indicating the
compatibility with a specific operating system in the “TargetOperatingSystem” property. In addition,
CIM SoftwareElement is the only place where information relating to the state (Deployable, Installable,
Executable, Running) of a software component is kept in CIM. This implies that information regarding
the software lifecycle is confined to these fine-grained deployment units; the state of the overall applica-
tion system or its features is not captured in CIM. In addition, the “SoftwareElementState” property is
part of the key (see section 3.2.2) of CIM SoftwareElement, which implies there can be multiple instances
of the same CIM SoftwareElement simultaneously (distinguished by a different value of “SoftwareEle-
mentState”). Thus, one can neither assume that the value of the “SoftwareElementState” property is deter-
mined by an underlying state machine nor a sequential order of a CIM SoftwareElement’s states. Finally,
note that the values of the “SoftwareElementState” property reflect deployment states (although the value
“Running” seems to imply operational data); no information regarding the operational state is kept in this
property (cf. the discussion on the “Status” property of CIM ManagedSystemElement in section 4.2.5).

It should be noted that there are no relationships between CIM SoftwareElement and CIM Product or
CIM ApplicationSystem. If a query is issued to a CIM Object Manager (CIMOM) for enumerating the
files that make up a CIM Product, a CIMOM would first need to perform the intermediate step of ob-
taining the products’ CIM SoftwareFeatures, and then navigate the CIM SoftwareFeatureSoftwareElement
aggregation to determine the CIM SoftwareElements.

Alexander Keller, Heather Kreger, Karl Schopmeyer

CIM Service, defined in the Core Schema, represents the conceptual service being provided by either a
CIM SoftwareFeature or a CIM SoftwareElement. We have chosen to provide examples for the former
case, i.e., we relate CIM Service to a CIM SoftwareFeature, which yields Services such as “DB2 Repli-
cation Service”, “DB2 Admin Service” etc. Note the “weak” association CIM HostedService between
CIM Service and CIM System, which implies that a service can only exist within the scope of a system.
The impact of this “weak” association on our work is discussed in section 4.1.

CIM ServiceAccessPoint is the programmatic interface (or the port) to a CIM Service. In our specific ex-
ample, the SAP of “database system” is encapsulated by the ODBC/JDBC driver.

Finally, the Application Schema contains the classes CIM Action and CIM Check (not depicted in figure 1).
Derived from them are more than a dozen subclasses that define various generic actions (Reboot, Modify-
Setting) and checks (OSVersion, VersionCompatibility etc.) relating to the deployment and installation of
CIM SoftwareElements. As we will discuss in section 4.1, their focus on CIM SoftwareElement by means
of “weak” associations prevents the applicability of CIM Action and CIM Check to other classes.

It is evident from the foregoing descriptions that at its current stage, the CIM Application Schema is re-
stricted to the deployment and installation aspects of software packages, a task which is usually confined
to a single host. There is no support yet for addressing the runtime characteristics of a distributed applica-
tion. The next section focuses on the initial schema extensions to provide support for the runtime stage of
applications that can be distributed among multiple computer systems.

4 Extending the CIM Schemas

We will now discuss the implications of the existing schema structure on our modeling effort (section 4.1)
and, in section 4.2, the design decisions behind the extensions that have been included in version 2.5 of
CIM, released in february 2001.

4.1 Initial modeling Efforts

CIM is supposed to be deployed by reusing the existing schemas as much as possible and extending them
both by adding new subclasses and associations, together with new properties and methods. This should
ensure that all the requirements are met while keeping the impact on existing schemas as small as possible.
However, the following examples show that the use of keys and “weak” associations in the current version
of the CIM schemas pose severe constraints and make some desired changes impossible without modifying
the key structures (and thus requiring a version change).

It seems natural to define the classes for introducing the concept of dynamic, user-defined operations either
by extending CIM Action (Application Schema) or subclassing from it. However, CIM Action is defined as
“weak” to CIM SoftwareElement, which implies that any extensions can only be applied to the objects of
finest granularity that make up an application. Thus, it is not possible to associate CIM Action or any of its
subclasses to any other class than CIM SoftwareElement. Consequently, classes representing dynamic oper-
ations therefore would have to be defined separately from CIM Action and could not reuse any functionality
already defined in CIM Action or any of its already existing subclasses. The same problem is encountered
when trying to define preconditions on operations for which CIM Check and its subclasses would seem a
natural fit. However, CIM Check, too, is weak to CIM SoftwareElement, which precludes its reuse for any
other classes (such as CIM SoftwareFeature or CIM ApplicationSystem). Since a mechanism for defining
generic operations and their preconditions on any other classes than CIM SoftwareElement cannot reuse
existing classes, work on a schema supporting the definition of dynamic, user-defined operations has been
postponed to a subsequent version of the CIM schemas.

Another thought was that CIM Service could be taken as the basis for modeling IT services span-
ning multiple systems. However, the fact that CIM Service is weak to CIM System (meaning that ser-
vices exist only within the scope of a – single – system and therefore are not allowed to exist af-
ter the underlying CIM System has been stopped) prohibits such a straightforward extension. In ad-

Towards a CIM Schema for RunTime Application Management

dition, CIM Service is supposed to represent the “running” or “executing” representation of either a
CIM SoftwareElement or a CIM SoftwareFeature (for a given CIM Service, only one type of the associ-
ations CIM SoftwareFeatureServiceImplementation or CIM SoftwareElementServiceImplementation may
be instantiated at a time), thus having different semantics than an end-to-end service implemented by sev-
eral (distributed) software components. Another problem is that CIM Service does not have a property
“InstanceID” that acts as a key; one therefore cannot distinguish between multiple service instances on
the same system. This precludes the distinction between, e.g., several http daemons. On the other hand,
adding a new key to CIM Service breaks existing CIM implementations because many classes in the various
common (and the derived resource-specific) schemas inherit from CIM Service.

In order to capture the bindings of an application through its lifecycle, the idea to reuse CIM Dependency
for modeling start/stop/failure dependency relationships comes to mind. This would allow the specifi-
ation of relationships indicating, e.g., “Application X must be running/terminated before Application Y
can be started/stopped” or “Application X acts as a failover (i.e., backup) for Application Y”. However,
the issue we faced when trying to add properties to CIM Dependency that reflect these various depen-
dency types is that many classes in the various common (and the derived resource-specific) schemas in-
herit from CIM Dependency, for which the notion of dependency types does not make sense. A typi-
cal example is CIM AssociatedBattery, defined in the Device Schema, which associates one (or more)
CIM Battery object(s) with a CIM LogicalDevice. Another reason why we could not introduce a subclass
of CIM Dependency that fits our purposes is that more than one dependency type may be defined between
the same objects, which results in multiple instances of the same class (with different property values).
Since the new property “dependencyType” cannot be part of the key, different dependency objects would
share the same key. Finally, new types are introduced in CIM by subclassing while our approach would
imply to distinguish between types by means of (enumerated) properties. Adopting the latter would have
led to inconsistencies in the way how CIM modeling is done.

4.2 New Schema Extensions for managing Applications in CIM 2.5

In this section, we discuss the recently adopted schema extensions that relate to the management of appli-
cations. These extensions have been worked out by the CIM Application Working Group and adopted by
the CIM Technical Committee to be included in CIM 2.5. For each item, we will describe the nature of the
extensions and discuss the reasons for our design decisions.

4.2.1 Associate Services with Processes

Process

CreationClassName: string [key]
Handle: string [key]
Priority: uint32
ExecutionState: uint16
CreationDate: datetime
TerminationDate: datetime
KernelModeTime: uint64
UserModeTime: uint64
WorkingSetSize: uint64

Service

CreationClassName: string [key]
Name: string [key]
StartMode: string
Started: boolean

StartService(): uint32
StopService(): uint32

*
*
CIM_ServiceProcess

CIM_ServiceProcess

Service: ref Service [key]
Process: ref Process [key]
ExecutionType: uint16

Fig. 2: The CIM ServiceProcess association

The CIM ServiceProcess association,
defined in the CIM System Schema,
is used to establish and navigate re-
lationships between services and sys-
tem processes. It allows a manage-
ment application to determine which
process represents a specific run-
ning application instance and vice-
versa. Figure 2 depicts the details of
CIM ServiceProcess. Because associ-
ations are modeled as classes in CIM,
it is therefore possible to add a prop-
erty ExecutionType that provides
detailed information in which configu-
ration a service is running and reflects
two possible types of application topology.

There are two possibilities: The service can run on its own, thus independently from any other application,
(value: “Executes as Independent Process”), i.e., the service is responsible for the lifecycle of the process.

Alexander Keller, Heather Kreger, Karl Schopmeyer

This implies a 1:1 mapping between a service and the process(es). Another possibility is that the service
runs within an existing process and is not visible in the process table of a system (value: “Executes in
Existing Process”), i.e., the lifecycle of the service is different than the lifecycle of the process. An example
for this is the Tomcat servlet engine of the Apache Jakarta project, which can be invoked in two different
ways: It can either be executed as an independent process, or run within the Apache web server.

4.2.2 Provide a means for expressing nested Software Features

IdentifyingNumber:string
ProductName:string
Vendor:string
Version:string
Name:string

CIM_SoftwareFeature

CIM_SoftwareFeatureComponent

*

*

Fig. 3: CIM SoftwareFeatureComponent

CIM SoftwareFeatureComponent, an associa-
tion defined in the CIM Application Schema,
models a set of subordinate or independent
CIM SoftwareFeatures, which are aggregated to
form a higher-level CIM SoftwareFeature under
the same CIM Product. It therefore helps to group
software components according to the functionality
they provide. More specifically, this aggregation
allows a CIM SoftwareFeature to be contained
within another CIM SoftwareFeature (see Figure 3).

An example on how this new aggregation can be used is for expressing that “english/french/spanish/german
spell checkers” are parts of a “spell checker” CIM SoftwareFeature.

4.2.3 Attach additional Semantics to Properties describing their Usage

There is a need to add meta-information to properties of managed objects for classifying them according
to how they should be interpreted and used by management systems: Some properties are descriptive,
others represent configurable parameters of a resource, yet others contain the status of a managed object.
Depending on this qualifier, a management system may, e.g., infer status information of a managed resource
by evaluating whether the properties in question are labeled with “state”. Another usage could be that a
management system forbids the setting of metric parameters (such as counters and gauges) by a system
administrator. This is the purpose of the new optional qualifier “PropertyUsage”. Its possible values are:

� Descriptive: the property contains information that describes the managed element; e.g., vendor,
description, caption etc.,

� Capability: the property refers to inherent capabilities of a managed element regardless of its con-
figuration, e.g., “VideoController.MaxMemorySupported=128”,

� Configuration: the property influences or reflects the configurational state of the managed element,
e.g., “VideoController.CurrentRefreshRate”,

� State: the property contains or can be used to derive the current status of the managed element,

� Metric: the property is a numerical value representing a statistic or metric reporting performance–
and/or accounting–oriented information for the managed element.

� CurrentContext: the nature of the property shall be inferred based on the position of its class
in the CIM schema. It should be noted that one of the intentions of CIM was to determine for
a class whether it represents information related to the aforementioned categories by evaluating
whether it has been derived from CIM Setting (for configuration), CIM Statistics (for metrics),
CIM ManagedSystemElement (for status), or CIM Product (for capability-related or descriptive in-
formation).

Towards a CIM Schema for RunTime Application Management

4.2.4 Distinguishing between multiple Installations of a Product

There are some cases when the same product is present multiple times on a given system, each eventually
in a different configuration: A server, for example, may have 2 identical patches for a product (one for
the server itself, another for a diskless workstation) installed. A software inventory tool must be able
to distinguish between those software features and send back two entries when asked to enumerate the
inventory of the server. Another example is the multiple presence of the same software product on a system,
such as one “production” and one development version.

One new class and three new associations between the new class and some existing classes of the CIM
Application Schema are needed to express such a configuration; they are depicted in Figure 4.

� CIM InstalledProduct is a newly introduced class, which represents the collection of Software Fea-
tures and Software Elements that make up an installed product. Various properties for distinguishing
between multiple instances are defined.

� CIM InstalledProductImage is an association that relates an arbitrary number of
CIM InstalledProducts to one CIM Product. CIM InstalledProduct is on the “weak” side of
the association because it has to have a CIM Product counterpart for being existent.

� CIM CollectedSoftwareFeatures is an aggregation, which does the same for CIM InstalledProduct
what CIM ProductSoftwareFeatures does for CIM Product. It aggregates the various
CIM SoftwareFeatures into a CIM InstalledProduct and allows one e.g., to find all the product in-
stallations in which a software feature is represented.

Name:string
Version:string
SoftwareElementState:uint16
SoftwareElementID:string
TargetOperatingSystem:uint16
OtherTargetOS:string
Manufacturer:string
BuildNumber:string
SerialNumber:string
CodeSet:string
IdentificationCode:string
LanguageEdition:string

CIM_SoftwareElement

IdentifyingNumber:string
ProductName:string
Vendor:string
Version:string
Name:string

CIM_SoftwareFeature

IdentifyingNumber:string
Name:string
SKUNumber:string
Vendor:string
Version:string
WarrantyStartDate: datetime
WarrantyDuration: uint32

CIM_Product

CIM_SoftwareFeatureSoftwareElements

CIM_Product
SoftwareFeatures

*

*

1

*
*

*

w
CIM_SoftwareFeatureComponent

ProductIdentifyingNumber:string
ProductName:string
ProductVendor:string
ProductVersion:string
SystemID: string
CollectionID: string
Name: string

CIM_InstalledProduct

CIM_InstalledProductImage

w
*

CIM_CollectedSoftwareElements

CIM_CollectedSoftwareFeatures

*

*

*

*

**

1

CIM_ProductParentChild

**
CIM_ProductProduct

Dependency

*
*

*
0..1

Fig. 4: Distinguishing between multiple Installations of a CIM InstalledProduct

Alexander Keller, Heather Kreger, Karl Schopmeyer

� CIM CollectedSoftwareElements is an aggregation that collects various CIM SoftwareElements into
a CIM InstalledProduct. This aggregation is used, e.g., to find all the product installations in which
a software element is deployed.

4.2.5 Add “Stopped” as a possible value of CIM ManagedSystemElement.Status

One of the most important properties of a managed object is its operational, administrative, or usage status.
Such information is captured in the property Status of the class CIM ManagedSystemElement in the CIM
Core Schema. Typical examples for the operational status of a CIM ManagedSystemElement are: “OK”,
“Degraded”, “Stressed”, “Pred Fail” (i.e., high likelihood of a failure). Examples of non-operational status
values of a CIM ManagedSystemElement are: “Error”, “Non Recover”, “Starting”, “Stopping”, “Service”,
“No Contact”. However, yet there was no value to express that a CIM ManagedSystemElement is not
activated. This is the purpose of the newly introduced value “Stopped” whose semantics are as follows: The
CIM ManagedSystemElement exists, but is not operational; it has not encountered a failure but has been
purposely made non-operational (either by the CIM ManagedSystemElement itself, or by a management
system).

4.2.6 Provide a consistent mechanism for incremental changes of CIM Setting

Configuration

Name: string [key]
Description: string
Caption: string

Setting

SettingID: string
Description: string
Caption: string

VerifyOKToApplyToMSE(
[IN] CIM_ManagedSystemElement: ref MSE,
[IN] TimeToApply: datetime,
[IN] MustBeCompletedBy: datetime): uint32

ApplyToMSE(
[IN] CIM_ManagedSystemElement: ref MSE,
[IN] TimeToApply: datetime,
[IN] MustBeCompletedBy: datetime): uint32

VerifyOKToApplyToCollection (
[IN] CIM_CollectionOfMSEs ref Collection,
[IN] datetime TimeToApply,
[IN] datetime MustBeCompletedBy,
[OUT] string CanNotApply[]): uint32

ApplyToCollection(
[IN] CIM_CollectionOfMSEs ref Collection,
[IN] datetime TimeToApply,
[IN] boolean ContinueOnError,
[IN] datetime MustBeCompletedBy,
[OUT] string CanNotApply[]): uint32

Setting
Context

*

*

*
Configuration
Component

*

Fig. 5: CIM Setting and CIM Configuration (before changes)

If a single property of a managed object
needs to be set to a specific value, this
is usually done in CIM by invoking the
SetProperty() operation (defined in
[5]) and specifying the object and prop-
erty names together with the new prop-
erty value as parameters. If several prop-
erties of one (or more) managed objects
need to be set simultaneously, CIM pro-
vides a mechanism that is based on the ob-
ject class CIM Setting, defined in the CIM
Core Schema (see Figure 5).

As mentioned in section 4.2.3, the state
of a base object is carried in (a subclass
of) CIM ManagedSystemElement and its
associated configuration objects, i.e., in-
stances of CIM Configuration.

The purpose of CIM Setting is to simultaneously (“all or nothing”) set parameters of a potential configu-
ration: [4] refers to this as “loosely transactional” behavior (and discusses the procedure in greater detail).
This is done by creating an instance of CIM Setting, adding the parameters and their values, verifying
whether the parameters can be set at once by invoking the method verifyOKtoApplyToMSE() of the
CIM Setting object and, after a positive response has been received, jointly setting the parameters on the
target object by invoking the ApplyToMSE() method of the CIM Setting object. Note that the target
object is usually an instance of a subclass of CIM ManagedSystemElement.

When populating the CIM Setting instance with properties and values, it is necessary to provide a reference
to every property of the target object. This is the role of the MODELCORRESPONDENCE qualifier, which
contains the name of the property on a target object for every property to be set. Note, however, that
CIM Setting may also be used to hold actual configuration data for which no corresponding property exists
in the base object; these properties do not carry the MODELCORRESPONDENCE qualifier. Applying such
properties may cause “invisible” side effects on the behavior of the base object.

If a setting needs to be applied only to a subset of the object properties (while leaving the other properties of
an object at their current value), the NULLVALUE qualifier is used for the properties that remain unchanged.

Towards a CIM Schema for RunTime Application Management

This, however works only for properties of datatype “String” because boolean–, float– or integer–type
properties do not have the notion of an “undefined” value. Consequently, there is no consistent way to
facilitate incremental changes of settings, i.e., to filter which properties of CIM Setting should be changed
(by means of invoking ApplyToMSE()) and which properties should keep their current value.

Our extensions to CIM Setting address the problem that there was, until now, no way in CIM to in-
dicate an unset value in a consistent manner for boolean, integer and float datatypes. This is nec-
essary for incrementally updating a subset of all the properties in an instance of (a subclass of)
CIM Setting while leaving the other properties unset or defaulted. Consequently, it prevents the
danger of inadvertently resetting a property whose value has been previously set by means of the
MODELCORRESPONDENCE qualifier. The mechanism works for any datatype and mirrors the ex-
isting VerifyOKToApplyToMSE() and ApplyToMSE() methods and adds an array of strings
named PropertiesToApply as input parameter. This array contains a list of the property names
whose values will be first verified and then applied, thus eliminating the need for a NULLVALUE
qualifier. The new methods are called VerifyOKToApplyIncrementalChangeToMSE() and
ApplyIncrementalChangeToMSE(), respectively. Since it is possible to change the proper-
ties of either a single CIM ManagedSystemElement or a collection of CIM ManagedSystemElement,
the same mechanism has been defined for CIM CollectionOfMSEs; thus, CIM Setting car-
ries two additional methods VerifyOKToApplyIncrementalChangeToCollection() and
ApplyIncrementalChangeToCollection().

5 Conclusions and Outlook

We will now summarize in section 5.1 the lessons we learned during our work and give an overview of the
current work items of the Application Working Group in section 5.2.

5.1 Lessons learned

We initially started with the hypothesis that our schema extensions would be confined to the Application
Schema. However, as section 4.2 demonstrates, the developed extensions required modifications to the
Core, System and Application schemas. It turned out that the expressiveness needed for applications must
often be defined within other schemas than the Application Schema. This implied the involvement of
other working groups in the acceptance process of the proposed schema extensions, conducted by the CIM
Technical Committee.

As seen with other management frameworks in the past, one of the most complicated mechanisms relates
to uniquely name and identify object instances. The fact that CIM uses keys for identifying object instances
and the mechanism of key propagation by means of “weak” associations leads, among other, to the fact that
we were unable to reuse the already existing CIM Action and CIM Check object classes for defining generic
operations that can be applied to other classes than CIM SoftwareElement. A seperate schema for defining
such CIM Operations is currently being developed by the Application Working Group. In addition, some
object classes require keys that are composed of several properties (in extreme cases, up to seven properties
are needed for uniquely identifying an object instance), while others (such as CIM Service) lack keys to
distinguish between two instances. Adding or removing keys, in particular to classes defined in the Core
Schema, results in breaking existing CIM implementations and requires a CIM version change. To sum up,
the best candidates for keys are ID numbers; scoping objects with keys turned out to be problematic and
should be done with associations instead.

The mechanism based on CIM Setting for applying configurations to one or more managed object properties
simultaneously also turned out to be fairly complex. The change request described in section 4.2.6 provides
a means for consistently applying settings to properties, regardless of their datatype.

Understanding the intricacies of CIM modeling requires a serious effort and commitment; the more than
700 defined object classes and a multitude of association and aggregation relationships make CIM a fairly

Alexander Keller, Heather Kreger, Karl Schopmeyer

complex model. The principle of extending CIM schemas by means of inheritance implies that changes
within the Core or the Common Schemas impact all the classes within other schemas that inherit from them.
However, it is hard to predict the impact of a change due to the sheer number of classes and inheritance
hierarchies whose depth spans sometimes more than seven levels. This problem is exacerbated by the fact
that different Common Schemas use the classes defined in the Core Schema in very different ways. The
root cause of this issue is that – despite the availability of various documents from the DMTF (listed, among
other, in the references of this paper) – the finer semantics and the intent of the existing schemas are often
not sufficiently documented, difficult to ascertain and sometimes not agreed upon. A very rudimentary
mechanism to find the classes who will be affected by the change in one core class is to search with a
text editor for the name of the superclass that is going to be modified, because the MOF files contain the
name of the superclass. This, however, yields only the direct subclasses and does not help if the inheritance
relationship is indirect (i.e., there are one or many classes on the inheritance path between a class and its
subclasses). One of the many functions of the CIM Technical Committee is to discover and help resolve the
impact of changes in a superclass. Clearly, it would be desirable to obtain the CIM schemas in a format that
can be handled by state-of-the-art CASE tools, which provide appropriate search and reporting capabilities.
However, UML-compliant CASE tools will not be able to handle the CIM extensions to UML (e.g., keys,
“weak” associations, qualifiers), which were described in section 3.2. Most of these extensions would then
have to be entered in the comment field of a UML artifact, which makes them difficult to track with report
(and code) generators.

The DMTF releases new schemas containing incremental changes every six months, without tying itself to
the state of completion of schema developments. Therefore, the initial extensions published in CIM 2.5 and
discussed in this paper set the stage for ongoing work, which is described in the following section.

5.2 Ongoing Work

We will now discuss the ongoing work of the Application Working Group, which aims at providing detailed
models for establishing distributed application manageability and builds on the work that has been described
in this paper. Manageability instrumentation refers very generally to all the information an application
exposes about itself that lends to its being well managed. This includes both static and dynamic information.
Static information includes identifying and descriptive information, static policies, application topology,
and operations available. Dynamic information includes metric values, current configuration, and current
state. Both of these types of information are generally “pulled” by management systems. It is also important
that applications be able to “push” events to management systems. With the adoption of an event forwarding
mechanism in CIM 2.5, event-driven management can be finally realized in a CIM/WBEM environment.

The types of manageability that applications should instrument for are categorized as follows:

Identification and Description:
Description of the application in human readable form as well as technical, installation and deployment
information. This might include name, version, operating system, install date, time started, current state,
machine name, IP address, port, user id, etc.

Operations:
Operations are actions performed by or for an application and are supposed to be defined and activated at
runtime. Some well-known operations are start, stop, reset, status, etc. Externally invokable operations are
executable files, line mode commands, scripts, etc. Internally invokable operations include methods and
functions calls that may make up a well-known application programming interface (API). Operations may
(or may not) affect the operational or configuration state of the application.

Configuration:
Configuration items are attributes that have a lifespan greater than the execution time of the application
instance. Getting/setting configuration attributes typically affects the current state of the application.

Metrics:
Metrics are measurable attributes of the application. Metrics can be simple - a single value, like a counter or

Towards a CIM Schema for RunTime Application Management

they can be complex where they are composed of algorithms including configuration information, system
information, and/or other metrics. Getting/setting metrics typically does not affect the current state of the
application.

State:
Since applications can be composed of other applications and their software features and dependent on
relationships to other applications or resources, an application’s state may be complex to calculate. State
would have to relay what the current state is, its desired state, its last state, and its valid set of states. State
changes may propagate up and down the “application food chain”.

Events:
Events are notifications issued asynchronously from an application to relay information about its current
state, a state change, or an unacceptable condition. Applications should issue standard events during their
lifecycle, especially cold start, warm start, stop, failure, and refresh.

Application Topology, Relationships and Dependencies:
Application topology defines the components of the application and the relationships/dependencies between
them. These components and relationships can change during the lifecycle of the application. Dependencies
are a special kind of relationship; they describe if, and to which extent, application components require
the presence of other components in order to function properly. This information is needed for problem
determination in case of faults or performance degradation.

Monitoring and Thresholding:
Monitors are the definition of how the values of metrics are to be inspected and tested. Normally they
are regular samplings of metric data, which are then evaluated against threshold policies. Based on the
evaluation, an event may be issued to notify any interested parties that the metric or condition is acceptable
or unacceptable.

Heartbeats:
Heartbeats allow the application to demonstrate that it is alive and well. The application regularly announces
that it is in a healthy operational state by generating events automatically and repeatedly. The system
listening for heartbeats must understand that if the timeout period expires between the heartbeat events, the
application may not be functioning correctly.

Exercisers:
The Exerciser is a transaction or command invoked from the outside of the application that exercises the
application in some fairly complete way to determine if it is really alive and able to deliver its functionality
in a timely way. What is exercised is a function of the application itself.

The Applications Working Group is currently extending the existing CIM Schemas to make sure that all
of these aspects can be modeled appropriately for a wide range of applications. In particular, the working
group has developed first drafts in the area of Operations and Metrics and intends to propose these schemas
for adoption in the next version of the schemas, to be released at the end of this year.

Acknowledgments

The authors would like to thank the members of the CIM Application Working Group for helpful discus-
sions and continuous advice, and their commitment to making this work succeed. Specifically, the authors
would like to express their gratitude (in alphabetic order) to Mark Johnson (Tivoli Systems), Takaki Kuroda
(Hitachi), Vijay Machiraju (Hewlett Packard), Mike Reynolds (BMC Software), John Sweitzer (Tivoli Sys-
tems) and Andrea Westerinen (Cisco Systems).

Alexander Keller, Heather Kreger, Karl Schopmeyer

References
[1] W. Bumpus, J.W. Sweitzer, P. Thompson, A.R. Westerinen, and R.C. Williams. Common Information Model:

Implementing the Object Model for Enterprise Management. J. Wiley & Sons, 2000.

[2] Common Information Model (CIM) Version 2.2. Specification, Distributed Management Task Force, June 1999.
http://www.dmtf.org/standards/cim spec v22/.

[3] Understanding the Application Management Model, Version 1.0. White paper, Distributed Management Task
Force, May 1998. http://www.dmtf.org/var/release/Whitepapers/CIM Applications wp.pdf.

[4] Common Information Model (CIM) Core Model, Version 2.4. White paper, Distributed Management Task Force,
August 2000. http://www.dmtf.org/var/release/Whitepapers/DSP0111.pdf.

[5] Specification for CIM Operations over HTTP, Version 1.0. Specification, Distributed Management Task Force,
August 1999. http://www.dmtf.org/download/spec/xmls/CIM HTTP Mapping10.php.

[6] Specification for the Representation of CIM in XML Version 2.0. Specification, Distributed Management Task
Force, July 1999. http://www.dmtf.org/download/spec/xmls/CIM XML Mapping20.php.

[7] XML As a Representation for Management Information - A White Paper Version 1.0. Technical report, Distributed
Management Task Force, September 1998. http://www.dmtf.org/standards/xmlw.php.

[8] J. Strassner. Directory Enabled Networks. Macmillan Technical Publishing, 1999.

[9] R. Sturm and W. Bumpus. Foundations of Application Management. J. Wiley & Sons, 1998.

[10] OMG Unified Modeling Language Specification. Version 1.3 ad/99-06-08, Object Management Group, June
1999.

