

Optimizing Probe Selection for Fault
Localization

Mark Brodie, Irina Rish, Sheng Ma
IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
(mbrodie, rish, shengma)@us.ibm.com

We investigate the use of probing technology for the purpose of problem determination and fault localization in
networks. We present a framework for addressing this issue and implement algorithms that exploit interactions
between probe paths to find a small collection of probes that can be used to locate faults. Small probe sets are
desirable in order to minimize the costs imposed by probing, such as additional network load and data management
requirements. Our results show that although finding the optimal collection of probes is expensive for large networks,
efficient approximation algorithms can be used to find a nearly-optimal set.

Keywords: probes, fault localization, problem determination, event correlation

1. Introduction

As networks continue to grow in size and complexity, system administrators are faced with an ever-
increasing volume of event data, and tasks such as fault localization and problem determination become
more difficult. As a result, tools are needed that can assist in performing these management tasks by
responding quickly and accurately to the large number of events and alarms that are usually generated by
even a single fault.

Probing offers the opportunity to develop an approach to problem determination that is more active than
traditional event correlation and other methods. A probe is a program that executes on a particular
machine (called a probing station) by sending a command or transaction to a server or network element
and measuring the response. Probing technology is widely used to measure the quality of network
performance, often motivated by the requirements of service-level-agreements. Examples of probing
technology include the T. J. Watson EPP technology [2] and the Keynote product [7].

To use probes, probing stations must first be selected at one or more locations in the network. Then the
probes must be configured – it must be decided which network elements to target and which station each
probe should originate from. Both probe stations and probes impose a cost – probe stations because the
probing code must be installed, operated, and maintained, probes because of the additional network load
that their use entails and because the probe results must be collected, stored and analysed. There is a trade-
off between these costs, since having more probe stations allows fewer probes to be used. Identifying
these costs is of considerable interest for probing practitioners.

As a first step towards this goal we investigate the question of configuring the probe set in order to
perform fault localization. The objective is to obtain a probe set which is both small, thereby minimizing

O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and ManagementDSOM'2001 Nancy France, October 15-17, 2001.

 Mark Brodie, Irina Rish, Sheng Ma

probing costs, yet also provides wide coverage, in order to locate problems anywhere in the network. We
describe a system architecture that provides a general framework for addressing this issue. Within this
framework we present and implement various algorithms in order to determine the relationship between
computational cost and the quality of the probe set that is obtained. Our results show that achieving the
minimal probe set can be accurately approximated by fast, simple algorithms that scale well to large
networks.

2. Approach

2.1 Problem Formulation

Finding the minimal set of probes requires answering the following questions: (1) Which probes are
available as “candidates” for use in a network? (2) Which faults can be successfully identified by a given
set of probes? (3) What is the smallest number of probes that can identify the same collection of faults as a
given set? Suppose the network has n nodes. Each probe is represented as a binary string of length n,
where a 1 in position j denotes that the probe passes through node Nj. This defines a dependency matrix
D(i,j), where D(i,j)=1 if probe Pi passes through node Nj, D(i,j)=0 otherwise. D is an r-by-n matrix, where
r is the number of probes. (This formulation is motivated by the “coding” approach to event correlation
suggested by [8].)

For example, consider the network in Figure 1. Suppose one probe is sent along the path N1->N2->N5
while another is sent along the path N1->N3->N6. The resulting dependency matrix is shown to the right of
the network (probes are indexed by their start and end nodes).

 Figure 1: An Example Network and Dependency Matrix

Each probe that is sent out either returns successfully or fails to do so. If a probe is successful, then every
node and link along its path must be up. Conversely, if a node or link is down then any probe passing
through that node or link fails to return. Thus r probes result in a “signal” – a binary string of length r,
each digit denoting whether or not that probe returned successfully. For example, if only N2 is down then
P15 fails but P16 succeeds. Similarly if only N5 is down then P15 fails but P16 succeeds. Thus these two
failures result in the same signal, because their columns in the dependency matrix are identical. Any
problem whose column in the dependency matrix is unique generates a unique signal and as a result can
be unambiguously diagnosed.

We begin by considering the situation where only one node in the network can fail at any given time. (In
Section 6.1 we discuss how to extend the dependency matrix to deal with multiple simultaneous failures.)
In Figure 1, examining the columns of the dependency matrix shows that that a failure in node N1 can be
uniquely diagnosed, because both probes fail and no other single node failure results in the same signal;

N4

N1

N2 N3

N5 N6

 N1 N2 N3 N4 N5 N6
P15 1 1 0 0 1 0
P16 1 0 1 0 0 1

Optimizing Probe Selection for Fault Localization

N1’s column in the dependency matrix is unique. However, as explained above, a failure in N2 cannot be
distinguished from a failure in N5, and similarly a failure in N3 cannot be distinguished from a failure in
N6. Although N4’s column is unique, a failure in N4 cannot be distinguished from no failure anywhere in
the network, because there is no probe passing through N4. Adding an extra “node” whose column is all
zeroes, representing no failure, avoids this technicality.

Thus a dependency matrix decomposes the network into a disjoint collection of nodes, where each group
consists of the nodes whose columns are identical; i.e. each group contains those nodes whose failure
cannot be distinguished from one another by the given set of probes. This defines the diagnostic power of
a set of probes. For example, in Figure 1 the diagnostic power is the decomposition {{1}, {2,5}, {3,6},
{4,7}}, where index j represents node Nj and N7 is the extra “node” representing no failure anywhere in
the network. A failure is diagnosable if and only if its group is a singleton set.

It is important to note that the network model is quite general. For example, layering can be
accommodated: if a web-server depends on TCP/IP running which depends on the box being up, this can
be modeled as a node for the box with a link to TCP/IP from the box and a further link from TCP/IP to the
web-server. Thus nodes may represent applications and links dependencies between those applications.
Similarly, a node may represent a sub-network of many nodes whose inter-connections are unknown. In
this case probing will determine that the problem lies somewhere in that sub-network, at which point some
form of local system management (perhaps including local probing) may be used to pinpoint the problem.

2.2 Architecture

The system architecture is shown in Figure 2. First the candidate probes are identified and the dependency
matrix and its diagnostic power are determined. Then a subset of the candidate probes is found with the
same diagnostic power as the entire set. Various algorithms are available to compute this, depending on
whether the minimal set of probes is required or if a non-minimal set is adequate.

The candidate probes may be provided as an input from an external source, such as a human expert, or
they may be computed as a function of factors like the structure of the network, the location of the probe
stations, the routing strategy, and so on. This is described in Section 3.1. The procedure for determining
the diagnostic power of a set of probes is explained in Section 3.2. Given the dependency matrix, the
algorithm for finding the minimal subset with the same diagnostic power is described in Section 3.3(i).
Approximation algorithms which are much faster but are not guaranteed to find the exact minimal set are
explored in Sections 3.3(ii) and 3.3(iii). The performance of all the algorithms is evaluated in section 4.
The choice of algorithm may depend on a decision criterion which specifies the cost/optimality trade-off.

Figure 2: System Architecture

Network
Structure

Probe
Stations

Human
Expertise

Identify
Candidate

Probes

Compute
Dependency

Matrix

Determine
Diagnostic

Power

Output
Final

Probe Set

 Mark Brodie, Irina Rish, Sheng Ma

3. Implementation

3.1 Determining the Initial Probe Set

It is important to point out that the architecture described above allows the set of candidate probes to be
provided from whatever sources are available; for example a human expert may specify which probes are
possible. However it may also be useful to compute the available probes from the network structure and
the location of the probe stations.

We begin by selecting from the n nodes a subset of k nodes as the probe stations. In this work we do not
address the question of how to select the probe stations, since they usually cannot be chosen to optimize
the probing strategy; other considerations, such as gaining access to the machines, may be more important
for choosing probe stations.

A probe can be sent to any node from any probe station. Thus the candidate set of probes could
theoretically contain a probe for every possible route between every probe station and every node. In
practice it cannot be guaranteed that a probe follows a particular path through the network, and thus
routing strategies restrict the set of available probes; for example a probe may follow the shortest (i.e.
least-cost) path through the network. This creates a candidate set of probes of size r=O(n)1; note that this
set is sufficient to diagnose any single node being down because one can simply use one probe station and
send a probe to every node.

As an example, in Figure 3, with N1 and N4 as probe stations, and weights of 1 on each link, the candidate
probes in the case of shortest path routing are:

 Figure 3: The Initial Probe Set

3.2 Determining the Diagnostic Power of a Set of Probes

Given a dependency matrix, the decomposition places all problems with the same column into the same
group. Thus a naïve approach would compare each column with every other column. We can do better by
proceeding row-by-row and computing the decomposition incrementally. The key is that adding a row (i.e.
a probe) always results in a more extensive decomposition, because nodes in distinct groups remain
distinguishable; an additional probe can only have the effect of distinguishing previously indistinguishable
nodes. For example, recall the probe set and decomposition from Figure 1:

 N1 N2 N3 N4 N5 N6 N7

1 To avoid repetitions, probes need only be considered from probe station i to probe station j if j>i. Thus
the size of the initial probe set is actually exactly kn-k(k+1)/2.

N4

N1

N2 N3

N5 N6

 N1 N2 N3 N4 N5 N6 N7
P12 1 1 0 0 0 0 0
P13 1 0 1 0 0 0 0
P14 1 0 1 1 0 0 0
P15 1 1 0 0 1 0 0
P16 1 0 1 0 0 1 0
P42 0 1 1 1 0 0 0
P43 0 0 1 1 0 0 0
P45 0 1 1 1 1 0 0
P46 0 0 1 1 0 1 0

Optimizing Probe Selection for Fault Localization

P15 1 1 0 0 1 0 0
P16 1 0 1 0 0 1 0 Decomposition={{1}, {2,5}, {3,6}, {4,7}}

Suppose we add the probe N4->N3->N2, giving the following dependency matrix:

 N1 N2 N3 N4 N5 N6 N7
P15 1 1 0 0 1 0 0
P16 1 0 1 0 0 1 0
P42 0 1 1 1 0 0 0 Decomposition={{1}, {2}, {3}, {4}, {5}, {6}, {7}}

Since each column is unique, any single node failure among the 6 nodes can be uniquely diagnosed; for
example a failure in N3 is the only possible cause of probe P15 succeeding and probes P16 and P42 failing.
Note that P42 achieved this decomposition by going through exactly one of the nodes in each group of the
previous decomposition – it passed through N2 but not N5, through N3 but not N6, through N4 (but not N7 –
no probe can pass through N7 because it represents no failure anywhere in the network and doesn’t actually
exist as a node).

We should point out that if N1 were the only probe station, so that the initial probe set was restricted to
only the first five probes given in Figure 3, no set of three probes could diagnose every single node failure.
Having N4 available as a second probe station helps to reduce the number of probes needed.

Each additional probe decomposes every group of the current decomposition into two subgroups
depending on which nodes the probe passes through. This process is repeated for each probe – each of the
nodes remains grouped with precisely those nodes it has not yet been distinguished from. The algorithm,
shown in Figure 4, terminates with the complete decomposition after considering each probe only once.

 Figure 4: Computing the Diagnostic Power of a Probe Set

As an illustrative example, consider the three probes shown above. Let S0 ={{1,2, …,7}} be the initial
decomposition. The first probe, P15, passes through nodes N1, N2, and N5, inducing the decomposition
S1={{1, 2, 5}, {3, 4, 6, 7}}. Now consider the second probe, P16, which passes through N1, N3 and N6. The
next decomposition is computed by traversing each group in S1, creating sub-groups for those nodes
which P16 does and does not pass through; this yields S2={{1}, {2,5}, {3,6}, {4,7}}. Now traverse S2 with
the third probe, P42, (passing through N2, N3 and N4) yielding S3={{1},{2},{3},{4},{5},{6},{7}}. The
successive decompositions can be efficiently computed using linked lists.

3.3 Finding the Minimal Set of Probes

We now investigate the question of finding the minimal set of probes that has the same diagnostic power
as a given set. For example, we have seen that the initial set of nine probes for the six-node network in
Figure 3 has a subset of only three probes that suffices to diagnose any single node being down. Clearly
the minimal set of probes may not be unique, although the minimal number of probes is.

Input: Dependency matrix D. Output: Diagnostic Power of the Probe Set

S0 ={1, 2, …, n}
For i=1 to r
 For each set in Si-1, create two subsets – one for those nodes j which the ith probe passes
 through (D(i,j)=1) and the other for those it does not pass through (D(i,j)=0)
 Si = collection of all nonempty subsets
Output Sr

 Mark Brodie, Irina Rish, Sheng Ma

In general, one probe station and n probes are needed to locate any single down node, because a probe can
be sent to every node. However in many situations far fewer probes may suffice. Because r probes
generate 2r possible signals (one of which corresponds to the case that there is no failure), in the ideal
situation only log(n)+1 probes are needed to locate a single failure in any of n nodes. However this is only
achievable if all the necessary links exist in the network and it is possible to guarantee that a probe follows
a pre-specified path. In the case of shortest-path routing with an arbitrary network structure, the minimal
number of probes may lie anywhere between log(n)+1 and n; the exact value depends on the network
structure and the location of the probe stations. We expect that the size of the minimal set should decrease
as more probe stations are added – this is confirmed in Section 4.

We examine three algorithms for finding the minimal probe set: an exponential time exhaustive search and
two approximation algorithms – one requiring linear time and the other quadratic time. Estimation of their
computational complexity ignores sub-processes that are common to them all, for example, finding the
shortest paths in the network, and determining the diagnostic power of a probe set. An experimental
comparison of the algorithms is presented in Section 4.

(i) Exhaustive Search

The minimal set can of course be found by exhaustive search. Not every probe subset of size between
log(n)+1 and n need be considered. Since a node can only be diagnosed if there is at least one probe
passing through it, probes can be added incrementally in all feasible combinations until the minimal set is
reached.

Let Probes(j) denote the set of probes passing through Nj, and S x T denote all subsets with one element
from S and a distinct element from T. Si=Probes(1) x Probes(2) … Probes(i) is a set of subsets, each of
size i, such that the minimal set must be a superset of at least one of them. Hence, if min is the true size of
the minimal set, then Smin contains this set (and all other minimal sets). Thus the minimal set can be found
by checking each subset in Si for successive i until one is found with the same diagnostic power as the
original probe set; this occurs when i=min.

The exhaustive search algorithm is given in Figure 5. To estimate its computational complexity, note that
each node has at least k distinct probes through it, so Smin contains at least kmin subsets which may need to
be considered before the algorithm terminates; this gives a computational complexity of kn in the worst
case. This is clearly prohibitive unless the network is quite small.

 Figure 5: Exhaustive Search (Exponential Time)

We now consider two approximation algorithms that heuristically attempt to find the minimum set but are
not guaranteed to do so.

(ii) Subtractive Search

Subtractive search starts with the initial set of r probes, considers each probe in turn, and discards it if it is
not needed; i.e. if the diagnostic power remains the same even if it is dropped from the probe set. This
process terminates in a subset with the same diagnostic power as the original set but which may not
necessarily be of minimal size. The running time is linear in the size of the original probe set, because

Input: Dependency matrix D. Output: Probe Set of Minimal Size

Compute the diagnostic power DP induced by D
S1=Probes(1)
While no subset in Sk has diagnostic power DP
 Sk+1=Sk x Probes(k)
Output the subset with diagnostic power DP

Optimizing Probe Selection for Fault Localization

each probe is considered only once; this gives a computational complexity of O(r), which is O(n) if
r=O(n), as in Section 3.1.

 Figure 6: Subtractive Search (Linear Time)

The order of the initial probe set is quite important for the performance of this algorithm. If the probes are
ordered by probe station, the algorithm will remove all the probes until the last n (all of which are from the
last probe station), since these suffice to diagnose any node. This reduces the opportunity of exploiting
probes from different probe stations. The size of the probe set can be reduced by randomly ordering the
initial probe set, or ordering it by target node.

(iii) Additive (Greedy) Search

Another approach is a greedy search algorithm where at each step we add the probe that results in the
“most informative” decomposition. For example, suppose probe set P1 induces the decomposition
S1={{1,2},{3,4}} while probe set P2 induces the decomposition S2={{1},{2,3,4}}. Although P2 can
uniquely diagnose one of the nodes and P1 cannot, it is possible to add just a single probe to P1 and
thereby diagnose all the nodes, whereas at least two additional probes must be added to P2 before all the
nodes can be diagnosed. Therefore S1 is a more “informative” decomposition than S2.

A decomposition S is a collection of groups of indistinguishable nodes with ni nodes in the ith group. If a
node is in the ith group, at least log(ni) additional probes are needed to uniquely diagnose the node. Since a
random node lies in the ith group with probability ni/n, the average number of additional probes needed to
uniquely diagnose all the nodes is H(S)=Σi(ni/n)log(ni) and measures the “uncertainty” induced by the
decomposition S. (In information theory terms, if X={1, ..., n} is the variable denoting the node, and
D={1, ..., k} is the variable denoting which group contains the node, then H(S) is the conditional entropy
H(X|D) [1]. This assumes that failures are equally likely in any node. If this is not the case prior
knowledge about the likelihood of different types of failures can be incorporated into the measure.)

The additive algorithm is shown in Figure 7. It starts with the empty set and repeatedly adds the probe
which gives the most informative decomposition. This algorithm also finds a probe set with the same
diagnostic power as the original set but which is not necessarily minimal. The running time of this
algorithm is quadratic in r, the size of the original probe set, because at each step the information content
of the decomposition induced by each of the remaining probes must be computed. This gives a
computational complexity of O(n2) if r=O(n), as in Section 3.1.

 Figure 7: Additive Search (Quadratic Time)

Input: Dependency matrix D. Output: Probe Set (possibly non-minimal size)

Compute the diagnostic power DP induced by D
S={P1, P2, …, Pr} (Pi is the ith row of D)
For i=1 to r
 If S\{Pi} has diagnostic power DP, then S= S\{Pi}
Output S

Input: Dependency matrix D. Output: Probe Set (possibly non-minimal size)

Compute the diagnostic power DP induced by D; S=∅ ;
While S does not have diagnostic power DP
 For each probe P not in S compute H(decomposition induced by S∪ P)

S=S∪ Pm, where Pm is the probe with minimum H value
Output S

 Mark Brodie, Irina Rish, Sheng Ma

4. Experiments
This section investigates experimentally both the general behavior of the minimum set size and how the
two approximation algorithms compare with exhaustive search in computing the probe set. The main
result is that the approximation algorithms find a probe set which is very close to the true minimum set
size, and can be effectively used on large networks where exhaustive search is impractical.

4.1 Setup

For each network size n, we generate a network with n nodes by randomly connecting each node to four
other nodes. Each link is then given a randomly generated weight, to reflect network load. The probe
stations are selected randomly. One probe is generated from each probe station to every node using
shortest-path routing. The three algorithms described in Section 3.3 are then implemented. This process is
repeated ten times for each network size and the results averaged.

4.2 Results
(i) Probe Set Size

Figure 8 shows the case of three probe stations. The size of the probe set found by all the algorithms lies
between log(n)+1 and n, as expected. The minimal size is always larger than the theoretical lower bound
of log(n)+1, for two reasons: (1) The networks are not very dense; since each node is linked to four other
nodes, the number of edges increases only linearly with network size. Thus many probe paths are simply
not possible. (2) Since the probes follow the least-cost path from probe station to node, the probe paths
tend to be short, passing through few nodes. This reduces the opportunities for exploiting interactions
between probe paths.

 Figure 8: Three Algorithms for Computing Probe Sets

The results also show that the approximation algorithms perform well; the size of the probe set is much
closer to the true minimum than to the upper bound. Figure 9 illustrates the performance of these
algorithms on larger networks for which exhaustive search is not feasible. The quadratic-time algorithm
slightly outperforms the linear-time algorithm, but its computational cost is higher. An alternative
approach is to run the linear-time algorithm many times with different initial orderings and take the best
result.

Optimizing Probe Selection for Fault Localization

 Figure 9: Approximation Algorithms - Large Networks

(ii) Number of Probe Stations

Although it is sufficient to have just one probe station, the interactions between probe paths increase if
probe stations are added, and so the minimal probe set size decreases. Figure 10 shows the average true
minimum set size for one, two, and three randomly placed probe stations. This confirms that adding probe
stations reduces the network load imposed by probing. However additional probe stations can be quite
expensive, and the process may soon reach a point of diminishing returns where the cost of an additional
probe station exceeds the benefit gained by reducing the size of the probe set.

 Figure 10: Increasing the number of Probe Stations decreases the number of Probes needed

5. Related Work

The formulation of problem diagnosis as a “decoding” problem, where “problem events” are decoded
from “symptom events”, was first proposed by [8]. In our framework, the result of a probe constitutes a
“symptom event”, while a node failure is a “problem event”. However, beyond this conceptual similarity,
the two approaches are quite different. The major difference is that we use an active probing approach

 Mark Brodie, Irina Rish, Sheng Ma

versus a “passive” analysis of symptom events: namely [8] selects codebooks (a combination of symptoms
encoding particular problems) from a specified set of symptoms, while we actively construct those
symptoms (probes), a much more flexible approach. Another important difference is that [8] lacks a
detailed discussion of efficient algorithms for constructing optimal codebooks; they mention only a greedy
pruning algorithm. For more detail on event correlation see also [9] and [3].

Other approaches to fault diagnosis in communication networks and distributed computer systems have
been presented during the past decade. For example, Bayesian networks [5] and other probabilistic
dependency models [6] can be used to encode dependencies between network objects; another approach is
statistical learning to detect deviations from the normal behavior of the network [4].

The approach in [6] uses a graph model in which the prior and conditional probabilities of node failures
are given and the objective is to find the most likely explanation of a collection of alarms. It is shown that
the problem is NP-hard and a polynomial-time approximation algorithm is given; the performance of this
algorithm can be improved by assuming that the probabilities of node failure are independent of one
another. Using the dependency matrix formulation enables us to take a more straightforward approach
which does not require searching the space of possible explanations for a set of alarms. Using this
approach probe sets can be found which are constructed to locate precisely those problems one is
interested in detecting.

A decision-theoretic approach using Bayesian networks is presented in [5]. The goal is to find the
minimum-cost diagnosis of problems occurring in a network. Dependencies between a problem and its
possible causes and symptoms are represented using Bayesian networks, which are manually constructed
for each problem, and probabilities are assigned using expert knowledge. The goal is to minimize the total
cost of tests needed to diagnose a fault; a single fault at a time is assumed. This approach may become
intractable in large networks due to the NP-hardness of inference in Bayesian networks; also, considering
more than one fault at a time leads to an exponential increase in complexity. Therefore, approximation
methods as proposed in this paper will be needed in practical applications that involve a large number of
dependent components.

6. Extensions

6.1 Multiple Simultaneous Failures

In this section the assumption that only one node in the network may fail at any given time is relaxed. The
general approach remains the same; for each potential problem there is a column in the dependency matrix
that represents the probe signal resulting from the occurrence of that problem. These columns can be
computed directly from the columns for single nodes. Given a candidate set of probes, the optimal subset
or approximations of it can be found as before.

For example consider again the three probes from section 3.2:

 N1 N2 N3 N4 N5 N6 N7
P16 1 1 0 0 1 0 0
P15 1 0 1 0 0 1 0
P42 0 1 1 1 0 0 0

Suppose we would also like to diagnose the simultaneous failure of nodes N1 and N4. We simply add a
new column to the dependency matrix, denoted by N14, which is easily computed by “Or”-ing together the
columns for the individual nodes, since a probe might pass through either member of a pair. This gives the
dependency matrix shown below:

Optimizing Probe Selection for Fault Localization

 N1 N2 N3 N4 N5 N6 N14 N7
P16 1 1 0 0 1 0 1 0
P15 1 0 1 0 0 1 1 0
P42 0 1 1 1 0 0 1 0

Since each column is unique, all the problems can be diagnosed. This procedure can be generalized to
detect the simultaneous failure of any subset of nodes.

Clearly the number of probe stations and candidate probes may need to be increased to allow any possible
problem to be diagnosed. For example, to diagnose the simultaneous failure of every possible pair of
nodes will generally require a number of probes quadratic in the number of nodes, every triple of nodes
will require a cubic number of probes, and so on. If any possible subset of nodes may fail simultaneously
the number of candidate probes will be exponential in the number of nodes; this is a consequence of the
inherent complexity of the task of fault localization. Whatever the candidate probe set is, the algorithms
described above can be used to find smaller probe sets with the same diagnostic power as the given set.

6.2 Dealing with Uncertainty

In this paper we have assumed that the probe signal is received correctly; no data in the network is lost or
spuriously altered. If network errors are possible then we require that the distance between probe signals
(the codebook “radius” in the terminology of [8]) is larger than a single bit, thereby providing robustness
to noise and lost packets. Dynamic network routing is another source of uncertainty, since the path probes
through the network may not be known accurately. Other changes to the network may occur; for example
nodes and links are continually being added, removed, and reconfigured. For these reasons the
dependency matrix may need to be regularly updated. Although our initial results are promising, much
work remains to be done to extend the technique to deal with the uncertainties and complex changes that
occur in real networks.

6.3 Adaptive Probing

Finally, we should note that in this work we have not considered adaptive probing, where the decision of
which probes to send depends on the result of earlier probes; instead we have treated probe scheduling as
a planning step where the entire probe set is selected before the probes are sent. Adaptive probing creates
the possibility of using an intelligent probing strategy that adjusts the probe set dynamically in response to
the state of the network. This adaptive probing scenario is an additional challenge for future work.

7. Conclusion

Using probing technology for the purposes of fault localization requires that the number of probes be kept
small, in order to avoid excessive increases in network load. In this paper we have proposed a framework
in which this can be done by exploiting interactions among the paths traversed by the probes. However,
finding the smallest number of probes that can diagnose a particular set of problems is computationally
expensive for large networks. In this paper we have shown that approximation algorithms can be used to
find small probe sets that are very close to the optimal size and still suffice for problem diagnosis. These
approximation algorithms enable system managers to select their own trade-off between the computational
cost and increased network load required by effective fault localization. Probing provides a flexible
approach to fault localization because of the control that can be exercised in the process of probe
selection.

8. References

 Mark Brodie, Irina Rish, Sheng Ma

[1] T. M. Cover and J. A. Thomas. Elements of Information Theory, New York, John Wiley & Sons,
1991.

[2] A. Frenkiel and H. Lee. EPP: A Framework for Measuring the End-to-End Performance of Distributed
Applications. Proceedings of Performance Engineering 'Best Practices' Conference, IBM Academy of
Technology, 1999.

[3] B. Gruschke. Integrated Event Management: Event Correlation Using Dependency Graphs, DSOM
1998.

[4] C.S. Hood and C. Ji. Proactive network fault detection. Proceedings of INFOCOM, 1997.

[5] J-F. Huard and A.A. Lazar. Fault isolation based on decision-theoretic troubleshooting. Technical
Report 442-96-08, Center for Telecommunications Research, Columbia University, New York, NY,
1996.

[6] I.Katzela and M.Schwartz. Fault Identification Schemes in Communication Networks, IEEE/ACM
Transactions on Networking, 1995.

[7] "Using Keynote Measurements to Evaluate Content Delivery Networks", available at
http://www.keynote.com/services/html/product_lib.html

[8] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, S. Stolfo. A Coding Approach to Event Correlation, IM
1997.

[9] A. Leinwand and K. Fang-Conroy. Network Management: A Practical Perspective, 2nd Edition,
Addison-Wesley, 1995.

