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This paper presents the elements of a framework enabling QoS-aware service deployment over programmable heteroge-
neous networks. For ease of service deployment, it is expected that network management tools will require the network
itself to participate in this task so as to be able to scale to very large numbers of network elements, with widely varying
programmability levels. Three categories of service deployment are considered, namely services spanning along paths
in the network, services involving only selected nodes, and combinations of both. The underlying hierarchical structure
and the representation of capabilities used by the mechanism to deploy new services into a network automatically are
presented. A formal description of the mechanism based on a Gather-Compute-Scatter paradigm is introduced and then
illustrated by examples of all three service-deployment categories.
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1 Introduction
Ideally, new services should be deployed in a network so as to make optimal use of its capabilities. Given
that both the number of services as well as the possible combinations of distributed network capabilities
to support a given service are expected to dramatically increase in the near future, a manual deployment
becomes less and less adequate. Moreover, network elements in general offer an increasing spectrum of
capabilities, some with dedicated specialized functions, others with programmable behaviors, in soft- or
hardware, thereby multiplying the number of deployment alternatives.

In the context of large heterogeneous and programmable networks, it seems therefore contradictory to
deploy services in a scalable as well as optimized manner. This contribution shows how this can be solved.

In order to enable interoperability and faster creation of services, standardized Application Programming
Interfaces (APIs) for network elements are being defined. While such APIs definitely ease the deployment
of services within a particular network element, they do not define how to organize the deployment at a
network level, where connectivity and individual capabilities are heterogeneously distributed.

The framework presented here allows the distributed capture of the dynamic capabilities of a network to
support a new service and organizes the deployment based on specific service-allocation policies, thereby
addressing the programmability and heterogeneity aspects of the network. This contribution is, to our
knowledge, the first to recognize and propose solutions to this particular problem.

The motivation of our approach can be viewed as similar to that of quality-of-service (QoS)-aware routing
protocols. Such protocols replace lengthy and error-prone manual steps of provisioning resources within
a network to guarantee a certain level of QoS. By handling the information related to the available QoS
in the network internally, routing protocols can perform this task more efficiently than any operator or
management platform alone could.

This paper is structured as follows: Section 2 reviews related activities. Section 3 first classifies the
types of services supported by the framework presented here, then briefly reviews some of its key elements
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such as the hierarchical architecture and the capabilities representation. Section 4 introduces a formal-
ism for hierarchically-distributed computations, and presents the details of the mechanism, illustrated with
examples of three possible service-deployment categories. Section 5 contains a brief summary of this con-
tribution as well as an outlook.

2 Related Work
Few activities focus on the automated deployment of services over large heterogeneous programmable
networks. Hierarchical architectures have been used in routing protocols, service discovery, network man-
agement, and, more recently, sensor networks [Kum01], but have not yet been considered in the context of
deploying services. Let us briefly review the main activities of related work.

In [CKV+99], the need for an automated design, creation, and deployment of network architectures
is presented, and a high-level methodology to spawn virtual network architectures based on the Genesis
profiling system that relies on distributed object technology and centralized profile databases is proposed.
In [BS99], a framework to isolate between services deployed in different virtual active networks (VANs) is
presented, whereas the creation of a VAN essentially remains a manual task.

Dynamic composition and deployment of services in the context of end-to-end application sessions are
addressed in [NWX00, NPB01, CTW01]. This applies for instance to the setup of a network path for a mul-
timedia session based on the availability and cost of image transcoders and compression service components
active in intermediate network nodes.

Hierarchical structures are used in IP and ATM networks to aggregate and propagate routing information.
While IP networks only aggregate routing information, with two to three levels of hierarchy, ATM-PNNI
[AF96] also summarizes bandwidth and delay characteristics to allow QoS routing. In [IS99], a complex
node representation that captures the relevant characteristics of the nodes at the lower hierarchy levels is
proposed. Likewise, distributed network management [YGY91, LS01, SQK00, QK99] uses hierarchical
structures to better scale with large numbers of nodes and complex management tasks such as distributed
monitoring with mid-level managers. In [XNW01, CZH+99], the discovery process of distributed services
over wide-area networks exploits a hierarchy of service brokers to propagate end-hosts queries and to cache
advertisements of installed media gateway services.

In [KS00], the need for a distributed and programmable management platform for the future Internet
is presented, and simple navigation patterns for mobile agents are described. The underlying hierarchical
structure in our contribution can be viewed as another, more sophisticated navigation pattern used by mobile
agents to perform the specific task of scalable service deployment.

To accelerate the deployment of network protocols, efforts have begun focusing on the standardization
of interfaces in networking equipment, either in the form of control protocols for label switches (IETF
GSMP [DHSW00]), IP routers (IETF FoRCES [F01]), and media gateways (IETF MEGACO [GRR00]),
or more generic APIs such as those described in [Pet99, Bis00, CF00, dKTG00]. It is expected that in a
heterogeneous network a variety of solutions are likely to coexist.

3 Service-Deployment Framework
Large-scale service deployment over programmable networks requires an automated installation mecha-
nism. To provide this, a number of new elements need to be defined. Here, we present the key elements of
the service-deployment framework. Services have to specify their needs, whereas elements in the network
have to present their capabilities in a compatible and uniform way. To handle the vast amount of data and
processing this entails, a hierarchical architecture is introduced. The successive steps of the algorithm to
deploy services are executed along this hierarchical architecture, and result in the installation of services in
the network according to specific allocation policies.

Moreover, by remaining service agnostic, i.e. by not being targeted at a particular type of service, this
framework will provide adequate support for future services. Similarly, future equipment providing en-
hanced or newer functionalities will be supported.



Distributed Service Deployment over Programmable Networks

F1

F3

N1

N2

N3

N4

F1

F3

N1

N2

N3

N4

P1 P1

(a) continuous path-based (b) sparse path-based

F2 F2

Fig. 1: Types of path-based deployment.

3.1 Categories of Services
Services are assumed to be decomposable into sets of functions to be executed by individual nodes. We
distinguish three categories of service deployment:

� path-based, between a set of source(s) and destination(s), which is further divided into two types:
– continuous, for which a set of functions must be present in each node on the path, and

– sparse path-based, or discontinuous, for which a set of functions must be present in the set of
nodes on the path (see Fig. 1). Note that the functions in the set might have ordering rules, i.e.
F1, F2 and F3 must be executed in this sequence,

� node-based, for which only selected nodes need to be activated, and no source/destination pairs are
specified, but rather domains, and

� path- and node-based deployment, for which extremities of paths need specific capabilities, differing
from the in-between nodes.

The service deployment category is reflected in the service-specific allocation policy. In addition, we
classify control-plane services based on explicit or implicit addressing. Implicit-addressing-based signaling
does not require a node to use the addresses of its peers that run the same service to correctly execute that
service. Examples are in-band signaling such as IETF differentiated services (diff-serv) [BBC+98], and
out-of-band soft-state signaling such as IETF RSVP [BZB+97] (note that RSVP messages are not included
in data packets, hence the out-of-band signaling). For instance, RSVP PATH messages are forwarded just
like any other data packet, regardless of whether the next hop is RSVP capable, and this can lead to weak
QoS guarantees. Conversely, explicit-addressing examples include most routing protocols in which routing
update messages are explicitly addressed to the peer routers.

All three deployment categories of control services are supported by the framework proposed here. More-
over, both implict- and explicit-addressing services are supported by means of an appropriate advertisement
procedure (implicit-addressing services need to be advertised so that data packets requiring such services
are routed over an appropriate path).

For a service to be deployed according to its requirements, i.e. into the appropriate network nodes that
have the corresponding capabilities, a common description for node capabilities and service requirements
needs to be defined. The representation of node capabilities can, for instance, be expressed in XML, as
an extension to the IETF host-resource MIB [GW93]: it includes a description of the type of APIs to
access, configure and operate the resources in the node, either base ([Bis00]) or higher-level resources such
as OS-resident services, as well as the utilization of these resources. A dual representation for services
is used to match against node capabilities. This representation includes the required node capabilities to
accommodate the service. The actual evaluation process of node capabilities against service requirements
exceeds the scope of this paper.

Network processors (NPs) are one of the key building blocks for a programmable network infrastructure.
They have widely varying capabilities, such as the number of simultaneous forwarding tables supported (re-
quired for VPN support), hardware-level programmability (required for fast packet handling), and software-
level programmability. Figure 2 shows a short example of possible NP capabilities. Using XML for such
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<Network_Processor>
<base_capabilities>
<API_supported> CPIX, PIN_1520, MIB </API_supported>
<PIN_1520_specifics>

<version> 1.3 </version>
</PIN_1520_specifics>
<general>

<processing>
<speed> 500 MHz </speed>

</processing>
<scheduling>

<total_bandwidth> 100 Mbit/s </total_bandwidth>
<type> WFQ </type>
<max_queues> 1000 </max_queues>

</scheduling>
<buffers_management>

<total_buffer_size> 1 MB </total_buffer_size>
<max_buffer_pools> 16 </max_buffer_pools>
<buffer_sharing> yes </buffer_sharing>
<RED> yes </RED>

</buffers_management>
<forwarding>

<type> hardware </type>
<programmable> yes </programmable>
<fields> source destination address port </fields>
<line_rate> 100% </line_rate>
<table_size> 100k </table_size>
<number_of_tables> 1 </number_of_tables>

</forwarding>
</general>
<resource_usage>

// current usage for the defined capabilities
</resource_usage>

</base_capabilities>
<diff_serv> // absent if NP does not provide

// explicit support for diff-serv
<API_supported> PIN_1520 </API_supported>

<general>
<classifier>
<fields> 6 </fields>
// etc

</classifier>
// etc

</general>
<resource_usage>

// current usage for the defined capabilities
</resource_usage>

</diff_serv>
// etc

</Network_Processor>

Fig. 2: XML representation of the capabilities of a network processor.

a representation rather than a MIB-like structure is interesting because owing to its self-contained structure
XML is easily extendable.

3.2 Service-Deployment Hierarchy
Compared to existing hierarchies used for routing or network management, the service-deployment hier-
archy extends the summarization (or aggregation) techniques to treat more generic information than only
IP- or ATM-addressing and QoS. In addition, whereas network management mostly performs collection
and aggregation of data upwards, the service-deployment hierarchy is used both ways: to collect data and to
execute the deployment of a service based on the data collected. Note that although the number of hierarchy
levels is not limited by the mechanism, the resources in the network to maintain this hierarchy are bounded.
ATM and IP networks commonly use three levels of hierarchy to aggregate routes, and a fourth level of
hierarchy is often hidden within distributed routers (clusters) that appear as a single node with a single IP
address to the outside. Extending the service hierarchy into such nodes can help automate the placement of
functions in clusters.
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Physical network topology is the main factor in creating a hierarchy, at least in fixed networks. A
spanning-tree is built by successively grouping nodes at each hierarchy level. Figure 3 shows a simpli-
fied example of a seven-node network on top of which a three-layer hierarchy has been built. Nodes B:1,
B:2, and B:3 are grouped together and represented by logical node B at the next level of the hierarchy. Rout-
ing across a hierarchical network requires the use of uplinks [AF96], as represented for node B in dashed
thick lines (B:1�A), (B:2�A), and (B:3�C) [uplinks (A:1�B), (A:2�B), and (C:1�B) are not shown].
For instance, when routing a virtual circuit from a source in A to a destination in C, uplink (B:3�C) shows
that B:3 is the only possible border node towards C, whereas in the opposite direction, uplinks (B:1�A)
and (B:2�A) show that B:1 and B:2 are the only possible border nodes towards A. For certain types of
services, proper deployment requires that nodes along entire paths are enabled with the service. In such
cases, the use of uplinks is necessary, as it will be illustrated later.

It is possible to construct many different hierarchies out of a given fixed physical topology, although ad-
ministrative constraints such as trust, addressing, and wiring can affect how groups are formed. Ultimately,
a possible hierarchy has to be evaluated in terms of performance, cost, and stability. The signaling delay for
connection setup is an indicator of the performance of a possible routing hierarchy [ADS00]. In the context
of service deployment, performance is indicated by the delay until a new service has been deployed. Cost
is calculated in terms of overhead processing in all nodes needed to set up and maintain such a hierarchy.
Finally, stability of the hierarchy under various network conditions is important, especially when it is used
to deploy and maintain services in a network. If the hierarchy is overly sensitive to topology changes,
unnecessary redeployment of services might result.

In fixed networks, routing and network management hierarchies generally remain stable, whereas ad-hoc
networks require special methods to dynamically adapt a hierarchy to varying connectivity [CJS99]. In
fixed networks, changes in the hierarchy occur only when groups are partitioned because of links going
down, or when a new node enters or quits a given group, such as a mobile network joining or leaving a fixed
network. Partitions can be avoided by employing an appropriate network design, for instance by having
multiple links interconnecting groups. The evaluation of possible hierarchies is left for further research.

3.3 Service-Deployment Mechanism

The service-deployment mechanism is divided into five steps. Figure 4 shows these steps and the resulting
deployment procedures when all or only some of the steps are executed. Using only the last two steps
in Fig. 4 leads to a manual deployment and automatic configuration of a service. This is how services are
generally deployed in networks today. With the intermediate solution, the result is an automatic deployment
with generic metrics and automatic configuration. Only when all five steps have been executed will an
automatic deployment with custom metrics and automatic configuration result. A more detailed description
of the mechanism is presented in [HDS01b].

4 Hierarchical QoS-aware Service Deployment
Now that we described the key elements of the service-deployment framework, this section concentrates
on the formalization of the service-deployment mechanism using an approach similar to [CMZB00], albeit
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Fig. 4: The five steps of the service-deployment mechanism.

with specific enhancements. We then illustrate how it is implemented for service deployment of the three
categories (path-based, node-based, and path- and node-based deployment), using examples of an in-band-
signaling implicit-addressing service (called diff-serv++), an in-band-signaling explicit-addressing service
(distributed web cache), and an out-of-band-signaling service (VPN, with both implicit- and explicit-
addressing). In the path-based category, after the detailed example of the continuous type, the complexity
of the sparse-type variant is presented.

4.1 Hierarchical Iterative Gather-Compute-Scatter (HIGCS) Algorithm
The mechanism is divided into a sequence of iterations each consisting of gather, compute, and scatter
phases. The sets of destinations and origins relevant for the messages exchanged in the scatter and gather
phases, respectively, are obtained from the compute phase. Note that these iterations can occur indistinc-
tively in logical nodes of the hierarchy as well as in nodes of the underlying physical topology.

Service-deployment HIGCS messages exchanged during these iterations follow the tree-like topology
of the service hierarchy. The logical node of a group is merely responsible for communicating with its
underlying peer group members of the scatter set. The logical node neither has to monitor all members of
its group nor perform all computations centrally. But without loss of generality, we assume in the following
descriptions that the scatter set is always determined by a central computation performed by the logical
node rather than distributing this computation among group members. In addition, here we consider it more
appropriate to focus on the distributed computations taking place along the hierarchy dimension itself, than
on those within groups.

From this point on, logical nodes are considered to be the location of computation taking place on behalf
of the group members. Note that a logical node is nothing but a process executing in some underlying
physical node.

Each node executes iterative computations based on a tuple f(G i;Ci;Si)j0 � i � (k�1)g, where k is the
total number of iterations. The gather set Gi is defined here as the set of (logical or physical) nodes from
which messages are expected. The compute phase Ci executes once the iMsg messages have been received
from all nodes in Gi. The scatter set Si denotes the (logical or physical) nodes to which oMsg messages are
sent once the compute phase Ci completes. oMsgn messages can differ depending on their destination node
n in the Si set. Similarly to [CMZB00], node attributes are assumed to be available during the compute
phase. This includes, for instance, the hierarchy level at which the node is located.

The generic signaling message format used by the service-deployment mechanism is defined in Table 1.

4.2 Service-Deployment Computations
To perform service deployment, iterations are associated with the steps as described in 3.3. For that purpose,
we define the following general behaviors for Ci:

� C0 selects the set of underlying nodes S0 that have to be solicited (null set if executed on a physical
node),

� C1 summarizes information gathered from the set of underlying nodes G 1 (on a physical node, this
information is created), and places it in sMetric,

� C2 selects the set of nodes S2 where the service is to be deployed (on a physical node, this is the node
itself),

� C3 summarizes the results from the deployment on the set of nodes G 3 (on a physical node, this
information is obtained locally after the service has been installed), and places it in iMetric.
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Tab. 1: The HIGCS service-deployment message format and the HIGCS diff-serv++ message.

Parameter Generic value
serviceId Instance of service deployed

hierarchyId Identifier of service hierarchy
srcId Source of message
destId Destination

iterationId Current iteration
Gi Gather set for iteration i
Ci Compute function for iteration i
Si Scatter set for iteration i

servSpec Service specification
sMetric Solicited metric
iMetric Installed metric

. . . Other service-specific info

Parameter Diff-serv++ value
serviceId diff-serv++ ID

hierarchyId unique ID
srcId B
G0 null
C0 DS-solicit
C1 DS-summarize
C2 DS-disseminate
C3 DS-install

servSpec diff-serv++ specification
iMetric DS-iMetric
sMetric DS-sMetric

ends A, C

Clearly, these functions will be implemented differently for each service to be deployed, as we shall
describe next. The service-specific allocation policy is contained in the implementation of the C 1 and C2

functions.

4.3 Continuous Path-Based Deployment: Differentiated Service

Table 1 shows on the right-hand side the message used in the deployment of a hypothetical diff-serv++
service on all nodes of a path between two customer sites (represented by the A and C top-level nodes in
Fig. 5).

The computations executed for this example are shown in Table 2. For the sake of simplicity, the straight-
forward update of other fields in the oMsg (such as srcId) and fields that do not change compared to the
iMsg message are not shown.

Tab. 2: The diff-serv++ C0, C1, C2, and C3 functions.

C0 DS-solicit
S0  SelectAllNodesBetween(iMsg:ends)
oMsgn.ends  SelectNeighborNodes(n jn2 S0)
G1  S0
C1 DS-summarize
S1  GetLogicalNode()
oMsg.sMetric  if IsLogicalNode() then

SummarizeMetrics(iMsg j:sMetric, 8 j 2 G1)
else CreateMetric(iMsg:servSpec)

G2  S1

C2 DS-disseminate
S2  if IsLogicalNode() then

SelectNodesOnShortestPath(iMsg:ends)
else null

oMsgn.ends  SelectNeighborNodes(n jn2 S2)
G3  S2
C3 DS-install
oMsg:iMetric  if IsLogicalNode() then

SummarizeInstalledMetrics(
iMsg j:iMetric, 8 j 2G3)
else InstallService(iMsg:servSpec)

S3  GetLogicalNode()
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Fig. 5: (a) Solicitation step and (b) Summarization step.

DS-solicit
Figure 5 (a) illustrates the behavior of the SelectAllNodesBetween() and SelectNeighborN-
odes() functions used during the C0 computation, i.e. the first iteration in the HIGCS algorithm. When
it is executed at node B, SelectAllNodesBetween(A, C) returns the nodes of the scatter set B:1
through B:4, but not B:5 as it is not on a path (without loop) between A and C. For each node returned by
this function, the ends are updated using SelectNeighborNodes(), and a specific oMsg message is
forwarded to that node. For instance, SelectNeighborNodes(B:2) will return fA;B:1;B:3;B:4g, as
these are the direct neighbor nodes on a path between A and C when considering the uplinks (see Section
3.2). Uplinks (not shown) exist between (B:1�A), (B:2�A), and (B:3�C). The gather set G 1 for the
following iteration is set to the scatter set of the current iteration, i.e., responses are expected from each
node of S0 before executing C1.

This procedure is repeated until the messages reach physical nodes: there, S 0 and G1 are null, and the
next iteration begins. Nodes involved during the first iteration are shown in black in Fig. 5 (a).

DS-summarize
During this iteration, C1 either computes a metric for a physical node or summarizes such metrics for a
logical node. CreateMetrics() evaluates node capabilities against the specific diff-serv++ service re-
quirements servSpec. Routers capable of supporting diff-serv++ are shown in black in Fig. 5 (b). Summa-
rizeMetrics() computes a transition matrix [IS99] T with the shortest path composed of diff-serv++
capable routers only. The scatter set S1 is defined by GetLogicalNode() as the logical node associated
with the current node, for instance, node B for node B:1. S 1 defines the recipient for the oMsg message.
The gather set G2 for the following iteration is set to the same value as S1.

Transition matrices TB:1, TB:2, TB:3, TB:4, and finally TB, are obtained successively at each level of the
hierarchy. Each element mi; j of these matrices is defined as the shortest number of diff-serv++ capable hops
between border nodes i and j. Given the numbering of nodes chosen here and matrix T B, mi; j corresponds
to the path cost between nodes B:(i+1) and B:( j+1).

TB:2 = TB:3 =

0
@

1 : : :

2 1 : : :

3 2 1

1
A ;TB =

0
@

0 : : :

0 1 : : :

0 5 1

1
A

As matrices are symmetric in this example, only one half is shown. As can be seen from T B:2, B:2:4 is
simply ignored because this border node is not diff-serv++ capable.

Note that oMsg:sMetric contains only the result of the summarization. But until all iterations have
completed, each node keeps a state of the nodes composing the shortest paths whose costs are advertised in
T . This avoids recomputing these paths in the next step.
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Fig. 6: Dissemination step.

Minimum link bandwidth requirements for the service could be added, and used to compute the appro-
priate T . Similarly to flow routing, many different algorithms can be used to compute the best paths, such
as widest path first, where also the processing capability of nodes along the path could be considered. Every
service can specify its own preferences in C1. The complexity of path routing with multiple metrics can
be high or even become NP-complete, especially if additive metrics are used. Therefore, metrics definition
always has to be balanced against the complexity in its summarization that could arise if it is not chosen
appropriately.

The next iteration begins when all oMsg messages have been collected by B (i.e., coming from every
node in G1), as GetLogicalNode returns null at B.

DS-disseminate

Inspecting matrix TB reveals that m2;1 is different from zero, i.e., that the transit network is capable of
supporting the diff-serv++ service between the two customer sites A and C. Therefore, the dissemination
takes place, as shown in Fig. 6, where SelectNodesOnShortestPath() selects the shortest path at
each level of the hierarchy based on the transition matrices T provided by the lower level. The edges of the
shortest path are shown as thicker lines at each level.

This step directs the deployment of a service. More specifically, during this third iteration of the mech-
anism, the service-deployment message is forwarded by a logical node only to those nodes in which the
service needs to be deployed (defined as S2), rather than executing a complete flooding.

To avoid redeployment of a service whenever a routing change occurs, certain heuristics can be used
during the dissemination of the command so that the service is deployed not only on a certain path but on a
set of paths instead. These heuristics are left for further study.

When these messages reach the physical nodes, S2 and G3 are null, and the next iteration begins.

Note that nodes that are part of the set S0 but not of S2 will not complete their iterations. These nodes can
either time out and clear the state associated with the iterations already executed, or the state can be cleared
explicitly by sending a specific dissemination message to them.

DS-install

Physical nodes first execute this iteration and install the service. InstallService() for instance re-
turns a boolean, transmitted in oMsg:iMetric to the node set in S3. Logical nodes execute Summarize-
InstalledMetrics(), which can for instance perform a boolean AND from underlying results. Node
B eventually obtains confirmation that the diff-serv++ has been successfully installed. Routers with service
installed are shown in black in Fig. 6.
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4.4 Sparse Path-Based Deployment

Instead of installing the same diff-serv++ function in each node along the path, a sparse-type service requires
various functions (such as filtering, compression, transcoding, and encryption) to be installed in only certain
nodes of a path, as shown in Fig. 1.

Assuming that a set of functions F = fF1;F2;F3g has to be executed in this order between customer
sites A and C of the previous example, then shortest-path transition matrices that account for the cost of
traversing the logical nodes and executing such functions can be computed. Each solicited logical node
below B computes seven transition matrices, forming the set M(F1;F2;F3):

� T /0 (none of the functions are accounted),

� T fF1g (only F1 is accounted), and

� T fF1;F2g (both F1 and F2 are accounted), and

� T fF1;F2;F3g, T fF2g, T fF2;F3g, and T fF3g.

Other combinations, such as T fF1;F3g are dismissed as they would break the ordering rule. Note that node

B only needs to compute T fF1;F2;F3g
B . Ultimately, all three functions will be installed on a path between the

two customer sites, for instance with F1 executed in B:2, while F2 and F3 are executed in B:3. [CTW01]
presents an algorithm that computes shortest paths when a sequence of functions need to be executed along
the path, although only in the simpler form of non-hierarchical networks, and with total ordering of func-
tions.

We define l as the number of such matrices T :

l
4
= jM(F1;F2; : : : ;Fn)j :

In general, assuming total ordering of functions, l total order can be calculated as follows:

ltotal order = 1+
n�1

∑
i=0

(n� i) = 1+
n(n+1)

2

where n is the number of functions in the set F.
On the other hand, if there is no ordering rule at all, then the number l no order of matrices is:

lno order = 1+
n

∑
i=1

n!
(n� i)!

= 1+n! �
n�1

∑
i=0

1
i!

< 1+ e �n! as e =
∞

∑
i=0

1
i!
�= 2:718 :

Therefore, as opposed to continuous path-based deployment, scalability of sparse path-based deployment
depends heavily on the number n of functions composing the service as well as the number of combinations
allowed by the ordering rules. The number of transition matrices computed by each logical node is in the
order of O(n!) in the worst case, whereas it is O(n2) in the best case.

4.5 Node-Based Deployment: Caching Service

We consider here the deployment of a distributed web-caching mechanism. For each group of (physical)
nodes, the one having the best processing capability to support the service will be set up with it. Table 3
shows the C0, C1, and C2 functions used for that purpose.

In this example, nodes in the network are polled against the web-cache service requirements (outcome of
CreateMetric(iMsg:servSpec)). Out of each group, the node with the best metric is chosen (defined as
MAX(iMsg j:sMetric,8 j 2 G1)). The remainder of the summarization proceeds so that finally the metric of
the worst node (defined as MIN(iMsg j:sMetric,8 j 2 G1)) is known as indicator of how the entire network
can support the service. In the dissemination step, SelectBestProcessingNode() is used in the
logical nodes of the hierarchy layer just above the physical layer (where IsFirstLogicalNode()
returns true) to pick the best node in that group.
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Tab. 3: The web cache C0, C1, and C2 functions.

C0 CS-solicit
S0  SelectAllNodesInGroup()
G1  S0

C1 CS-summarize
oMsg.sMetric  if IsPhysicalNode() then

CreateMetric(iMsg:servSpec)
else if IsFirstLogicalNode() then
MAX(iMsg j:sMetric, 8 j 2G1)
else MIN(iMsg j:sMetric, 8 j 2G1)

S1  GetLogicalNode()
G2  S1

C2 CS-disseminate
S2  if IsPhysicalNode() then

null
else if IsFirstLogicalNode() then
SelectBestProcessingNode()
else SelectAllNodesInGroup()

G3  S2

Clearly, depending on the type of service to be installed, it might not be necessary to have an indicator of
how well the service can be supported at the highest hierarchy level. By modifying the above example as
shown in Fig. 7, the web-cache service is installed without executing all iterations: in any group of nodes
the service is directly installed on the best node provided it has at least a processing capability of minValue.
Otherwise, the service is not installed. Again, only the C0, C1, and C2 functions are shown in Table 4. An
indicator iMetric of how well the service is installed could be computed by a function C 3, counting for
instance the number of groups in which the service has been installed successfully.

Leaving the Gi set undefined prevents the Ci computation from taking place, whereas setting it to null
will immediately trigger the Ci computation. As C0 sets G3, this will cause C1 and C2 to be skipped in those
nodes for which the network capabilities need not be known when installing the service. These nodes are
represented by dashed lines in the pyramid in Fig. 7 (b).
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Fig. 7: (a) Caching Service and (b) Direct Caching Service service-deployment flows.

Allowing iterations to be skipped requires that care be taken so that no inconsistency occurs: a logical
node should not receive messages that belong to different iterations. The example above ensures that this
does not happen by having all nodes at the same level skip the same iteration. Resolving possible ex-
pected inconsistencies, as occur for instance in more sophisticated deployment scenarios, is left for further
research.

4.6 Path- and Node-Based Deployment: VPN

As an example of a service deployed both along paths and at selected nodes with differing requirements,
we consider the deployment of a VPN. Encryption capabilities are required at the VPN endpoints, and QoS
treatment of packets is ensured by RSVP-enabled nodes between those endpoints. This service is based on
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Tab. 4: The web cache C0, C1, and C2 functions for a direct install.

C0 DCS-solicit
S0  SelectAllNodesInGroup()
G1  S0
G3  S0

C1 DCS-summarize
oMsg.sMetric  if IsPhysicalNode() then

CreateMetric(iMsg:servSpec)
S1  if IsFirstLogicalNode() then

null
else GetLogicalNode()

G2  if (IsFirstLogicalNode() AND
(MAX(iMsg j:sMetric, 8 j 2 G1) � iMsg:minValue))
then
null
else if NOT(IsFirstLogicalNode()) then
S1

G3  if IsFirstLogicalNode() AND
NOT(MAX(iMsg j:sMetric, 8 j 2 G1) � iMsg:minValue))
then
null

C2 DCS-disseminate
S2  if IsFirstLogicalNode() then

SelectBestProcessingNode()
else
null

G3  S2

implicit addressing for the RSVP part and on explicit addressing for the encryption endpoints that have to
be configured with each other addresses.

Here we concentrate only on the metric used by the C1 function, and how to summarize it. TheC2 function
then uses this metric to pick the best VPN configuration, i.e. a lowest-cost spanning tree, successively at
each level of the hierarchy, using search methods such as presented in [Isa00].

The metric used is an extended transition matrix defined as follows:

T =
�

M ; P
�
:

Elements mi; j indicate the shortest number of RSVP-capable hops between border nodes i and j. Ele-
ments pi; j indicate the shortest path from a node in domain D j that fulfills the requirements of the VPN-
endpoint service specification to border node i. The VPN interconnects n domains D n. Logical nodes
represent these domains.

A.1.0

A.1.3

A.1.5 A.1.1

A.1.4

A.1.2
RSVP-capable

router

VPN-endpoint-
capable router

J

A.1.6

Fig. 8: A group of nodes solicited for the VPN service.

Figure 8 shows a group of nodes with their capabilities. For simplicity, it is assumed that all VPN-
endpoint-capable nodes are also RSVP-capable, but not vice-versa. The extended transition matrix for this
group is [assume mi; j corresponds to (A:1:i�A:1: j)]
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TA:1 =

0
BB@

1 : : : 1
0 0 : : : 0
4 0 1 : : : 3
2 0 3 1 1

1
CCA :

If we assume that logical node A:1 represents one domain and that logical node A:2 (not shown) represents
another domain, then the P matrix of the extended transition matrix for logical node A, composed of A:1 and
A:2, will have two columns p:1 and p:2, one for each domain. When summarizing such extended matrices,
a new column is appended for each domain considered.

4.7 Deployment Reliability and Auto-Configuration of Services
Installation can fail for multiple reasons, such as stale metrics. The iMetric can be set to False in the
diff-serv++ example to notify higher logical nodes of the failure. This event will trigger local repairs that
try to find a replacement path in the same group, and escalate the failure notification to the next higher
logical node if this is not feasible (this behavior has been deliberately omitted from the description of the
C3 function in Fig. 2).

Once installed, a service needs to be configured appropriately. It will either have to discover neighbors
with which it exchanges control messages (explicit addressing) or be advertised so that data packets are
routed towards their destination over nodes enabled with the service (implicit addressing). This configura-
tion problem is not specific to our mechanism. So far it has mainly been addressed by manual operations.
When routing needs to be aware of the installed service (i.e., implicit-addressing services such as presented
in 4.3), then having the service-deployment hierarchy aligned with the routing hierarchy will significantly
ease the advertisement procedure. In [HDB00] the various automatic discovery techniques for the config-
uration of explicit-addressing services are evaluated in the context of IP and ATM networks. Compared
to centralized directory services, PAR (PNNI Augmented Routing [AF99]) can be used to advertise such
services, as it is more robust and scalable. Examples of service advertisement procedures to automatically
configure a hierarchical IP network are given in [PDH00].

Once the service is installed and running, failures could still occur. The mechanism presented here does
not maintain state in nodes after completion of the deployment procedure. If nodes participating in the
service are unable to detect that an error has occurred (e.g., implicit-addressing services), then a special
monitoring function needs to be installed: the C3 function for instance installs a hard state (a state that
remains after the final iteration of the deployment procedure) in each physical or logical node where it
executes, and initiates a monitoring procedure that lasts for the duration of the service. This monitoring
procedure executes computations similar to C3 at regular time intervals, or when specific events occur.

5 Conclusion
New mechanisms that leverage the openness and programmability starting to appear in network equipment
are key to managing the intelligent network infrastructure. The automated deployment of services in open
programmable heterogenous networks is one such mechanism.

This paper has introduced a formalization called HIGCS of the steps proposed in [HDS01b] to execute
a generic automated deployment of services. A new taxonomy for describing the deployment needs of a
service is introduced and illustrated with examples of (continuous and sparse) path-based, node-based, and
path- and node-based deployment. In the case of sparse path-based deployment, the lower and upper bounds
of the number of necessary information elements (namely transition matrices for the chosen example) have
been presented. It was shown that, contrary to continuous path-based deployment, a careful selection of
the number of functions composing the service and of the number of combinations allowed by the ordering
rules is required if a sparse path-based deployment is to remain scalable.

The backbone of the mechanism, namely the hierarchical structure, allows commands to be progressively
refined and information to be aggregated. As each service can independently define its metrics and alloca-
tion policy in the service-deployment messages that travel along the hierarchy, it allows deployment to be
tailored to the specific needs of each service.
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The resulting automated deployment avoids time-consuming and error-prone manual operations. When
diversity of services increases and networks grow in size and heterogeneity, the deployment mechanism can
still capture the essential data for deploying any particular service, without losing information relevant to
that specific service.

Current work includes the simulation of service deployment over large-scale networks using mobile
agents, implementing the HIGCS distributed computation paradigm. In addition, specific information ag-
gregation methods that include economical factors are being investigated [HDS01a]. We also try to refine
the representation of relevant node capabilities to allow simple matchmaking against service requirements.
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