
An Approach for Integrated Management of
Networks with Quality of Service Support
Using QAME

Lisandro Zambenedetti Granville,
Márcio Bartz Ceccon, Liane Margarida Rockenbach Tarouco,
Maria Janilce Bosquiroli Almeida and Alexandre da Silva Carissimi

Federal University of Rio Grande do Sul - UFRGS
Institute of Informatics - II
Av. Bento Gonçalves, 9500 - Bloco IV
Porto Alegre,RS - Brazil
{granville, ceccon, liane, janilce, asc}@inf.ufrgs.br

Providing QoS-guaranteed services in current installed networks is an important issue, but only deploying
QoS services is not enough to guarantee their success: QoS management must also be provided. Nowadays,
police-based network management (PBNM) addresses this need, but such management is not enough either.
Network managers deal with QoS tasks that cannot be performed using only PBNM. Other solutions,
besides PBNM, have to be used to proceed with QoS management-related tasks. Unfortunately, these
solutions are independent from each other, leading to a scenario where integration is difficult. This paper
introduces QAME (QoS-Aware Management Environment) which main goal is the provisioning of facilities
to allow a common and integrated Web-based management of QoS-enabled networks.

Keywords: QoS management, policy-based network management, Web-based management environment

1 Introduction

The great majority of today’s networks operate based on the IP best-effort approach. There is
no warranty concerning traffic delay, jitter, throughput or lost rate. Several applications operate
properly in this environment, but several others can only be delivered if network QoS (Quality of
Service) warranties are present [1].
Managers should be aware of QoS features present on the network. QoS architectures can

only be effective and provide guaranteed services if QoS elements are adequately configured and
monitored. Thus, in addition to the management of traditional elements (routers, switches, hosts,
etc.), managers must also manage QoS aspects. In this scenario, it is not a surprise to realize that
the overall management will be more complex [2].
QoS management must take place within the same environment used to manage standard net-

work elements and management platforms should be aware of QoS. A common environment is
required to allow managers to proceed with QoS and standard management-related tasks in an
integrated fashion [3]. Management platforms should be aware of QoS to facilitate the visualiza-
tion and manipulation of QoS information, at least as easy as it is currently possible dealing with
standard management information (e.g. routing tables, interface monitoring, etc.). Unfortunately,
today’s network management platforms are not QoS-aware and managers are forced to investigate

O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and ManagementDSOM'2001 Nancy France, October 15-17, 2001.

L.Z.Granville, M.B.Ceccon, L.M.R.Tarouco, M.J.B.Almeida and A.S.Carissimi

each QoS-enabled device to check QoS parameters. Thus, a network-oriented approach that com-
plements current device-oriented management is needed, with features that explicitly present QoS
information to managers in an intuitive fashion [2].
In this context, we propose a Web-based management environment able to proceed with both

standard and QoS management-related tasks. We introduce QAME (QoS-Aware Management
Environment) which is based on the IETF PBNM works, and uses open standards (e.g. SNMP,
LDAP, COPS, ScriptMIB) to proceed with management tasks. Managers first ask for QAME
topology and QoS discovery services to map the environment to be managed. Then, policies are
defined and scheduled to be used in specific devices. QAME QoS monitors can be activated to
check critical network flows/aggregates in the most important network segments, while analysis
and visualization features show information about experienced and expected network QoS.
Since QAME is a Web-based environment, the graphical user interface is the manager’s favorite

Web browser. QAME is built with PHP4 script engine that allows an extension of the environment
”on the fly”. New modules can be easily added throughout an upload mechanism, without having
the QAME execution to be stopped. We have used XML to describe both management information
and presentation data. XSL transformation, on server-side, is used to allow the development of
further user interfaces, besides QAME standard user interface. Intermediate scripts are responsible
for other transformations (e.g. from MIB to XML and from LDAP to XML).
The main contribution of our proposal is that QAME allows the execution of QoS management-

related tasks in an integrated fashion that is absent in current management platforms. Another
benefit is that QoS-related information are shown by the environment in more explicit ways,
easing QoS visualization and QoS-related information treatment. Also, managers that require the
incorporation of more specific features, not found in the original environment, can easily extend
QAME using open standard frameworks (e.g. XML) and free software engines (e.g. PHP).
This paper is divided as follows. Section 2 discusses related work about QoS and Web-based

management. Section 3 presents QAME architecture describing its components and the elements
location in the managed network. QAME implementation and associated technologies are presented
in section 4, while section 5 explains QAME operations throughout an example. Finally, section 6
concludes the paper and also shows future work to be considered.

2 Related Work

Solutions created to manage QoS in modern networks gained recent highlight mainly because of
the PBNM proposals. The main players in the IP network management market issued their PBNM
solutions, often integrated in their standard management platforms. Hewllett-Packard created its
PolicyXpert [4] that is part of the HP OpenView management suite. Cisco also produced its
PBNM solution and released, in 1999, the QPM (QoS Policy Manager) as part of the CiscoAssure
policy management initiative [5]. Extreme Networks did the same and created the EPICenter
(formerly the ExtremeAware Enterprize Manager - EEM) [6]. Other industry players have issued
their solutions too (e.g. Nortel Networks, Lucent Technologies, Orchestream) [7]. Although these
solutions can have market success, they suffer from a lack of integration from each other. Since
current PBNM systems are not entirely based on IETF open standards, costumers will face serious
problems when different solutions will start to be used in the same managed network [8].
In research areas that investigate QoS management some important work can be found. Imperial

College London have been an active PBNM research player, with pioneer efforts, mainly through
Emil Lupu and Morris Sloman works [9]. Mahon et. al. are working on the definition of general
requirements for PBNM systems [10]. In their IETF work, a general architecture has been defined
to guide the development of PBNM solutions. However, as Mahon states, that proposals don’t
address other critical aspects of QoS management, such as QoS monitoring, analysis and discovery.
Such other QoS management aspects are addressed, on the other hand, by other research

projects. Hong et al. [11] proposed, in 1998, a CORBA-based management framework for man-
aging QoS of distributed multimedia services and applications of the MAESTRO system. The

Integrated Management of Networks with QoS using QAME

layered architecture enabled an end-to-end management of QoS provisioning resources, including
services for QoS specification and mapping, admission control, negotiation and renegotiation. A
generic QoS MIB was developed to access QoS parameters in such layered architecture. In 2000,
we have also proposed SNMP as a mean to program DiffServ marking processes on end-systems
and to allow users to reserve QoS resources asking for such resources to Bandwidth Brokers (BB)
[12]. QoS monitoring has been studied by Jiang et al. [13], and Joshi et al. [14] presented, also in
2000, a solution that integrates traditional network management and QoS monitoring.
All previous proposals and solutions are important for QoS management, but they are indepen-

dent from each other. In this scenario, network managers are forced to deal with several tools to
manage different aspects of the whole QoS issue. Recently, we have classified QoS management-
related tasks [15], trying to organize, from a network management point-of-view, the different
aspects involved in QoS management. We have divided QoS management in six different tasks
(installation, operation maintenance, discovery, monitoring, analysis and visualization) and have
argued that an effective QoS management system is the one able to provide, in an integrated
environment, facilities to proceed with the execution of such tasks. Also, we have argued that
Web-based management should also be applied to QoS related tasks, in a way to allow network
managers to control QoS aspects using Web widely known facilities.
Web-based management has been investigated for some years, but its first significant move

occurred in 1996, when WBEM (Web-Based Enterprize Management) first came to life [16] as part
of the DMTF (Distributed Management Task Force) solution. Martin-Flatin et al. have also done
investigation on Web-based management and proposed the JAMAP management platform, based
mainly on Java technology [17]. Using Java Applets, managers can interact with the managed
network and the associated management structures.
XML technology used on network management found its way when XML was incorporated to

the WBEM framework. From a different approach, John et al. presented, in 1999, XNAMI [18],
that uses XML to reduce management traffic allowing the transfer of MIBs between managed
devices and management stations. Unfortunately, none of the previous Web-based proposals took
QoS into account directly, i.e. QoS management were not the main focus.

3 QAME architecture
QAME architecture (fig. 1) is divided in three different sets of elements: upper elements (which
include manager Web browser, the Web-based user interface and databases), intermediate elements
(policy consumers, QoS monitors and target finders) and lower elements (targets). Three different
databases are part of the QAME architecture’s upper elements: policy, status and associations
databases.

3.1 Targets

Targets are active elements that influence the final QoS observed in the network. Each device
can have several targets that influence in the QoS provisioning. For example, in a router, each
interface’s queueing discipline is a target. Thus, targets are the final elements that effectively
implement a QoS architecture.
Managers access the networks’ targets indirectly throughout QAME intermediate elements (pol-

icy consumers, QoS monitors and target finders). The interface between these elements and targets
depends on the devices that own the targets. Here, different protocols have to be used to access
different targets on different devices. A router from vendor A, for example, can have its interfaces
programmed via Telnet, while another router from vendor B requires HTTP interactions to change
its interfaces settings.

3.2 Policy consumer

Policy consumer is the element responsible for the installation of management policies into tar-
gets. When ordered (label 1), the policy consumer retrieves policies definitions from the policy

L.Z.Granville, M.B.Ceccon, L.M.R.Tarouco, M.J.B.Almeida and A.S.Carissimi

database (label 2). These policies are then translated into device-specific instructions to program
the appropriate targets to conform the policies definitions (label 3).
After policy installation, the policy consumer is also responsible for checking the success of the

policy deployment. If a policy can not be installed, either due to a failure in the target or to a
lack of target capabilities, the policy consumer notifies the network manager by sending messages
to the user environment (label 1).
The status database stores the deployment and operating status of each active policy associated

to targets. Failures in policy deployment make the policy consumer update the status database
indicating the installation problem (label 4).

Status Asso-
ciations

Web-based user environment

Policy

QoS
monitor

Manager Web browser

Managed
network Managed device

Target

Intermediate
elements

Upper
elements

Lower
elements

Target
finder

Policy
consumer

(1) (2) (4) (5) (8) (7) (9) (12)

(3) (3) (6) (6) (6) (10) (11)

(13) (15) (14)

Fig. 1: QAME architecture

3.3 QoS monitor

Installed policies may not behave as stated in the policy definition. The QoS resulted from a policy
installation can be different from its specification. Critical policies must then have their expected
QoS monitored. The element responsible for doing that is the QoS monitor.
The network manager defines which critical segments must be checked (label 5) and QoS monitors

are then activated to the check the targets that make part of those segments (label 6). QoS monitors
access policy definitions also in the policy database (label 7) and compare the observed behavior
of the network with the one defined in the policy. If degradation is verified, QoS monitor notifies
the network manager by sending special messages to the user environment (label 5) and updates
the status database to be consistent with the problem observed (label 8).

3.4 Target finder

In the network, searching each device to identify its targets is a time-consuming task. Also, new
devices just attached to the network must have their targets identified for future programming. To
do that, target finder element is the one trigged (label 9) to run QoS discovery services.
Target finders search the network for current and new targets. Each target finder recognizes

at least one specific target using a specific target finding algorithm and a specific device access
protocol. For example, a DiffServ target finder is the one that looks within routers and checks the

Integrated Management of Networks with QoS using QAME

existence of packet prioritization based on the IP DS field. To do that, the DiffServ target finder
can open a Telnet session (label 10) or check for target DiffServ MIB implementations (label 11).
Every discovery target is identified, classified and stored in the associations database (label 12).

Target’s device is also stored and relations between targets and their corresponding devices are
created. Target finders are responsible for coordinating all this procedures.

3.5 Web-based user environment

QAME graphical user interface is implemented in the Web-based user environment, which uses Web
technology to show management information. User environment is responsible for running analysis
processes that complement the functionality presented in the policy consumer, QoS monitor and
target finder. For example, user environment receives special messages from policy consumer telling
that a policy could not be installed (label 1), and messages from QoS monitor when the observed
QoS is different from the expected QoS (label 5).
User environment also interacts with the three databases in order to define their contents. Users

define policies that are stored in the policy database (label 13). Policies can also be modified or
removed from the database. Network manager can check the status of a deployed policy accessing
the status database (label 14) and network topology is shown by accessing the associations database
information (label 15).

3.6 Elements location

The previous subsections described each element of the QAME architecture. The present subsection
explains where, in the network infrastructures, these elements are located.
Targets are located within network devices that play any active role in QoS provisioning. Exam-

ples of targets are routers and switches interfaces and their queueing disciplines. Marking, policing
and traffic shaping processes are also examples of targets. Targets can be located in hosts, too.
RSVP-enabled applications, or DiffServ marking processes in end systems [12] are targets, since
they influence the end-to-end QoS.
Web-based user environment location is almost as obvious as target location was. We use a

central point that runs QoS analysis processes and generates, via PHP4 engine, HTML pages
showing the results. Databases can be located on the same device that implements Web-based
user environment, or on separate devices. Since there are three databases, some can be found
together with user environment, and others separately. Although figure 1 shows only one copy of
each database, for security reasons we could have more copies of the same base and use database
replication for security. Also, more copies of the same database would facilitate the distribution of
network traffic generated by policy consumers, QoS monitors and target finders when they need
to update databases information.
A trickier aspect in elements location is the location of target finders, QoS monitors and policy

consumers. First of all, since they are independent elements they can be located in different places.
QoS monitors are very tightly related to their targets. Thus, QoS monitors are expected to be
located within the same devices that contain the monitored targets. However, depending on the
installation of the QoS monitors, they can also be located close to devices, but not inside. For
example, a monitor created to check the bandwidth traffic of a router interface could access the
MIB-II interface group and realize that an interface is facing overflow, even though the monitor is
not located within the router.
Policy consumers are often located outside devices, but modern equipments are expected to

have built-in policy consumers. On the other hand, policy consumers can be located together with
the user environment. Finally, target finders are often located together with user environment,
acting as special plug-ins that search the network for QoS-enabled devices. Target finders can also
be located in network segments other than the user environment. The less suitable location for a
target finder is within devices, since devices and their targets are the objects of the finding process.
Table 1 summarizes the possible location of QAME elements.

L.Z.Granville, M.B.Ceccon, L.M.R.Tarouco, M.J.B.Almeida and A.S.Carissimi

Tab. 1: QAME elements location. Rows list QAME elements and columns list possible locations. Cells
marked with an ”x” denote that the QAME element in the row can be present in the equipment of
the column. ”Devices” are network equipments (routers, switches, bridges, etc.). ”Proxies” are network
equipment used to host some active elements that act on different equipment (e.g., a QoS monitor located
within a host used to monitor a router). ”Hosts” are listed to explicitly define elements located and acting
in a host. Finally, ”management stations” are used to denote the hosts where QAME Web-based user
environment and databases are placed.

Management
Devices Proxies Hosts stations

Only if target
Targets x - x plays active role

in QoS provisioning
Qos Monitors x x x x

Policy Consumers x x x x
Target Finders - x - x

User Environment - - - x
Databases - - - x

4 QAME technologies
In this section we will present the technologies involved in the implementation of the QAME pro-
totype. These technologies are present in two important aspects of the QAME communications:
among QAME elements and the Web-based user environment/manager Web browser communica-
tion.

4.1 Techonologies of the QAME elements

As stated before, the communication with targets depends on the devices that own the managed
targets. Each device can implement different ways to monitor and program its targets. For
example, several commercial routers allows programming of their internal structures through Telnet
(the standard old method), SNMP (for standard management platforms) and HTTP (for Web-
based management). COPS protocol is expected to be found more and more frequently, supporting
PBNM in modern equipments.
This diversity of access methods introduces several complexities in targets communications.

QAME intermediate elements are then forced to own the following properties when communicating
with targets:

• Intermediate elements know which kind of information they are dealing with. A policy con-
sumer, for example, knows if an associated target supports DiffServ or IntServ. When a
policy is installed, the policy consumer translates the policy definition to device-specific pro-
gramming (DiffServ or IntServ). When a QoS monitor checks for performance issues, it knows
if it must watch for aggregate performance (in the case of DiffServ) or flow performance (in
the case of IntServ).

• Intermediate elements know how to access targets information. A policy consumer, for ex-
ample, knows if it must use Telnet session, SNMP or HTTP to program a target. A QoS
monitor knows if DiffServ information, in a specific target, are reached with COPS, SNMPv1,
v2 or v3. Also, a target finder looking for targets in router from vendor A knows that those
targets are found if COPS is used.

Figure 2 depicts three examples of different policy consumers acting in different devices’ targets.
The devices are routers from three different vendors. The targets within routers A and C are
accessed via SNMP, while targets from router C are accessed via COPS. Although routers A and

Integrated Management of Networks with QoS using QAME

B support DiffServ, they are accessed with different protocols. It means that any combination of
access protocol and supported QoS mechanism requires a different policy consumer. This feature
is also valid for QoS monitors and target finders. In our prototype, we have created intermedi-
ate elements for DiffServ and IntServ using SNMPv1 and Telnet, i.e we have 4 different policy
consumers, 4 different QoS monitors and 4 different target finders.

DiffServ/COPS
Policy consumer

DiffServ-enabled
router A

SNMP

IntServ/SNMP
Policy consumer

DiffServ/SNMP
Policy consumer

DiffServ-enabled
router B

IntServ-enabled
router C

COPS SNMP

Fig. 2: Targets communication examples

Despite the complex communication with targets, the communication between intermediate
elements and the Web-based user environment is simple. We implemented this communication
using the Script MIB [19] definitions. When the network manager wants some actions to be
executed in the managed network, an appropriate script is selected and sent to an intermediate
element (figure 3, labels 1, 2 and 3). Each intermediate element provides facilities that allows the
script to deal with the targets to be accessed and the databases to be updated or consulted. We
have used the Jasmin implementation to use Script MIB definitions in QAME environment. Figure
3 shows the communication with the QAME intermediate elements and the communication with
the databases.

Status Asso-
ciations

Web-based user environment

Policy

(1
) S

cr
ip

t M
IB

(3
) S

cr
ip

t M
IB

(2
) S

cr
ip

t M
IB

(4)LDAP

(6)LDAP

(5)LDAP

(7)SNMP

(9)SNMP

(11)PHP

(10)PHP
(8)SNMP

QoS
monitor

Target
finder

Policy
consumer

Fig. 3: QAME elements communication

Policy database is implemented with LDAP. We have use OpenLDAP package that includes the
LDAP server and protocol API in the implementation of the policy consumers (label 4) and QoS
monitors (label 5). For Web-based user environment communication the OpenLDAP API was
hidden by the LDAP API provided by the PHP4 engine (label 6).
The status database interface was implemented as a MIB (label 7). We used NET-SNMP package

that supports SNMPv3. A key aspect of status database communication is related to the notifica-
tion messages. We used SNMP InformRequest message to update the status database because the

L.Z.Granville, M.B.Ceccon, L.M.R.Tarouco, M.J.B.Almeida and A.S.Carissimi

InformRequest works as a trap message with reply. This allows the policy consumers (label 8) or
QoS monitors (label 9) to notify the status database and still be sure that the notification reached
the destination.
Finally, the associations database is implemented using the MySQL solution. Thus, intermediate

elements act as MySQL clients to access the needed information using PHP4 scripts (label 10).
Also, Web-base user environment access the MySQL using the PHP4 (label 11). Although PHP4
has specific MySQL functions, we used the DB class that provides database abstraction, which
allows an easier replacement of MySQL, if required in the future.

4.2 QAME Web-based technologies

A key aspect in the QAME communication is the technologies involved in the interaction between
theWeb-based user environment and the manager Web browser. We have balanced the presentation
overhead of the managed network between server and browser. This is done in a way to allow a
richer user interaction, without introducing too much network messages exchange.
Web browser is responsible for asking network topology information for the server, and the

respective presentation. We use Flash technology to build the network topology in the browser.
The first advantage of using Flash is that the network traffic is reduced, since no pictures are
passed from server to browser; only presentation information are exchanged. Second, Flash allows
an effective user interaction, where network manager can change topology layout directly on the
Web browser.
Flash itself does not provide all the facilities required in the browser interaction. JavaScript

technology is then applied to complement the Flash presentation. Figure 4 shows an example of a
network presented in the QAME user interface using the Flash facilities. The figure show QAME
menu on the right-hand side and a topology built with Flash on the left. Each managed element
has a particular set of management operations that can be applied to. This operations can be
accessed through the context-menus (also shown in the figure 4) trigged when user clicks some
managed device with the CTRL key pressed.

Fig. 4: Network topology presentation in QAME user environment

In the server-side, we use PHP4 engine, as mentioned before, and XML translations. PHP4
orchestrates several tasks, including databases access, intermediate elements communication and

Integrated Management of Networks with QoS using QAME

user-environment graphical presentation. XML, on its turn, is used to present several information
in a standard way. Table 2 shows examples of PHP4 scripts that retrieve information from different
sources and produce XML results. Frequently, the source accessed does not exposes its data in
XML, leaving to PHP4 the task to translate from a source representation (e.g. MIB) to XML. In
the case the source already exposes its data using XML, the scripts only copy the results to the
user-environment.

Tab. 2: Examples of PHP4 scripts that translates information from different sources to XML.

PHP4 Script Source Output Description
route.php?ip=w.x.y.z hosts and routers route.xml Retrieves a devices’ route table

accessing the ipRouteTable
objects from the ’w.x.y.z’ device

procs.php?ip=w.x.y.z hosts procs.xml Retrieves the list of processes
from the host ’w.x.y.z’ as
specified in the HostResources
MIB

policy.php?pol=p policy database policy.xml Retrieves the policy ’p’ from
the policy database

status.php?pol=p.t.w.x.y.z status database status.xml Retrieves the operational status
of policy ’p’ applied to the
target ’t’ within device ’w.x.y.z’

targets.php?ip=w.x.y.z association database targets.xml Retrieves the targets from
device ’w.x.y.z’

When the resulted XML is about to be sent to the manager Web browser, we use XSL to
transform the original XML to a HTML standard page. We use Sablotron solution to proceed
with the XML/XSL transformation in the server-side, allowing not XML-enabled browsers to
access the retrieved information. One XML file can be differently transformed using different XSL
files. With this feature we implemented, until now, three different QAME skins: advanced skin,
standard skin and text only. Advanced skin produces HTML pages with several graphical elements
and is preferable used when the manager operates his/her Web browser in the local network, near
to the Web server. The standard skin produces fewer graphical elements and should be used when
manager operates far away from the managed network. Although, if the communication between
manager Web browser and QAME Web server is too congested, the text only skin can be used,
since almost no graphical information is generated. The desired skin is selected when manager
logins into the QAME environment.
Table 3 summarizes the technologies used in the current QAME prototype implementation.

Tab. 3: QAME technologies.

Technology Interaction
Telnet, SNMPv1 Used to access DiffServ and IntServ-enabled devices
Script MIB Script MIB is the interface of the intermediate elements
LDAP Used to access the policy database
SNMPv2(v3) MIB Implements the access to the status database
PHP + MySQL Used to access the associations database
Flash + JavaScript Dynamic topology interaction on Web browser
PHP + XML Translates information from different sources to XML
XML + XSL Implements the QAME skins feature
Sablotron Transforms XML/XSL to HTML in server-side

L.Z.Granville, M.B.Ceccon, L.M.R.Tarouco, M.J.B.Almeida and A.S.Carissimi

5 An example of QAME usage
In this section we will present an example of how QAME can be used to proceed with a simple set
of management tasks. In this example we are dealing with a network composed by two connected
segments that support DiffServ in their border routers (figure 5). This network is not yet mapped,
an thus QAME knows nothing about the network to be managed, expect the IP addresses of its
intermediate elements. Two policy consumers are used: one is implemented within the router
belonging to the right-hand segment and the other is implemented by a host that controls the
other router from the left-hand segment. Just one QoS monitor and one target finder are applied.
The network experience hard HTTP traffic between the two segments. This hard traffic must be
controlled to allow the videoconferencing to run between the hashed hosts in the figure 5.

PC

PC

TF

QM

QAME

PC – Policy Consumer
QM – QoS Monitor
TF – Target Finder

Fig. 5: A network example

The first step is the definition of a discovery rule. This rule is divided in topology discovery
and QoS discovery. Figure 6a shows a rule defined to search the network 143.54.0.0 with netmask
255.255.0.0. We will search for DiffServ-enabled devices. The rule will be activated ”now” and
reactivated every 24 hours, until December 24, 2003. More specific discovery parameters, although
not shown in figure 6a, can also be specified (for example, the number of ICMP retransmission in
case of errors and the timeout of ICMP replies).

Net: 143.54.0.0
Mask: 255.255.0.0
QoS: DiffServ
Start: now
Repeat: 86400 s
Stop: Dec 24, 2003

Name: StdVConf
BWidth: 400 kbps
Lost: 2 %
Delay: 10 ms
Jitter: 5 ms

(a) (b)

Name: VConf1
Policy: StdVConf
Start: today, 10pm
Repeat: no
Stop: today, 11pm

(c)

Fig. 6: Examples of discovery rule, policy definition and deployment

QAME transfers the discovery rule to the appropriate target finder based on the IP address,
netmask and QoS mechanism specified in the rule, although in our example there is no choice
since just one DiffServ target finder exists. The rule is kept in the target finder until its end
(December 24, 2003) and started just after its transfer. The target finder than first discover the
network topology using ICMP messages. The just discovered devices are then investigated, in our
current prototype via SNMP, to determine its DiffServ capabilities. Then, target finder stores the
discovered devices and the associated targets in the associations database that is located together
with QAME. Visually, network manager can perceives the evolution of the discovery by looking
at the Flash topology built in the user browser. Since Flash updates its presentation periodically,
new discovery devices are shown in next updates.
The next step requires the manager to determine some relationships among QAME elements

and the managed network. The QoS monitor, from the right-hand segment, has to be associated
to the right router. The policy consumer from the left-hand segment has to be associated to the

Integrated Management of Networks with QoS using QAME

left router. The policy consumer from the right-hand router is automatically associated to the
router by the target finder. All associations are then stored in the associations database. After
that, network is ready to be programmed.
Policies must be defined. Figure 6b shows the definition of a simple policy used to guarantee

enough network resources to the videoconferencing we are dealing with. This policy is stored in
the policy database for future use, and indexed by its name. Let’s suppose the videoconferencing
should gain network resource for only one hour beginning at 10am. Figure 6c shows the deployment
rule for this policy stored in the status database and indexed by its name too.
To deploy the policy on the network, manager consults QAME topology facilities to determine

the routers in the path from one videoconferencing host to the other. This routers are highlighted
on the topology presentation and manager is able to deploy the policy. Internally, QAME consults
the associations database to retrieve the IP addresses of associated policy consumers for each router.
Finally, policy is sent to these consumers that translate the policy and program the network devices
when the policy is activated.
To watch the experienced QoS in the network, manager again consults QAME topology facilities

to determine which routers can be monitored. In this case, only the router from right-hand segment
has a QoS monitor associated. The policy definition and the deployment rule are then accessed by
the QoS monitor to verify when monitoring should begin.

6 Conclusion and future work
In this paper we have argued that QoS provisioning architectures can deploy guaranteed services
only if such architectures are managed by QoS management processes. In the related work section
we saw that several aspects involved in QoS management are addressed by different solutions,
leading to a scenario where managers are forced to deal with different tools.
The presented QAME solution integrates, in the same environment, QoS management-related

tasks that were separately found before. An advantage of this integration can be observed, for
example, in policy deployment followed by QoS monitoring. In a standard environment, managers
could use HP PolicyXpert to define a policy and deploy it. Then, using a separated monitoring
tool the managers proceed with another definition to determine which flows have to be observed.
In QAME, however, only one definition is necessary to program the network and to observe the
network behavior, since policy consumers and QoS monitors use the same policy definition and
deployment rule to proceed with their tasks.
Another important aspect of QAME is that, even though it is a Web-based management en-

vironment, the network manager is not limited by static network bitmaps or heavy loaded Java
applets. We combined Flash and JavaScript to provide, with low bandwidth usage, levels of user
interaction that are normally found only in standard not Web-based platforms.
Future works are related to the definition, in a higher abstract language, the policies to be

applied. Today, policy definition still requires several details that could be abstracted from the
network manager. More investigation is also required in the topology representation of very large
networks (more then 400 devices) using the JavaScript/Flash solution. We have used QAME to
manage small (less then 100 devices) and medium networks (between 100 and 400 devices). Its
behavior have shown that QAME integration of QoS management facilities eases, in that networks,
the management. On very large networks, on the other hand, the amount of information represents
a very challenger management task.

References
[1] Stardust.com, Inc.: The Need for QoS. White paper. Available at:

<http://www.qosforum.com/white-paper/Nedd for QoSv4.pdf>. QoS Forum (1999)

[2] Eder, M., Nag, S.: Service Management Architecture Issues and Review. RFC 3052. IETF
(Jan. 2001)

L.Z.Granville, M.B.Ceccon, L.M.R.Tarouco, M.J.B.Almeida and A.S.Carissimi

[3] Huston, G.: Next Steps for the IP QoS Architectures. RFC 2990. IETF (Nov. 2000)

[4] Hewllett-Packard: HP OpenView PolicyXpert. Homepage. Available at:
<http://www.openview.hp.com/products/policyexpert/>. Hewllett-Packard Company
(2001)

[5] Cisco Systems: Cisco QoS Policy Manager (QPM). Homepage. Available at:
<http://www.cisco.com/warp/public/cc/pd/wr2k/qoppmn/>. Cisco Systems (2001)

[6] Extreme Networks: EPICenter 3.0 Technical Specification. Available at:
<http://www.extremenetworks.com/products/prod pdf/EPICenter.pdf>. Extreme Net-
works (2001)

[7] Saunders, S.: The Policy Makers. Data Communications Magazine (May 1999) 34-56

[8] Clark, R.: The Mechanics of Policy-Based Management. Network Magazine (Mar. 2000) 44-51

[9] Sloman, M.: Policy Driven Management for Distributed Systems. Journal of Network and
Systems Management, Vol. 2, Plenum Publishing (Dec. 1994) 333-360

[10] Mahon, H., Bernet, Y., Herzog, S., Schnizlein, J.: Requirements for a Policy Management
System. Internet draft <draft-ietf-policy-req-02.txt>. Work in progress. IETF (Nov. 2000)

[11] Hong, J.W.K., Kim, J.S., Park, J.K.: A CORBA-Based Quality of Service Management
Framework for Distributed Multimedia Services and Applications. IEEE Network, Vol. 13,
No. 2, (1999) 70-79

[12] Granville, L.Z., Fleischmann, R.U., Tarouco, L.M.R., Almeida, M.J.B.: Managing Differenti-
ated Services QoS in End Systems using SNMP. In Proceedings of the 2000 IEEE Workshop
on IP-oriented Operations & Management (IPOM 2000). Cracow, Poland (2000) 191-198

[13] Jiang, Y., Tham, C.K., Ko, C.C.: Providing Quality of Service Monitoring: Challenges and
Approaches. In Proceedings of the 2000 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2000). Honolulu, USA (2000) 115-128

[14] Joshi, R., Tham, C.K.: Integrated Quality of Service and Network Management. In Proceed-
ings of the 2000 IEEE International Conference on Networks (ICON 2000). Singapore (2000)
497

[15] Granville, L.Z., Tarouco, L.M.R.: An Environment to Support QoS Management-Related
Tasks on IP Networks. In Proceedings of the 2001 IEEE International Conference on Telecom-
munications (ICT 2001). Bucharest, Romania (2001)

[16] Distributed Management Task Force. WBEM Initiative. Homepage. Available at:
<http://www.dmtf.org/wbem/>.

[17] Martin-Flatin, J.P., Bovet, L., Hubaux, J.P.: JAMAP: a Web-Based Management Platform
for IP Networks. In Proceedings of the 10th IFIP/IEEE Internation Workshop on Distributed
Systems: Operations & Management (DSOM’99). Zurich, Switzerland. Lecture Notes in Com-
puter Science, Vol. 1700. Springer-Verlag, Berlin Heidelberg New York (1999) 164-178

[18] John, A., Vanderveen, K., Sugla, B.: An XML-based Framework for Dynamic SNMP MIB
Extension. In Proceedings of the 10th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations & Management (DSOM’99). Zurich, Switzerland. Lecture Notes in Com-
puter Science, Vol. 1700. Springer-Verlag, Berlin Heidelberg New Your (1999) 107-120

[19] Schoenwaelder, J., Quittek, J., Kappler, C.: Building Distributed Management Applications
with the IETF Script MIB. IEEE Journal on Selected Areas in Communications, Special Issue
on Network Management and Operations, (2000) Vol. 18, Number 5

