
Dependency Analysis in Distributed Systems
using Fault Injection: Application to Problem
Determination in an e-commerce Environment

Saurabh Bagchi+, Gautam Kar, Joe Hellerstein
IBM Thomas J. Watson Research Center
Hawthorne, New York
{sbagchi, gkar, hellers}@us.ibm.com


Distributed networked applications that are being deployed in enterprise settings, increasingly rely on a large

number of heterogeneous hardware and software components for providing end-to-end services. In such settings,
the issue of problem diagnosis becomes vitally important, in order to minimize system outages and improve
system availability. This motivates interest in dependency characterization among the different components in
distributed application environments. A promising approach for obtaining dynamic dependency information is
the Active Dependency Discovery technique in which a dependency graph of e-commerce transactions on
hardware and software components in the system is built by individually “perturbing” the system components
during a testing phase and collecting measurements corresponding to the external behavior of the system.

In this paper, we propose using fault injection as the perturbation tool for dynamic dependency discovery and
problem determination. We describe a method for characterizing dependencies of transactions on the system
resources in a typical e-commerce environment, and show how it can aid in problem diagnosis. The method is
applied to an application server middleware platform, running end-user activity composed of TPC-W
transactions. Representative fault models for such an environment, that can be used to construct the fault
injection campaign, are also presented.

Keywords: Problem determination, Dynamic dependency characterization, Fault injection, E-commerce

environment, WebSphere Application Server.


1. Introduction
Increasingly, distributed networked applications being deployed in enterprise settings rely on a

large number of heterogeneous hardware and software components for providing end-to-end services.
Examples of such settings are expected to abound in the next generation of e-business systems, which
will be constructed out of service building blocks, possibly provided by different service providers
and interacting among themselves to provide tailored services to the end-user. In such settings, the
issue of problem diagnosis becomes vitally important in order to minimize system outages and
improve system availability. Problem determination approaches in current distributed environments
are often ad hoc in nature. The lack of good diagnosis tools leads to enormous loss of time and
consequent loss of revenue for the consumers of such distributed application environments. For
example, a study commissioned by Stratus Computers found that in the trading and investment
banking sector, an hour of system outage would cause a revenue loss of 6 million dollars on an
average [10].

A promising approach for problem determination in large systems is dependency analysis. In brief,
the question that dependency analysis tries to answer is this: Is the service X dependent on another

+ Contact Author: Saurabh Bagchi, IBM Thomas J. Watson Research Center, 30 Saw Mill River
Road, Hawthorne, NY 10532, USA. Phone: +1-914-784-7816. Fax: +1-914-784-7455.

O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and Management
DSOM'2001 Nancy France, October 15-17, 2001.

O. Festor

 S. Bagchi, G. Kar and J. Hellerstein

service Y or resource Z? If such a dependency exists, what is the strength1 of the dependency?
Using this information, when a problem is observed at a particular service point, the root cause may
be tracked down to a resource on which this service is dependent. The dependency analysis problem
becomes very challenging in situations where the resources in the system are dynamic in nature. In
such cases, resources can appear and disappear during system lifetime because of failures, or
deployment of new sub-systems, and the dependency relations can change as a result of change of
resource availability or new service level agreements being negotiated.

Another valuable approach for problem characterization in systems is fault injection. Fault
injection enables accelerated testing of the system under stressful conditions and can help uncover
design and implementation defects in the system. A large volume of work in the area has provided us
with an extensive set of fault models targeted towards software and hardware components, starting
from the simple bit flip model to complex timing faults in software systems.

In this paper, we propose a method for using fault injection to uncover resource dependencies in a
dynamic distributed e-commerce environment. The paper also presents the concept of fault
dictionaries for a representative e-commerce environment. A fault dictionary provides a mapping
from the high-level faults commonly observed in such an environment to the low-level faults that can
be directly injected into the resources comprising the system. We present the design of a fault
injection campaign manager that uses incomplete knowledge of the system dependencies and fault
dictionaries to produce a fault injection campaign. During the execution of the campaign, external
probes collect measurements of the relevant metrics, like response time, and the measurements reveal
actual resource dependencies in the system. The proposed method is applied to a typical three-tier
web-based e-commerce environment with IBM’s WebSphere being used as the application server in
the target system. The system is used to run a typical end-user e-commerce activity initiated through
a web browser and consisting of several transactions taken from the TPC-W benchmark [13].

The rest of the paper is organized as follows. Section 2 presents the background for the current
work, mentioning previous work in the area of dependency analysis and fault injection. Section 3
presents the algorithm. Section 4 presents the prototype environment on which the method is to be
applied and a concrete example of its application. Section 5 presents a discussion of the applicability
of the technique and concludes the paper.

2. Background
 One of the most complex tasks performed in the management of enterprise distributed systems is

problem determination and resolution - detecting system problems, isolating their root causes and
identifying proper repair procedures. A promising approach lies in the design of problem detection
algorithms that use dependencies between software and hardware components that constitute a
distributed system. Much work is present in the literature describing the use of dependency models
for the important root-cause analysis stage of problem determination, that is, for the process of
determining which system component is ultimately responsible for the symptoms of a given problem.
However, there has been little work on the important problem of automatically obtaining accurate,
detailed, and up-to-date dependency models from a complex distributed system.

A distributed environment can be logically modeled as layers of resources − services, applications
and other software and hardware components − that cooperate to deliver an end-to-end service.
Services or components in one layer depend on functions provided by components in a lower,
supporting layer. Failures occurring in one layer affect the functioning of dependent components in
another layer. The premise is to model a system as a directed, acyclic graph in which nodes represent
system components (services, applications, OS software, hardware, networks) and weighted directed
edges represent dependencies between nodes. A dependency edge drawn between two nodes
indicates that a failure or problem with the node at the head of the edge can affect the node at the tail
of the edge. The weight of the edge represents the impact of the head node’s failure on the tail node.
The dependency graph for a heavily simplified e-commerce environment is depicted in Figure 1.

1 A metric that measures the effect of the dependency on the performance of a dependent service

Dependency Analysis using Fault Injection

Strength of the dependencies is denoted by Strong (S), Medium (M) and Weak (W), concepts that are
explained in detail in Section 3.2.

���������	��

��� ���

��������

��� ���

�

������������� � ������� �� !�	��
"��� �#�������������� � ������� �� !�	��
"��� �#�

���$�%����

��� ������$�%����

��� ���

&('�) �*������

������� � ������� ��

Network
Services 2

Network
Services 1

Server
Cluster

S

S
S

W M M S

Figure 1. A sample dependency graph. A service entity at the tail of an edge depends on the entity at
the head of the edge.

Consider that we are able to capture the dependency information in the above form. Then, the task
of identifying the root cause of a problem can be approached by navigating through the dependency
graph. However, in practice, the difficulty lies in the fact that service dependencies are not made
explicit in today’s systems, thus necessitating the task of discovering the dependencies. What is
needed is a dynamic model reflecting the changing dependency relationships between services. A
well-known approach, called static dependency analysis, uses information present in various
configuration files describing a distributed system, to derive dependency information [8]. Experience
indicates that such an approach, while it can provide some single node, or intra-domain dependency
information, fails to capture the entire dependency picture, particularly when the dependency crosses
domain boundaries. The limitation of the technique arises due to the contents of configuration files
not being standardized and containing only incomplete and sometimes outdated information on
dependencies.

A second approach, called Active Dependency Discovery (ADD), addresses this shortcoming by
actively perturbing system components while monitoring the system’s response [2]. For example, in a
database system, the perturbation can take the form of holding on to a lock to a database table and not
releasing it for a certain interval of time. If response time to a database operation is an important QoS
property in such a system, then the measured metric can be the time to complete a transaction in the
presence of perturbations. Statistical regression analysis on collected data on the output metric and
the degree of perturbation enables one to fit regression lines indicating the presence and strength of
dependencies of the output QoS metric on the components that had been perturbed. An advantage of
the technique is its ability to differentiate causal relationships indicating actual resource dependencies
from simple correlations in monitoring data since there is knowledge of which component is being
perturbed. However, the coverage of the approach is dependent on the ability to insert controlled
perturbation to the different system components. While this technique is considerably more
successful in discovering dependencies, it is reliant on the use of appropriate faults that can
effectively uncover dependencies. This paper addresses the problem of designing a system that can
identify the appropriate faults that can be injected into a distributed system, leading to the discovery
of dependencies between components of the system. Also, the ADD approach does not address the
problem of injecting correlated faults in multiple system components, while real-world data shows
that most system failures occur due to the occurrence of multiple correlated faults [4].

Fault injection is considered an important tool for evaluating the dependability of computer
systems. Faults are injected into the system to study the dependability bottlenecks, to study the

 S. Bagchi, G. Kar and J. Hellerstein

behavior of the system under fault conditions, and evaluate the effectiveness and performance impact
of fault tolerance mechanisms, namely, the error detection and recovery mechanisms. Many fault
injection tools have been developed both commercially and in universities. The tools may be
hardware-based which use additional hardware to introduce faults into the target system’s hardware,
or they may be software-based which involve inserting the fault injection module in the application
software or the operating system or in the layer between the two. Some examples of hardware fault
injectors are Messaline from LAAS-CNRS in Toulouse, France [1] and MARS developed at the
Technical University of Vienna [7]. Software fault injectors are more flexible in the types of faults
they can inject and the targets they can inject faults to, and are also generally less costly to develop.
Software fault injection tools greatly outnumber the hardware tools. Some examples are NFTAPE
from the University of Illinois [11], Ferrari developed at the University of Texas at Austin [9] and
Xception from the University of Coimbra in Portugal [3]. A good overview of the field of fault
injection is to be found in [5].

The fault injectors are characterized by the different fault types, fault locations and fault triggers
that they can support. Fault types can be permanent or transient, and can follow different models,
such as pin stuck-at faults, message corruptions, etc. The injector may be able to inject faults at
different locations, e.g., to the chip pins, the network interface card, the application or the system
software, etc. The fault triggers can be specified in terms of time, specific point in the execution of
software code, events in a system such as message arrival, etc. A crucial criterion that determines the
choice of the fault injector to evaluate a system is an understanding of the kinds of faults likely to be
observed in the operational system. Using faults from one single level of abstraction (e.g., low-level
faults that affect the pins of the processor chip, or high-level faults such as synchronization faults
affecting a multi-threaded application) limits the flexibility of the fault injection technique as a
dependability evaluation tool since faults from different levels may be more realistic, or more feasible
to inject under different scenarios.

A hierarchical fault modeling approach for system dependability evaluation has been developed by
Iyer et al [6]. In this technique, the effects of low-level faults (transistor or chip level) are propagated
to higher levels (system level) using fault dictionaries. In our current work, we make use of several
concepts from this earlier work, namely, Low Level Faults (LLF), Lightweight Fault Injector
(LWFI), Fault Dictionary (FD) and Integrated Fault Injection Campaign (IFIC). The NFTAPE
automated fault injection environment [12], which is based on these concepts, is chosen as the tool
for the current study.

Low-level faults refer to faults at the level of transistor, chip or memory bits which are close to the
manifestations of actual physical faults (as opposed to high-level faults which are indirect
manifestations of complex faults in application or system software). A fault injector whose only
function is to inject faults and which relies on other services for the common tasks like
communication, workload generation, fault triggering, logging, etc., is called a Lightweight Fault
Injector (LWFI). A fault dictionary details the impact of faults on some subset of the target system in
terms of the resulting change in the subsystem's behavior as seen from outside the subsystem. For
example, a current surge in a particular transistor of an adder circuitry can result in a wrong data
value being output by the adder chip. In a fault dictionary, theoretically, knowing any low-level fault
(such as, current spikes) and its location and temporal information, one can look up the corresponding
entry to find what higher-level fault it causes. This can provide a very powerful tool in dependability
evaluation of our target dynamic distributed systems. Having constructed the fault dictionary for such
a system (or certain components of the system), and knowing the low-level fault environment, one
can develop and deploy fault injectors to inject high-level faults. The rationale behind this approach
is that it is usually easier to obtain the characteristics of lower level faults, while fault injection can be
accelerated if the injection is performed using higher level fault models. An Integrated Fault
Injection Campaign consists of a listing of the LWFIs, their targets, their trigger conditions, and a
specification of the concurrency of their execution.

To our knowledge, this paper presents the first attempt at using fault injection for dependency
characterization in distributed e-commerce systems. It provides a taxonomy of high-level faults

Dependency Analysis using Fault Injection

typically observed in e-commerce environments and uses fault dictionaries to derive low-level
injectable faults from them.

3. Dependency Analysis Method
3.1. Logical Structure of an E-Commerce Environment

Consider the logical structure of a typical three tier web-enabled e-commerce environment,
depicted in Figure 2. In the setup, a typical end-user activity is initiated through a web browser client.
A sample activity comprises visiting an internet store front, searching for some items, and finally
making the purchase of one or more items. The activity is decomposed into several transactions each
of which obeys the traditional ACID properties – atomicity, consistency, isolation, and durability.
Examples of transactions are registering a user name and password, doing a database query for a
particular item in the store, validating a credit card for a buying activity, etc. The transactions are
initiated by sending requests to the web server. The web server invokes the servlet engine for
processing the request, and the servlet engine spawns servlets, which implement the business logic.
The servlets use tables stored in a database at the backend for processing the request. Finally, the
response for the transaction is communicated back to the end-user by the web server.

Web client Web server
Application

Server
(WebSphere)

Database
Service

Middle tier

Customer Activity Set
Browse, Buy, Pay, Register, etc

System Transaction Set
T1, T2, T3, …

Application Logic
Servlets, S1, S2…

ORIGINATES

PROCESSES

IMPLEMENTS

Figure 2. Model e-commerce environment to be used for applying dynamic dependency

characterization method

3.2. Dependencies in an E-commerce environment
First we define some concepts and some ground rules for the environment under consideration. An

activity is defined as a high-level task initiated by the end-user through the web client. The activity
will cause a set of transactions to be submitted to the middle tier of the environment. The successful
completion of the activity is dependent on each of the constituent transactions completing
successfully. The transactions that are processed in an e-commerce environment depend on a set of
hardware and software resources, e.g., database tables, network connectivity, a key server for
providing keys for a secure transaction, etc. This set of resources for a transaction, Ti is called the
Transaction Dependency Set (TiD). The dependency relation of a transaction on a resource can be
absent(A), weak(W), medium(M), or strong(S). Our research shows that the strength metric is
dependent on the context for which we are planning to use this information.. For example, the metric
may have one set of values for fault and availability management and a different set of values for
performance management. In the e-commerce example that we have used in our research, we have
assigned the values based primarily on performance management dealing with response time related
metrics. The relation between transactions and resources can be conveniently represented as a matrix
(Table 1) with the cells indicating the strength of the dependency. A similar representation was
introduced in [2].

 S. Bagchi, G. Kar and J. Hellerstein

 Transaction T1 Transaction T2

 Resource R1 A M
Resource R2 S S
Resource R3 W A

Table 1. Matrix representing dependency relation of transactions on resources.
(A = Absent, W = Weak, M = Medium, S = Strong)

The difference between the dependencies of two transactions on a resource is given a measure
which follows the relation shown in the lattice in Figure 3. For example, if (S-A) is given a measure
of 5 units, (M-A) can be given a measure of anything less than 5. Say, it is given a measure of 3 units.
The (M-A) difference does not constrain the assignment of the (S-M) difference since there is no
edge between the two nodes. The exact assignment of the differences is governed by the specific
details of the system. A measure called closeness is defined between every pair of transactions as the
sum of the differences over all the resources in the environment.

(S-A)

(M-A)

(W-A) (M-W)

(S-M)

(S-W)

Figure 3. Lattice representing difference between degrees of dependency

3.3. Protocol Details

The high-level steps to be followed in the process of dependency characterization of a distributed
system using fault injectors as perturbors is described below. The steps also outline how the
dependability characterization can finally lead to problem determination.

1. Suppose the QoS of an activity X is found to violate the service level agreement (SLA). Suppose
that it is determinable through an application characterization that activity X uses transactions
T(X) = {TX1, TX2, ..., TXn}. For example, a buy activity will require establishment of a secure
session with the client, typically through the Secure Sockets Layer (SSL) session-level protocol.
We choose other activities (Y1, Y2, ..., Yn) from the workload set such that T(X) � T(Y1) �� � ...
T(Yn) is as close to T(X) as possible, by the definition of closeness in section 3.2. How such
activities Y1, Y2, ..., Yn are chosen is a topic of ongoing research and is outside the scope of this
discussion. For the purposes of the rest of the paper, we will assume that each activity consists of
a single transaction, thus making the selection of the set simple. The number of such activities
chosen, n, is a parameter to this process and depends on how much time is available for the
process and the confidence to be placed on the process' output.

2. Run activities Y1, Y2, ..., Yn and mark the ones that are also found to have the problem, i.e.,
violate the SLA. Say, these activities are Z1, Z2, ..., Zk. Now consider the transactions that are
common to all the problematic activities, including X. Then, the Suspect Transaction Set (STS) =
T(X) � T(Z1) � ... � T(Zk).

3. Consider one transaction Ti from STS. From an incomplete dependency characterization
(through ADD, or static dependency knowledge, say), it is known that Ti depends on a certain set
of hardware and software resources in the system, H1, H2, ..., Hm, and S1, S2, ..., Sn.. This is
denoted by TiD. If no such prior dependency analysis is available, then we start by including all
the hardware and software resources in the system in this set. The set will be successively pruned

Dependency Analysis using Fault Injection

in the following steps and therefore, the method will still be able to identify the dependency
though it will take longer to reach termination.

4. The set of resources on which transaction Ti depends is put in the Diagnosis Set (DS), which is
the set of resources which are potentially malfunctioning. The set NDS, which is the set of
resources that have been determined to be functioning correctly is initially empty. Now consider
a set of faults that we would like to perturb the resources with. The set will be heterogeneous
since there are different kinds of resources. Say the function mapping the resource to the faults in
the set is LLF (for low level fault). We denote the function LLF since it is generally assumed that
we can determine more accurately the fault characteristics of the low-level faults, i.e., it is easier
to say how many bit flips in memory there are likely to be than how many lock release errors in a
software module. However, this assumption is not required for the process to work, it is simply
used as a basis for the nomenclature. For the purpose of the fault injectors which will be used to
insert the perturbation in the system, we have to arrive at the fault model at the appropriate level
at which the lightweight fault injector (LWFI) is available. For this purpose, we use the fault
dictionary for the system (FD) to scale the postulated fault model up (e.g., from the transistor
level to the chip level) or down (e.g., from the application level to the chip level). So, the LWFI
 for the hardware resource H1 in the set DS is given by LWFI(H1) = FD(LLF(H1)). There is
also the issue of degree of perturbation of the fault injector. By degree, we mean what is the rate
of fault injections, e.g., how many memory bit flips per second are introduced, or how many
messages (one out of every n) are corrupted on the network link. For the first fault injection
campaign, the degree of perturbation is denoted by d1. Therefore, the fault injector for H1
becomes LWFI d1(H1). An Integrated Fault Injection Campaign (IFIC) that incorporates the fault
injectors for all the resources in DS is given by IFIC1 = LWFId1(H1) LWFId1(H2) ...
LWFId1(Hm) LWFId1(S1) LWFId1(S2) ... LWFId1(Sn). The symbol denotes the
coordination between the various LWFIs, e.g., the temporal relations between their triggers that
can be specified through NFTAPE [12]. IFIC1 is run for a certain length of time and the output
QoS metric(s) measured. A series of successive integrated fault injection campaigns are run by
varying the degree of perturbation. The series is given by IFIC1, IFIC2, ..., IFICk. The objective is
to prune the DS (Diagnosis Set) for the transaction Ti. Once the DS cardinality decreases by one,
terminate the IFIC series, go back to the beginning of this step and repeat. The repetition
terminates when the DS cannot be pruned any further, which, for some cases, will be when it
becomes empty. If the DS becomes empty, it implies that none of the resources transaction Ti
depends on is malfunctioning; the problem lies somewhere else.

5. Go back to step 3 and repeat for every transaction from STS (Suspect Transaction Set). At the
end, we will obtain a set of possible malfunctioning resources on which our original activity X
was dependant and hence violating its SLA. Note that if step 4 puts a resource in DS of one
transaction Ti and NDS of another transaction Tj, we must conclude that the problem was
transient and therefore, an offline problem determination cannot work.

The method is summarized through the pseudo-code description in Figure 4.

 S. Bagchi, G. Kar and J. Hellerstein

 [1] Application X violates SLA.

Execute similar applications and measure output QoS paramete rs to identify Suspect Transaction Set (STS)
STS = {T1, T2, … , Tn }

[2] for each T h in STS do
[a] Create Diagnosis Set (DS) of potentially malfunctioning resources.

Initialize DS with all hardware and software resources T h depends on.
DS = {H1, H2, … , Hm ; S1, S2, … , Sn }

[b] for each H i in DS do
[i] Pick the fault model (LLF), look up in fault dictionary (FD) to arrive at appropriate level of fault,

instantiate Lightweight Fault Injector (LWFI) for injection
LWFI(H i) = FD(LLF(H i))

end do
[c] for each S j in DS do

[i] Pick the fault model (LLF), look up in fault dictionary (FD) to arrive at appropriate level of fault,
instantiate Lightweight Fault Injector (LWFI) for injection
LWFI(S j) = FD(LLF(S j))

end do
[d] Determine a range for degrees of perturbation DP = {d1, d2, … , dp }

for each d k in DP do
while DS is being pruned

[i] Form Fault Injection Campaign (FIC) = (LWFId k (H i)) (LWFId k (S j))
[ii] Run campaign and collect measures of QoS parameters
[iii] Prune DS based on measurements

end while
end for

end do
[3] + DS is the set of malfunctioning resources

return (+ DS)

Figure 4. Pseudo-code for fault injection based method for dependency discovery

4. Application of Technique
The above fault injection technique is applied to a realistic e-commerce environment as an aid to

problem determination. The following sections discuss the application of the approach. The
application is based on the algorithm presented above and is arrived at by instantiating all the
unbound variables in the algorithm, such as the transactions and the resources.

4.1. Environment
Consider a typical end-user e-commerce activity initiated through a web browser client. The

activity comprises visiting an internet store front, searching for some items, and finally making the
purchase of one or more items. The activity is decomposed into several transactions. For our
experiment we used the working transaction set provided by the TPC-W benchmark, proposed by the
Transaction Processing Performance Council [13]. This set comprises typical transactions that one
would observe in a storefront implementation such as an online bookstore. A simplifying assumption
from the algorithm presented in Section 3 is that in this application scenario each activity consists of
exactly one transaction. In this example, TPC-W uses the following tables in the backend database:
Item, Country, Author, Customer, Orders, Order line, Credit card transaction, Address.

Our study is based on the setup shown in Figure 5, where we have depicted a typical, transactional
e-commerce environment consisting of five key function groups:
• Core HTTP engine: receives and dispatches a user transaction to the appropriate servlet that

handles the business logic.
• Servlet engine: collection of servlets and their execution environment that together support the

business logic.

Dependency Analysis using Fault Injection

• Enterprise Java Beans Server engine: provides session support for the transactions and database

connectivity.
• Database Engine: houses the back end data base and associated execution environment.
• Key Server Engine: provides support for security and authentication.

A typical transaction is dependent on various resources belonging to each of these logical function
groups. As an example, we list below a subset of the TPC-W transactions that constitute typical
customer activity. Some of the transactions use encryption and are noted as being secure, while others
pass information on the network in the clear and are marked as being non-secure.
1. Customer registration (non-secure): returns to the browser a web page, which allows a user to

provide the information necessary to register as a known customer or as a new customer and to
submit his registration.

2. Home web page interaction- browse (non-secure): returns to the browser a web page which
contains links to product lists for new products and for best sellers. This is the initial web
interaction requested by all users starting a new user session. It is also a navigation option to
most other web pages.

3. Search request (non-secure): returns to the browser a web page which allows a user to specify
search criteria to find qualifying items.

4. Search response (non-secure): returns to the browser a web page which contains the list of items
that match a given search criteria.

5. Shopping cart web interaction (non-secure): allows the user to create a new shopping cart, or
refresh an already existing cart from an earlier session. It is also used to add new items to the
cart, or update existing items.

6. Buy request (secure): displays a summary of the items in the shopping cart. The page provides
editable fields for entering credit card information and selecting shipping options.

7. Buy confirm (secure): transfers the content of the shopping cart into a newly created order for the
registered customer and executes a full payment authorization. It then returns to the browser a
web page containing the details of the newly created order.

8. Order inquiry (secure): returns to the browser a web page which allows a user to provide the
information necessary to enter or confirm his identity as a returning customer. This lets the user
query about his last order.

4.2. Solution Approach
The first step is to produce a logical function model of the system that allows the enumeration of

the resources that support the working of a specific transaction within the e-commerce environment.
Figure 5 depicts a subset of the resources that come into play in a typical 3-tier e-commerce setup as
shown in Figure 2.

When a fault is reported by a customer in a transaction, the possible root causes are narrowed
down to a set of resources on which the transaction depends, using the results obtained by Active
Dependency Discovery (ADD). A fault injection system is designed to inject appropriate low level
faults into each of these resources to study the behavior of the transaction, in order to eliminate
spurious dependencies and to narrow down the root cause to a smaller set of resources. The partial
matrix of dependencies computed for our TPC-W environment is shown in Table 2 below.

 S. Bagchi, G. Kar and J. Hellerstein

Servlet
Engine

(handles servlet and
dynamic page requests)

1
Servlets

W
eb

 s
er

ve
r

A
P

I

Connectors
to backends

Core HTTP
Engine

…

Network Dispatcher

HS
#1

HS
#n

Shared resources
e.g. files

(handles static content
and CGI requests)

Enterprise Java
Server Engine

Session
& Entity
Beans

JTS JDBC JNDI IIOP

(provides business logic
with transactional integrity)

B1 B2

Session Manager

Database Tables

Database
Engine

Encryption
Engine

Keyserver
Engine

Decryption
Engine

2

3 4
Session

Pool

Figure 5. Logical Function Groups in a Typical e-commerce Environment

As an example consider the case where a customer activity − browse an item from an electronic
store − causes a problem to occur. This activity consists of one transaction, T2, with an associated
dependency set obtained from Table 2. Referring to the method presented in Section 3.3, the Suspect
Transaction Set (STS) therefore consists of T2, and the diagnosis set DS = T2D ={Customer Table,
Item Table, Session Pool, Servlet2, Servlet3, DNS}, and NDS = {NULL}. Recall that TiD is the set
of resources that a transaction Ti depends on (see section 3.3, step 3).

 T1 T2 T4 T5 T6 T7
Customer

Table
S S S S S

Item Table S S
Author Table S
Order Table S S

Address Table S S
Order List

Table
 S S

Country Table S
Session Pool M W W
Servlet1 S
Servlet2 S
Servlet3 S M
DNS Server W W
Security

Server
 M M

Table 2. Partial Dependency Matrix for Experimental TPC-W Environment
We choose a set of transactions “close” to T2 as described in step 1 of the algorithm in Section

3.3. That is, we compute the “closeness” of each transaction in the matrix to T2. For example:
Closeness(T2, T5) = (S-S)+(M-W) +(S-M). If this value is less than a predetermined threshold, we
include the transaction in the list. Let the final list be T5 and T6. Thus, T5D = {Customer Table,
Order Table, Session Pool, Servlet3} and T6D = {Customer Table, Order list Table, Session Pool,
Security Server}.

TPC-W has drivers to run each of the above transactions individually to study their performance.
After doing so we discover that transaction T5 and T6 run with acceptable performance. We

Dependency Analysis using Fault Injection

conclude, therefore, that STS = {T2}. As a consequence of this step, the Diagnosis Set is given by,
DS = T2D – [T5D U T6D] = {Item Table, Servlet2, DNS} and NDS = {Customer Table, Servlet3,
Session Pool}. Thus, at this point, DS contains the most likely root cause of the problem.

Next we generate a fault injection campaign using the system shown in Figure 6.

High Level Observable
Fault on Transaction T

Resource R1

LWFI LWFI

Resource R2

LWFI LWFI

Resource R3

LWFI LWFI

Fault Injection Campaign Manager

Fault Dictionary Service

Fault Dictionary
Manager

Fault
Dictionary

LWFI
Repository

Fault Injection
Campaign

Fault
Injection
Triggers

Resource Dependency Set for Transaction T

Figure 6. Method for Constructing a Fault Injection Campaign

In our example the three resources, Item Table, Servlet2, and the DNS server correspond to
elements in the Resource Dependency set. It is assumed that each of these resources has built-in light
weight fault injectors (LWFIs) that can inject faults on receiving triggers from the Fault Injection
Campaign Manager. Using the method outlined in Section 3.3, we design a fault injection campaign
for each of the elements in the DS. Our approach assumes the presence of a fault dictionary. One of
the goals of this research is to come up with a method for constructing an appropriate fault dictionary
to aid in the design and implementation of a problem determination system. For our experiment, we
start with a hand constructed fault dictionary for the environment under test. A logical structure of
such a fault dictionary is shown in Figure 7.

In our example, if the high level observable fault, as reported by the customer was performance
related, e.g. a buy transaction takes too long to complete, we find from the table the possible low
level faults that can be injected into the resources that remain in the diagnosis set DS. Thus an
example fault injection campaign may be expressed as: LWFI (Item Table) = {Memory fault, Data
field overrun, Lock contention}, LWFI (Servlet2) = {Resource starvation by reducing the number of
threads available in the thread pool, CPU resource starvation by running some other compute-
intensive workload on the same processor}, and LWFI (DNS Server) = {Performance fault by
submitting high volume of DNS lookup requests on the same server, Corruption of DNS entry}.
Each of these faults is injected in turn and the performance of transaction T2 in STS is observed. In
the general method, the integrated fault injection campaign can have LWFI’s executing concurrently.
However, in such cases, it becomes difficult to associate the observed system response to particular
faults. Therefore, for simplicity, sequential execution of the LWFI’s is considered for the example
scenario. The result of this step is to eliminate those dependencies that are not relevant for this
transaction, e.g. if servlet3’s perturbation does not affect the performance of T2, then we will
eliminate it from the DS. Eventually, the DS will be pruned to a set consisting of only those
resources that could have been the cause of this problem. Additional diagnostic methods, such as log
file analysis, can now be applied to get to the unique root cause of the observed problem.

 S. Bagchi, G. Kar and J. Hellerstein

Key Server, Database ServerAccess Denied

Database ServerData not found

Application Server, Database
Server

Performance Degradation

Possible SourcesHigh Level Fault

Key Server, Database ServerAccess Denied

Database ServerData not found

Application Server, Database
Server

Performance Degradation

Possible SourcesHigh Level Fault

Lock contention, Buffer Size
Problem, ………

Database Server

Servelet Error, Application

Crash

Application Server

Possible Lower Level FaultsResource

Lock contention, Buffer Size
Problem, ………

Database Server

Servelet Error, Application

Crash

Application Server

Possible Lower Level FaultsResource

Resource Fault Table

Observable Fault Table

Process Crash, Memory
Corruption

Application Crash

Low Level Fault InjectorsResource Fault

Process Crash, Memory
Corruption

Application Crash

Low Level Fault InjectorsResource Fault

Fault Injector Table

Figure 7. A Representative Three-level Fault Dictionary

The key advantages gained by using our system are twofold:
• Computed a set of suspected resources for problem determination using dependency analysis

employing fault injection. This helps to focus the problem determination procedure to a set of
possible root causes.

• In typical e-commerce systems, as depicted in Figure 5, the list of dependencies can be quite
large, many of them spurious. This step helps speed up the problem determination procedure by
rapidly reducing the set of possible root causes.

Additional diagnostics that will need to be performed to get to the root cause can work with only a
few resources rather than a large number, resulting in more effective and faster problem
determination.

5. Conclusion
This paper discussed the use of well proven fault injection techniques in discovering service and

resource dependencies in distributed systems as a step towards efficient problem determination. A
method was presented for starting with a large set of potentially malfunctioning resources and
successively pruning the set using a set of fault injection campaigns. The method was applied to a
real-world web-based e-commerce environment to illustrate how it can aid in root cause
determination for an end-user visible problem.

One problem with the approach is that it is invasive in nature and hence needs careful
consideration of the conditions under which it can be applied. Can it be applied in an operational
system without affecting the normal operation? A notable point here is that the algorithm will be
triggered due to a problem indication, such as a SLA violation. Thus, the system is already in a
malfunctioning mode. Therefore, if the proposed technique can be executed promptly and the errant
resources identified and replaced with backups or hot standbys, the system can be brought back to a

Dependency Analysis using Fault Injection

correctly functioning state. However, it is possible that the fault injection campaign is extremely
invasive and completely halts the operation of the system. It is a debatable issue whether it is
desirable to continue to run a system under malfunctioning conditions when certain QoS guarantees
are not being met, or completely halt the system, run diagnosis routines and then bring back a fully
operational system as soon as possible. It is most likely that such a decision will have to be made on a
case-by-case basis depending on the requirements from the system.

A second point that will determine the applicability of the proposed method is the amount of
support available from the system resources which will be made the targets of the lightweight fault
injectors. For some types of injectors, little or no support is required from the resource, e.g. to insert a
stuck-at-fault at a chip’s pin. However, for some other classes of faults, the resource needs to support
the injector, e.g., a software fault injector which delays messages in a message-passing based
distributed application needs to be compiled in with the application to be able to manipulate the
application’s message queues. An area of research that could be important in this context is the
design of a method that allows an application developer to include LWFI specific to his application
during the design and development phases.

As the current research evolves and an implementation is applied to a real-world system, the
approach will need to be compared against other approaches to problem determination, such as event
correlation. The measures for such a comparison will include the accuracy of diagnosis and the speed
of convergence of the technique.

6. References
[1] J. Arlat, Y. Crouzet, J. C. Laprie, “Fault Injection for Dependability Validation of Fault-Tolerant Computer

Systems,” Proc. 19th International Symp. on Fault-Tolerant Computing (FTCS-19), pp. 348-355,
1989.

[2] A. Brown, G. Kar, A. Keller, “An Active Approach to Characterizing Dynamic Dependencies for Problem
Determination in a Distributed Application Environment,” IEEE/IFIP International Symposium on
Integrated Network Management, pp. 377-390, 2001.

[3] J. Carreira, H. Madeira, J.G. Silva, “Xception: Software Fault Injection and Monitoring in Processor
Functional Units,” Proc. 5th Annual IEEE Int’l Working Conference on Dependable Computing for
Critical Applications, pp. 135-149, 1995.

[4] J.B. Dugan, M.R. Lyu, “System-Level Reliability and Sensitivity Analysis for Three Fault-Tolerant System
Architectures, Proc. 4th Annual IEEE Int’l Working Conference on Dependable Computing for
Critical Applications, pp. 459-477, 1994.

[5] M.C. Hsueh, T.K. Tsai, R.K. Iyer, “Fault Injection Techniques and Tools,” IEEE Computer, pp.75-82, April,
1997.

[6] Z. Kalbarczyk, R. K. Iyer, G. L. Ries, J. U. Patel, M. S. Lee, Y. Xiao, "Hierarchical Simulation Approach to
Accurate Fault Modeling for System Dependability Evaluation," IEEE Transactions on Software
Engineering, Vol. 25, No. 5, pp. 619-632, September/October 1999.

[7] J. Karlsson, J. Arlat, G. Leber, “Application of Three Physical Fault Injection Techniques to the
Experimental Assessment of the MARS Architecture,” Proc. 5th Annual IEEE Int’l Working
Conference on Dependable Computing for Critical Applications, pp. 150-161, 1995.

[8] G. Kar, A. Keller, S. Calo, “Managing Application Services over Service Provider Networks: Architecture
and Dependency Analysis,” Proc. 7th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2000).

[9] G.A. Kanawati, N.A. Kanawati, J.A. Abraham, “FERRARI: A Tool for the Validation of System
Dependability Properties,” Proc. 22nd International Symp. on Fault-Tolerant Computing (FTCS-
22), pp. 336-344, 1992.

[10] D. K. Pradhan, ed., “Fault Tolerant Computer System Design,” Prentice-Hall, 1996.

 S. Bagchi, G. Kar and J. Hellerstein

[11] D.T. Stott, M.C. Hsueh, G. Ries, R.K. Iyer, “Dependability Analysis of a High-Speed Network using

Software Implemented Fault Injection and Simulated Fault Injection,” In IEEE Transactions on
Computers, Special Issue on Dependable Computing, pp. 108-119, January 1998.

[12] D.T. Stott, B. Floering, Z. Kalbarczyk, R.K. Iyer, “Dependability Assessment in Distributed Systems with
Lightweight Fault Injectors in NFTAPE,” Proc. IEEE Int’l Computer Performance and
Dependability Symp. (IPDS’2K), pp.91-100, March 2000.

[13] Transaction Processing Performance Council. “TPC Benchmark W, Specification v1.4” San Jose,
California, February 7, 2001. Available at http://www.tpc.org/tpcw

