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 
Distributed networked applications that are being deployed in enterprise settings, increasingly rely on a large 

number of heterogeneous hardware and software components for providing end-to-end services. In such settings, 
the issue of problem diagnosis becomes vitally important, in order to minimize system outages and improve 
system availability. This motivates interest in dependency characterization among the different components in 
distributed application environments. A promising approach for obtaining dynamic dependency information is 
the Active Dependency Discovery technique in which a dependency graph of e-commerce transactions on 
hardware and software components in the system is built by individually “perturbing” the system components 
during a testing phase and collecting measurements corresponding to the external behavior of the system.  

In this paper, we propose using fault injection as the perturbation tool for dynamic dependency discovery and 
problem determination. We describe a method for characterizing dependencies of transactions on the system 
resources in a typical e-commerce environment, and show how it can aid in problem diagnosis. The method is 
applied to an application server middleware platform, running end-user activity composed of TPC-W 
transactions. Representative fault models for such an environment, that can be used to construct the fault 
injection campaign, are also presented. 
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1. Introduction 
Increasingly, distributed networked applications being deployed in enterprise settings rely on a 

large number of heterogeneous hardware and software components for providing end-to-end services. 
Examples of such settings are expected to abound in the next generation of e-business systems, which 
will be constructed out of service building blocks, possibly provided by different service providers 
and interacting among themselves to provide tailored services to the end-user. In such settings, the 
issue of problem diagnosis becomes vitally important in order to minimize system outages and 
improve system availability. Problem determination approaches in current distributed environments 
are often ad hoc in nature. The lack of good diagnosis tools leads to enormous loss of time and 
consequent loss of revenue for the consumers of such distributed application environments. For 
example, a study commissioned by Stratus Computers found that in the trading and investment 
banking sector, an hour of system outage would cause a revenue loss of 6 million dollars on an 
average [10]. 

A promising approach for problem determination in large systems is dependency analysis. In brief, 
the question that dependency analysis tries to answer is this: Is the service X dependent on another 
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service Y or resource Z?  If such a dependency exists, what is the strength1 of the dependency?  
Using this information, when a problem is observed at a particular service point, the root cause may 
be tracked down to a resource on which this service is dependent.  The dependency analysis problem 
becomes very challenging in situations where the resources in the system are dynamic in nature. In 
such cases, resources can appear and disappear during system lifetime because of failures, or 
deployment of new sub-systems, and the dependency relations can change as a result of change of 
resource availability or new service level agreements being negotiated. 

Another valuable approach for problem characterization in systems is fault injection. Fault 
injection enables accelerated testing of the system under stressful conditions and can help uncover 
design and implementation defects in the system. A large volume of work in the area has provided us 
with an extensive set of fault models targeted towards software and hardware components, starting 
from the simple bit flip model to complex timing faults in software systems.  

In this paper, we propose a method for using fault injection to uncover resource dependencies in a 
dynamic distributed e-commerce environment. The paper also presents the concept of fault 
dictionaries for a representative e-commerce environment. A fault dictionary provides a mapping 
from the high-level faults commonly observed in such an environment to the low-level faults that can 
be directly injected into the resources comprising the system. We present the design of a fault 
injection campaign manager that uses incomplete knowledge of the system dependencies and fault 
dictionaries to produce a fault injection campaign. During the execution of the campaign, external 
probes collect measurements of the relevant metrics, like response time, and the measurements reveal 
actual resource dependencies in the system. The proposed method is applied to a typical three-tier 
web-based e-commerce environment with IBM’s WebSphere being used as the application server in 
the target system. The system is used to run a typical end-user e-commerce activity initiated through 
a web browser and consisting of several transactions taken from the TPC-W benchmark [13]. 

The rest of the paper is organized as follows. Section 2 presents the background for the current 
work, mentioning previous work in the area of dependency analysis and fault injection. Section 3 
presents the algorithm. Section 4 presents the prototype environment on which the method is to be 
applied and a concrete example of its application. Section 5 presents a discussion of the applicability 
of the technique and concludes the paper. 

2. Background 
 One of the most complex tasks performed in the management of enterprise distributed systems is 

problem determination and resolution - detecting system problems, isolating their root causes and 
identifying proper repair procedures. A promising approach lies in the design of problem detection 
algorithms that use dependencies between software and hardware components that constitute a 
distributed system. Much work is present  in the literature describing the use of dependency models 
for the important root-cause analysis stage of problem determination, that is, for the process of 
determining which system component is ultimately responsible for the symptoms of a given problem. 
However, there has been little work on the important problem of automatically obtaining accurate, 
detailed, and up-to-date dependency models from a complex distributed system. 

A distributed environment can be logically modeled as layers of resources − services, applications 
and other software and hardware components − that cooperate to deliver an end-to-end service.  
Services or components in one layer depend on functions provided by components in a lower, 
supporting layer.  Failures occurring in one layer affect the functioning of dependent components in 
another layer. The premise is to model a system as a directed, acyclic graph in which nodes represent 
system components (services, applications, OS software, hardware, networks) and weighted directed 
edges represent dependencies between nodes. A dependency edge drawn between two nodes 
indicates that a failure or problem with the node at the head of the edge can affect the node at the tail 
of the edge. The weight of the edge represents the impact of the head node’s failure on the tail node. 
The dependency graph for a heavily simplified e-commerce environment is depicted in Figure 1.  
                                                           

1 A metric that measures the effect of the dependency on the performance of a dependent service 
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Strength of the dependencies is denoted by Strong (S), Medium (M) and Weak (W), concepts that are 
explained in detail in Section 3.2. 
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Figure 1.  A sample dependency graph. A service entity at the tail of an edge depends on the entity at 
the head of the edge. 

Consider that we are able to capture the dependency information in the above form. Then, the task 
of identifying the root cause of a problem can be approached by navigating through the dependency 
graph.  However, in practice, the difficulty lies in the fact that service dependencies are not made 
explicit in today’s systems, thus necessitating the task of discovering the dependencies. What is 
needed is a dynamic model reflecting the changing dependency relationships between services.  A 
well-known approach, called static dependency analysis, uses information present in various 
configuration files describing a distributed system, to derive dependency information [8]. Experience 
indicates that such an approach, while it can provide some single node, or intra-domain dependency 
information, fails to capture the entire dependency picture, particularly when the dependency crosses 
domain boundaries. The limitation of the technique arises due to the contents of configuration files 
not being standardized and containing only incomplete and sometimes outdated information on 
dependencies.  

A second  approach, called Active Dependency Discovery (ADD), addresses this shortcoming by 
actively perturbing system components while monitoring the system’s response [2]. For example, in a 
database system, the perturbation can take the form of holding on to a lock to a database table and not 
releasing it for a certain interval of time. If response time to a database operation is an important QoS 
property in such a system, then the measured metric can be the time to complete a transaction in the 
presence of perturbations. Statistical regression analysis on collected data on the output metric and 
the degree of perturbation enables one to fit regression lines indicating the presence and strength of 
dependencies of the output QoS metric on the components that had been perturbed. An advantage of 
the technique is its ability to differentiate causal relationships indicating actual resource dependencies 
from simple correlations in monitoring data since there is knowledge of which component is being 
perturbed. However, the coverage of the approach is dependent on the ability to insert controlled 
perturbation to the different system components. While this technique is considerably more 
successful in discovering dependencies, it is reliant on the use of appropriate faults that can 
effectively uncover dependencies.  This paper addresses the problem of designing a system that can 
identify the appropriate faults that can be injected into a distributed system, leading to the discovery 
of dependencies between components of the system. Also, the ADD approach does not address the 
problem of injecting correlated faults in multiple system components, while real-world data shows 
that most system failures occur due to the occurrence of multiple correlated faults [4]. 

Fault injection is considered an important tool for evaluating the dependability of computer 
systems. Faults are injected into the system to study the dependability bottlenecks, to study the 
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behavior of the system under fault conditions, and evaluate the effectiveness and performance impact 
of fault tolerance mechanisms, namely, the error detection and recovery mechanisms. Many fault 
injection tools have been developed both commercially and in universities. The tools may be 
hardware-based which use additional hardware to introduce faults into the target system’s hardware, 
or they may be software-based which involve inserting the fault injection module in the application 
software or the operating system or in the layer between the two. Some examples of hardware fault 
injectors are Messaline from LAAS-CNRS in Toulouse, France [1] and MARS developed at the 
Technical University of Vienna [7]. Software fault injectors are more flexible in the types of faults 
they can inject and the targets they can inject faults to, and are also generally less costly to develop. 
Software fault injection tools greatly outnumber the hardware tools. Some examples are NFTAPE 
from the University of Illinois [11], Ferrari developed at the University of Texas at Austin [9] and 
Xception from the University of Coimbra in Portugal [3]. A good overview of the field of fault 
injection is to be found in [5]. 

The fault injectors are characterized by the different fault types, fault locations and fault triggers 
that they can support. Fault types can be permanent or transient, and can follow different models, 
such as pin stuck-at faults, message corruptions, etc. The injector may be able to inject faults at 
different locations, e.g., to the chip pins, the network interface card, the application or the system 
software, etc. The fault triggers can be specified in terms of time, specific point in the execution of 
software code, events in a system such as message arrival, etc. A crucial criterion that determines the 
choice of the fault injector to evaluate a system is an understanding of the kinds of faults likely to be 
observed in the operational system. Using faults from one single level of abstraction (e.g., low-level 
faults that affect the pins of the processor chip, or high-level faults such as synchronization faults 
affecting a multi-threaded application) limits the flexibility of the fault injection technique as a 
dependability evaluation tool since faults from different levels may be more realistic, or more feasible 
to inject under different scenarios. 

A hierarchical fault modeling approach for system dependability evaluation has been developed by 
Iyer et al [6]. In this technique, the effects of low-level faults (transistor or chip level) are propagated 
to higher levels (system level) using fault dictionaries. In our current work, we make use of several 
concepts from this earlier work, namely, Low Level Faults (LLF), Lightweight Fault Injector 
(LWFI), Fault Dictionary (FD) and Integrated Fault Injection Campaign (IFIC). The NFTAPE 
automated fault injection environment [12], which is based on these concepts, is chosen as the tool 
for the current study. 

Low-level faults refer to faults at the level of transistor, chip or memory bits which are close to the 
manifestations of actual physical faults (as opposed to high-level faults which are indirect 
manifestations of complex faults in application or system software). A fault injector whose only 
function is to inject faults and which relies on other services for the common tasks like 
communication, workload generation, fault triggering, logging, etc., is called a Lightweight Fault 
Injector (LWFI). A fault dictionary details the impact of faults on some subset of the target system in 
terms of the resulting change in the subsystem's behavior as seen from outside the subsystem. For 
example, a current surge in a particular transistor of an adder circuitry can result in a wrong data 
value being output by the adder chip. In a fault dictionary, theoretically, knowing any low-level fault 
(such as, current spikes) and its location and temporal information, one can look up the corresponding 
entry to find what higher-level fault it causes. This can provide a very powerful tool in dependability 
evaluation of our target dynamic distributed systems. Having constructed the fault dictionary for such 
a system (or certain components of the system), and knowing the low-level fault environment, one 
can develop and deploy fault injectors to inject high-level faults. The rationale behind this approach 
is that it is usually easier to obtain the characteristics of lower level faults, while fault injection can be 
accelerated if the injection is performed using higher level fault models. An Integrated Fault 
Injection Campaign consists of a listing of the LWFIs, their targets, their trigger conditions, and a 
specification of the concurrency of their execution.  

To our knowledge, this paper presents the first attempt at using fault injection for dependency 
characterization in distributed e-commerce systems. It provides a taxonomy of high-level faults 
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typically observed in e-commerce environments and uses fault dictionaries to derive low-level 
injectable faults from them.  

3. Dependency Analysis Method 
3.1. Logical Structure of an E-Commerce Environment 

Consider the logical structure of a typical three tier web-enabled e-commerce environment, 
depicted in Figure 2. In the setup, a typical end-user activity is initiated through a web browser client. 
A sample activity comprises visiting an internet store front, searching for some items, and finally 
making the purchase of one or more items. The activity is decomposed into several transactions each 
of which obeys the traditional ACID properties – atomicity, consistency, isolation, and durability. 
Examples of transactions are registering a user name and password, doing a database query for a 
particular item in the store, validating a credit card for a buying activity, etc. The transactions are 
initiated by sending requests to the web server. The web server invokes the servlet engine for 
processing the request, and the servlet engine spawns servlets, which implement the business logic. 
The servlets use tables stored in a database at the backend for processing the request. Finally, the 
response for the transaction is communicated back to the end-user by the web server.  

Web client Web server
Application 

Server
(WebSphere)

Database
Service

Middle tier

Customer Activity Set
Browse, Buy, Pay, Register, etc

System Transaction Set
T1, T2, T3, …

Application Logic
Servlets, S1, S2…

ORIGINATES

PROCESSES

IMPLEMENTS

 
Figure 2. Model e-commerce environment to be used for applying dynamic dependency 

characterization method 

3.2. Dependencies in an E-commerce environment 
First we define some concepts and some ground rules for the environment under consideration. An 

activity is defined as a high-level task initiated by the end-user through the web client. The activity 
will cause a set of transactions to be submitted to the middle tier of the environment. The successful 
completion of the activity is dependent on each of the constituent transactions completing 
successfully. The transactions that are processed in an e-commerce environment depend on a set of 
hardware and software resources, e.g., database tables, network connectivity, a key server for 
providing keys for a secure transaction, etc. This set of resources for a transaction, Ti is called the 
Transaction Dependency Set (TiD). The dependency relation of a transaction on a resource can be 
absent(A), weak(W), medium(M), or strong(S). Our research shows that the strength metric is 
dependent on the context for which we are planning to use this information.. For example, the metric 
may have one set of values for fault and availability management and a different set of values for 
performance management.  In the e-commerce example that we have used in our research, we have 
assigned the values based primarily on performance management dealing with response time related 
metrics. The relation between transactions and resources can be conveniently represented as a matrix 
(Table 1) with the cells indicating the strength of the dependency. A similar representation was 
introduced in [2]. 
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 Transaction T1 Transaction T2 

     Resource R1 A M 
Resource R2 S S 
Resource R3 W A 

Table 1. Matrix representing dependency relation of transactions on resources. 
(A = Absent, W = Weak, M = Medium, S = Strong) 

The difference between the dependencies of two transactions on a resource is given a measure 
which follows the relation shown in the lattice in Figure 3. For example, if (S-A) is given a measure 
of 5 units, (M-A) can be given a measure of anything less than 5. Say, it is given a measure of 3 units. 
The (M-A) difference does not constrain the assignment of the (S-M) difference since there is no 
edge between the two nodes. The exact assignment of the differences is governed by the specific 
details of the system. A measure called closeness is defined between every pair of transactions as the 
sum of the differences over all the resources in the environment.  

(S-A)

(M-A)

(W-A) (M-W)

(S-M)

(S-W)
 

Figure 3. Lattice representing difference between degrees of dependency 

3.3. Protocol Details 

The high-level steps to be followed in the process of dependency characterization of a distributed 
system using fault injectors as perturbors is described below. The steps also outline how the 
dependability characterization can finally lead to problem determination. 

1. Suppose the QoS of an activity X is found to violate the service level agreement (SLA).  Suppose 
that it is determinable through an application characterization that activity X uses transactions 
T(X) = {TX1, TX2, ..., TXn}. For example, a buy activity will require establishment of a secure 
session with the client, typically through the Secure Sockets Layer (SSL) session-level protocol. 
We choose other activities (Y1, Y2, ..., Yn) from the workload set such that T(X) � T(Y1) �� � ... 
T(Yn) is as close to T(X) as possible, by the definition of closeness in section 3.2. How such 
activities Y1, Y2, ..., Yn are chosen is a topic of ongoing research and is outside the scope of this 
discussion. For the purposes of the rest of the paper, we will assume that each activity consists of 
a single transaction, thus making the selection of the set simple. The number of such activities 
chosen, n, is a parameter to this process and depends on how much time is available for the 
process and the confidence to be placed on the process' output. 

2. Run activities Y1, Y2, ..., Yn and mark the ones that are also found to have the problem, i.e., 
violate the SLA. Say, these activities are Z1, Z2, ..., Zk. Now consider the transactions that are 
common to all the problematic activities, including X. Then, the Suspect Transaction Set (STS) = 
T(X) � T(Z1) � ... � T(Zk). 

3. Consider one transaction Ti from STS. From an incomplete dependency characterization 
(through ADD, or static dependency knowledge, say), it is known that Ti depends on a certain set 
of hardware and software resources in the system, H1, H2, ..., Hm, and S1, S2, ..., Sn..  This is 
denoted by TiD. If no such prior dependency analysis is available, then we start by including all 
the hardware and software resources in the system in this set. The set will be successively pruned 
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in the following steps and therefore, the method will still be able to identify the dependency 
though it will take longer to reach termination.  

4. The set of resources on which transaction Ti depends is put in the Diagnosis Set (DS), which is 
the set of resources which are potentially malfunctioning. The set NDS, which is the set of 
resources that have been determined to be functioning correctly is initially empty. Now consider 
a set of faults that we would like to perturb the resources with. The set will be heterogeneous 
since there are different kinds of resources. Say the function mapping the resource to the faults in 
the set is LLF (for low level fault). We denote the function LLF since it is generally assumed that 
we can determine more accurately the fault characteristics of the low-level faults, i.e., it is easier 
to say how many bit flips in memory there are likely to be than how many lock release errors in a 
software module. However, this assumption is not required for the process to work, it is simply 
used as a basis for the nomenclature. For the purpose of the fault injectors which will be used to 
insert the perturbation in the system, we have to arrive at the fault model at the appropriate level 
at which the lightweight fault injector (LWFI) is available. For this purpose, we use the fault 
dictionary for the system (FD) to scale the postulated fault model up (e.g., from the transistor 
level to the chip level) or down (e.g., from the application level to the chip level). So, the LWFI 
 for the hardware resource H1 in the set DS is given by  LWFI(H1) = FD(LLF(H1)). There is 
also the issue of degree of perturbation of the fault injector. By degree, we mean what is the rate 
of fault injections, e.g., how many memory bit flips per second are introduced, or how many 
messages (one out of every n) are corrupted on the network link. For the first fault injection 
campaign, the degree of perturbation is denoted by d1. Therefore, the fault injector for H1 
becomes LWFI d1(H1). An Integrated Fault Injection Campaign (IFIC) that incorporates the fault 
injectors for all the resources in DS is given by IFIC1 = LWFId1(H1)  LWFId1(H2)  ...  
LWFId1(Hm)  LWFId1(S1)  LWFId1(S2)  ...  LWFId1(Sn). The symbol  denotes the 
coordination between the various LWFIs, e.g., the temporal relations between their triggers that 
can be specified through NFTAPE [12].  IFIC1 is run for a certain length of time and the output 
QoS metric(s) measured. A series of successive integrated fault injection campaigns are run by 
varying the degree of perturbation. The series is given by IFIC1, IFIC2, ..., IFICk. The objective is 
to prune the DS (Diagnosis Set) for the transaction Ti. Once the DS cardinality decreases by one, 
terminate the IFIC series, go back to the beginning of this step and repeat. The repetition 
terminates when the DS cannot be pruned any further, which, for some cases, will be when it 
becomes empty. If the DS becomes empty, it implies that none of the resources transaction Ti 
depends on is malfunctioning; the problem lies somewhere else.  

5. Go back to step 3 and repeat for every transaction from STS (Suspect Transaction Set). At the 
end, we will obtain a set of possible malfunctioning resources on which our original activity X 
was dependant and hence violating its SLA. Note that if step 4 puts a resource in DS of one 
transaction Ti and NDS of another transaction Tj, we must conclude that the problem was 
transient and therefore, an offline problem determination cannot work. 

The method is summarized through the pseudo-code description in Figure 4. 
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 [1] Application X violates SLA.  

Execute similar applications and measure output QoS paramete rs to identify  Suspect Transaction Set (STS) 
STS = {T1, T2,  … ,  Tn } 

[2] for each  T h in STS do 
[a] Create  Diagnosis Set (DS) of potentially malfunctioning resources.  

Initialize DS with all hardware and software resources  T h depends on. 
DS = {H1, H2,  … ,  Hm ; S1, S2,  … ,  Sn } 

[b] for each H i in DS do 
[i] Pick the fault model (LLF), look up in fault dictionary (FD) to arrive at appropriate level of fault, 

instantiate  Lightweight Fault Injector (LWFI) for injection 
LWFI(H i ) = FD(LLF(H i )) 

end do 
[c] for each  S j in DS do 

[i] Pick the fault model (LLF), look up in fault dictionary (FD) to arrive at appropriate level of fault, 
instantiate Lightweight Fault Injector (LWFI) for injection 
LWFI( S j ) = FD(LLF( S j )) 

end do 
[d] Determine a range for degrees of perturbation DP = {d1, d2,  … ,  dp } 

for each  d k in DP do  
while DS is being pruned 

[i] Form Fault Injection Campaign (FIC) = (  LWFId k (H i ))   (  LWFId k ( S j )) 
[ii] Run campaign and collect measures of QoS parameters 
[iii] Prune DS based on measurements 

end while 
end for 

end do 
[3]  +  DS is the set of malfunctioning resources 

return ( +  DS) 
 

Figure 4. Pseudo-code for fault injection based method for dependency discovery 

4. Application of Technique 
The above fault injection technique is applied to a realistic e-commerce environment as an aid to 

problem determination.  The following sections discuss the application of the approach. The 
application is based on the algorithm presented above and is arrived at by instantiating all the 
unbound variables in the algorithm, such as the transactions and the resources.  

4.1. Environment 
Consider a typical end-user e-commerce activity initiated through a web browser client. The 

activity comprises visiting an internet store front, searching for some items, and finally making the 
purchase of one or more items. The activity is decomposed into several transactions. For our 
experiment we used the working transaction set provided by the TPC-W benchmark, proposed by the 
Transaction Processing Performance Council [13]. This set comprises typical transactions that one 
would observe in a storefront implementation such as an online bookstore. A simplifying assumption 
from the algorithm presented in Section 3 is that in this application scenario each activity consists of 
exactly one transaction. In this example, TPC-W uses the following tables in the backend database: 
Item, Country, Author, Customer, Orders, Order line, Credit card transaction, Address.   

Our study is based on the setup shown in Figure 5, where we have depicted a typical, transactional 
e-commerce environment consisting of five key function groups: 
• Core HTTP engine: receives and dispatches a user transaction to the appropriate servlet that 

handles the business logic. 
• Servlet engine: collection of servlets and their execution environment that together support the 

business logic. 
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• Enterprise Java Beans Server engine: provides session support for the transactions and database 

connectivity. 
• Database Engine: houses the back end data base and associated execution environment. 
• Key Server Engine: provides support for security and authentication. 

A typical transaction is dependent on various resources belonging to each of these logical function 
groups. As an example, we list below a subset of the TPC-W transactions that constitute typical 
customer activity. Some of the transactions use encryption and are noted as being secure, while others 
pass information on the network in the clear and are marked as being non-secure. 
1. Customer registration (non-secure): returns to the browser a web page, which allows a user to 

provide the information necessary to register as a known customer or as a new customer and to 
submit his registration. 

2. Home web page interaction- browse (non-secure): returns to the browser a web page which 
contains links to product lists for new products and for best sellers. This is the initial web 
interaction requested by all users starting a new user session. It is also a navigation option to 
most other web pages. 

3. Search request (non-secure): returns to the browser a web page which allows a user to specify 
search criteria to find qualifying items. 

4. Search response (non-secure): returns to the browser a web page which contains the list of items 
that match a given search criteria. 

5. Shopping cart web interaction (non-secure): allows the user to create a new shopping cart, or 
refresh an already existing cart from an earlier session. It is also used to add new items to the 
cart, or update existing items. 

6. Buy request (secure): displays a summary of the items in the shopping cart. The page provides 
editable fields for entering credit card information and selecting shipping options. 

7. Buy confirm (secure): transfers the content of the shopping cart into a newly created order for the 
registered customer and executes a full payment authorization. It then returns to the browser a 
web page containing the details of the newly created order. 

8. Order inquiry (secure): returns to the browser a web page which allows a user to provide the 
information necessary to enter or confirm his identity as a returning customer. This lets the user 
query about his last order. 

4.2. Solution Approach 
The first step is to produce a logical function model of the system that allows the enumeration of 

the resources that support the working of a specific transaction within the e-commerce environment. 
Figure 5 depicts a subset of the resources that come into play in a typical 3-tier e-commerce setup as 
shown in Figure 2.  

When a fault is reported by a customer in a transaction, the possible root causes are narrowed 
down to a set of resources on which the transaction depends, using the results obtained by Active 
Dependency Discovery (ADD). A fault injection system is designed to inject appropriate low level 
faults into each of these resources to study the behavior of the transaction, in order to eliminate 
spurious dependencies and to narrow down the root cause to a smaller set of resources. The partial 
matrix of dependencies computed for our TPC-W environment is shown in Table 2 below. 
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Figure 5. Logical Function Groups in a Typical e-commerce Environment 

As an example consider the case where a customer activity − browse an item from an electronic 
store − causes a problem to occur. This activity consists of one transaction, T2, with an associated 
dependency set obtained from Table 2. Referring to the method presented in Section 3.3, the Suspect 
Transaction Set (STS) therefore consists of T2, and the diagnosis set DS = T2D ={Customer Table, 
Item Table, Session Pool, Servlet2, Servlet3, DNS}, and NDS = {NULL}.  Recall that TiD is the set 
of resources that a transaction Ti depends on (see section 3.3, step 3).   

 T1 T2 T4 T5 T6 T7 
Customer 

Table 
S S  S S S 

Item Table  S S    
Author Table   S    
Order Table    S  S 

Address Table S     S 
Order List 

Table 
    S S 

Country Table      S 
Session Pool  M  W W  
Servlet1 S      
Servlet2  S     
Servlet3  S  M   
DNS Server W W     
Security 

Server 
    M M 

Table 2.  Partial Dependency Matrix for Experimental TPC-W Environment 
We choose a set of transactions “close” to T2 as described in step 1 of the algorithm in Section 

3.3.  That is, we compute the “closeness” of each transaction in the matrix to T2. For example: 
Closeness(T2, T5) = (S-S)+(M-W) +(S-M).  If this value is less than a predetermined threshold, we 
include the transaction in the list.  Let the final list be T5 and T6.  Thus, T5D = {Customer Table, 
Order Table, Session Pool, Servlet3} and T6D = {Customer Table, Order list Table, Session Pool, 
Security Server}. 

TPC-W has drivers to run each of the above transactions individually to study their performance.  
After doing so we discover that transaction T5 and T6 run with acceptable performance. We 
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conclude, therefore, that STS = {T2}. As a consequence of this step, the Diagnosis Set is given by, 
DS = T2D – [T5D U T6D] = {Item Table, Servlet2, DNS} and NDS = {Customer Table, Servlet3, 
Session Pool}. Thus, at this point, DS contains the most likely root cause of the problem.  

Next we generate a fault injection campaign using the system shown in Figure 6. 

High Level Observable 
Fault on Transaction T

Resource R1

LWFI LWFI

Resource R2

LWFI LWFI

Resource R3

LWFI LWFI

Fault Injection Campaign Manager

Fault Dictionary Service

Fault Dictionary
Manager

Fault
Dictionary

LWFI
Repository

Fault Injection
Campaign

Fault
Injection
Triggers

Resource Dependency Set for Transaction T

 
Figure 6. Method for Constructing a Fault Injection Campaign 

In our example the three resources, Item Table, Servlet2, and the DNS server correspond to 
elements in the Resource Dependency set.  It is assumed that each of these resources has built-in light 
weight fault injectors (LWFIs) that can inject faults on receiving triggers from the Fault Injection 
Campaign Manager. Using the method outlined in Section 3.3, we design a fault injection campaign 
for each of the elements in the DS. Our approach assumes the presence of a fault dictionary.  One of 
the goals of this research is to come up with a method for constructing an appropriate fault dictionary 
to aid in the design and implementation of a problem determination system.  For our experiment, we 
start with a hand constructed fault dictionary for the environment under test. A logical structure of 
such a fault dictionary is shown in Figure 7. 

In our example, if the high level observable fault, as reported by the customer was performance 
related, e.g. a buy transaction takes too long to complete, we find from the table the possible low 
level faults that can be injected into the resources that remain in the diagnosis set DS. Thus an 
example fault injection campaign may be expressed as: LWFI (Item Table) = {Memory fault, Data 
field overrun, Lock contention}, LWFI (Servlet2) = {Resource starvation by reducing the number of 
threads available in the thread pool, CPU resource starvation by running some other compute-
intensive workload on the same processor}, and LWFI (DNS Server) = {Performance fault by 
submitting high volume of DNS lookup requests on the same server, Corruption of DNS entry}.  
Each of these faults is injected in turn and the performance of transaction T2 in STS is observed. In 
the general method, the integrated fault injection campaign can have LWFI’s executing concurrently. 
However, in such cases, it becomes difficult to associate the observed system response to particular 
faults. Therefore, for simplicity, sequential execution of the LWFI’s is considered for the example 
scenario. The result of this step is to eliminate those dependencies that are not relevant for this 
transaction, e.g. if servlet3’s perturbation does not affect the performance of T2, then we will 
eliminate it from the DS.  Eventually, the DS will be pruned to a set consisting of only those 
resources that could have been the cause of this problem. Additional diagnostic methods, such as log 
file analysis, can now be applied to get to the unique root cause of the observed problem. 
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Figure 7. A Representative Three-level Fault Dictionary 

The key advantages gained by using our system are twofold:  
• Computed a set of suspected resources for problem determination using dependency analysis 

employing fault injection.  This helps to focus the problem determination procedure to a set of 
possible root causes. 

• In typical e-commerce systems, as depicted in Figure 5, the list of dependencies can be quite 
large, many of them spurious.  This step helps speed up the problem determination procedure by 
rapidly reducing the set of possible root causes.  

Additional diagnostics that will need to be performed to get to the root cause can work with only a 
few resources rather than a large number, resulting in more effective and faster problem 
determination. 

5. Conclusion 
This paper discussed the use of well proven fault injection techniques in discovering service and 

resource dependencies in distributed systems as a step towards efficient problem determination. A 
method was presented for starting with a large set of potentially malfunctioning resources and 
successively pruning the set using a set of fault injection campaigns. The method was applied to a 
real-world web-based e-commerce environment to illustrate how it can aid in root cause 
determination for an end-user visible problem. 

One problem with the approach is that it is invasive in nature and  hence needs careful 
consideration of the conditions under which it can be applied. Can it be applied in an operational 
system without affecting the normal operation? A notable point here is that the algorithm will be 
triggered due to a problem indication, such as a SLA violation. Thus, the system is already in a 
malfunctioning mode. Therefore, if the proposed technique can be executed promptly and the errant 
resources identified and replaced with backups or hot standbys, the system can be brought back to a 
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correctly functioning state. However, it is possible that the fault injection campaign is extremely 
invasive and completely halts the operation of the system. It is a debatable issue whether it is 
desirable to continue to run a system under malfunctioning conditions when certain QoS guarantees 
are not being met, or completely halt the system, run diagnosis routines and then bring back a fully 
operational system as soon as possible. It is most likely that such a decision will have to be made on a 
case-by-case basis depending on the requirements from the system. 

A second point that will determine the applicability of the proposed method is the amount of 
support available from the system resources which will be made the targets of the lightweight fault 
injectors. For some types of injectors, little or no support is required from the resource, e.g. to insert a 
stuck-at-fault at a chip’s pin. However, for some other classes of faults, the resource needs to support 
the injector, e.g., a software fault injector which delays messages in a message-passing based 
distributed application needs to be compiled in with the application to be able to manipulate the 
application’s message queues. An area of research that could be important in this context is the 
design of a method that allows an application developer to include LWFI specific to his application 
during the design and development phases.  

As the current research evolves and an implementation is applied to a real-world system, the 
approach will need to be compared against other approaches to problem determination, such as event 
correlation. The measures for such a comparison will include the accuracy of diagnosis and the speed 
of convergence of the technique. 
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