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Voice over Packet (VoP) technology has made significant inroads into service providers’ infrastructure, 

leading to the convergence of voice and data networks. As voice functionality gets distributed across the net-
work, VoP management systems need to address the challenges of coordinated provisioning across multiple 
devices. To be able to cope with the many flavors of VoP networks that exist and the multitude of different 
network elements that they consist of, it becomes a necessity for the provisioning system to be custom pro-
grammed. This paper presents a metadata driven approach, based on a concept of Service Objects, that allows a 
provisioning application to easily handle variations in network architecture, equipment types, and equipment 
versions. We describe our implementation experiences with a VoP management system that leverages our 
approach and its flexibility, utilizing XML definitions and Enterprise Java Beans as implementation technolo-
gies. 
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1. Introduction 
Voice over Packet (VoP) technology in general and, with the dominance of IP, Voice over IP 

(VoIP) in particular has made significant inroads into service provider infrastructures. It provides an 
excellent value proposition, allowing service providers to integrate voice services with many value 
added services on the same infrastructure as data for significantly lower costs, leading to the conver-
gence of voice and data. A wide variety of relatively inexpensive and simple (hence easy to manage) 
network elements (NEs) provide a high degree of flexibility to deploy high-bandwidth, carrier-class 
network services. Operations of the converged network is simplified over having to maintain sepa-
rate, dedicated networks for different services. However, at the same time new challenges for voice 
network management are introduced. Compared to networks of traditional, more monolithic TDM 
switches, voice functionality has now become much more distributed across multiple devices, and 
multiple types of devices, across the network.  

One aspect of particular importance is provisioning, which is critical to successful deployment of 
voice services on packet infrastructure. Due to VoP’s distributed nature, provisioning now requires a 
greater deal of coordination than it used to. Just as importantly, many different types of network ele-
ments can participate. For instance, in principle any router that implements MGCP can participate as 
Media Gateway in an MGCP-based VoIP network. Routers can be of different versions, different 
types, and different vendors. This leads to an unprecedented flexibility in terms of network engi-
neering, but also unprecedented heterogeneity of devices to be accounted for by provisioning systems 
for voice services.  

This paper discusses experiences gained in the development of a VoP management system that in-
cludes the capability to provision VoP networks. An overview of the system can be found in [1]. We 
will focus specifically on provisioning and how the challenges relating to the distributed and highly 
heterogeneous nature of VoP are addressed. One of the design goals was to be able to easily integrate 
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management applications with various types and versions of network devices, network architectures 
and control protocols, with initial focus on MGCP. To this end, we propose an approach based on a 
concept that we call Service Objects, driven by metadata, to provision the network. This concept 
allows to deal with the dynamic, heterogeneous and distributed nature of VoP networks rather nicely, 
making it easy to adapt the system to different network architectures and rapidly incorporate new 
types and variations of devices. We describe our implementation experience building a provisioning 
application as part of a VoP management system, which confirmed the flexibility of our approach. 
Our system leverages XML [9] and Enterprise Java Beans (EJB) [4] as implementation technologies 
whose value in building management applications has been documented before (e.g. [2, 5]). No 
inferences about Cisco’s product direction or product features should be made.   

Section 2 gives an overview over the managed VoP network architectures and outlines some 
management considerations. Section 3 presents our VoP management system, which includes the 
provisioning subsystem, and its architecture. Section 4 elaborates challenges in building VoP provi-
sioning applications, including issues related to object model granularity and versioning. Section 5 
introduces the concept of a Service Object (SO) and discusses a supporting architecture that allows 
SOs to be meta-driven, as well as some implementation considerations. Section 6 describes our im-
plementation experience. Finally, section 7 presents some conclusions. 

2. VoP Networks and Management Considerations 
 Different types of Voice over Packet networks exist, distinguished along the lines of the control 

protocols they are based on. As mentioned, we were initially concerned with management and provi-
sioning of MGCP-based networks, although we expect our concepts to apply analogously to networks 
based on H.323 or SIP. (Ku et al have previously described a system for H.323 provisioning [3].)  
Great flexibility exists in engineering those networks, which therefore come in many different varia-
tions. However, they all underlie the same common theme, which is the separation of voice func-
tionality into planes:   

The bearer plane deals with transport of the payload. The devices at the edge of the bearer plane 
are referred to as Media gateways (MGs). They constitute the entities through which the bearer traffic 
enters the VoP network. When interconnecting VoP and TDM networks, it is the MGs who provide 
for the TDM to packet (and vice versa) conversion. Routers between MGs provide for the actual 
bearer fabric (the “data cloud”), shuffling data packets back and forth.  

The control plane is responsible for signaling and call control and provides the actual “intelli-
gence” of the network. Its components are commonly referred to as Media Gateway Controllers 
(MGCs). MGCs control MGs through the MGCP protocol, instructing them when to set up or tear 
down connections, requesting notification of specific events for further processing, etc.  

This decoupling allows the bearer plane to be shared with other services, which might be con-
trolled through their own control planes, utilizing the same transport infrastructure. Please refer to the 
literature (e.g. [6, 8]) for a more detailed description and further refinements on this subject. Collec-
tively, bearer and control plane can provide functionality analogous to that of traditional PSTN 
switches, and thus logically replace them. Therefore we term a set of associated MGs and MGCs and 
the network connecting them as “virtual switch”. (This is not to be confused with the term soft 
switch, which is often used synonymously with MGC but does not include the associated MGs.)  

As far as management is concerned, some of the very properties that make VoP technology so at-
tractive also make its management a challenge, including the distribution of functionality, openness, 
and flexibility. To deploy voice services effectively, all components of the virtual switch must be 
provisioned in a coordinated way. Please consider the following example borrowed from [1], which 
lists the steps that are required in establishing a PRI service. The example refers to signaling back-
haul, i.e. the concept of transporting signaling payload between the MG and the MGC, as illustrated 
in figure 1. Signaling backhaul becomes necessary in the event that signaling physically terminates 
on the MG – the MG, not able to process signaling, needs to forward it to the MGC. 

1. Add a line with TDM endpoints and a CCS channel on a Media Gateway;  
2. Instruct the MGC to add a new trunk group and associate it with the customer; 
3. Instruct the MGC to add the trunks; 
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4. Associate them with the according MG endpoint; 
5. Verify a signaling backhaul connection has been set up (also, depending on the OPT solution, 

primary and secondary need to be dealt separately for reliability purposes); 
6. Set up signaling backhaul connection if required (which involves adding signaling backhaul 

terminations at both MG and MGC, as well as possibly setup of a layer 2 connection to carry 
the signaling backhaul connection (e.g. an AAL5 PVC in VoATM deployments);  

7. Set up a cross connect between CCS channel and signaling backhaul connection at the MG if 
required (depends on the type of MG).  

 

Figure 1 -  Signaling backhaul and PRI 

This illustrates that many steps can be required to complete the provisioning of a single service, 
which makes it inefficient and error prone to provide manually. If any of these steps fail, the man-
agement system should be robust to retry intermediate steps, or roll back partly completed steps. 

3. OMS and its Architecture 
In order to deal with the management challenge of VoP networks, we have built a management 

system, which we will dub “OMS” (Open packet telephony Management System). At its core, OMS 
provides a set of functions that allows users to operate in the more meaningful context of a virtual 
switch, which in the above example would allow the operator to simply request “add PRI service on 
the specified line for a specified customer”. So, instead of requiring individual operations to be 
performed at each of the network elements, OMS offers functions such as the following:   
o Turn up/tear down/modify service for a customer  
o Add/remove/modify a customer  
o Create/delete/modify trunks, trunk groups, routes, route lists  
o Associate or disassociate an MG from a virtual switch 
All these functions are provided as if they were single operations, hiding the underlying opera-

tional complexity of having to deal with multiple operations across multiple network elements from 
the user, thus greatly improving operations efficiency and accuracy. In the following we will focus on 
the provisioning application that is provided by the system.  

The basic OMS architecture as it pertains to provisioning is shown in Figure 2. It consists of the 
following components:  
o The Managed Object (MO) Repository realizes the conceptual object model required by the 

applications.  
o The Discovery Modules interacts with the underlying EMSs and populates the MO Reposi-

tory.  
o The Behavior Modules implement specific MO operations.  
o The Provisioning Subsystem consists of modules for configuration management.  
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The Provisioning Subsystem functions by creating, modifying, deleting, or invoking actions on the 

MOs in the MO Repository. The MO Repository shields applications from having to interact directly 
with the network elements respectively their element management systems (EMSs), making trans-
parent the specific way in which the NEs are accessed. Behavior modules and discovery modules 
implement MO operations and populate the MO repository respectively.  

Figure 2 – System Architecture 

There are two categories of MOs, as depicted in figure 3: Virtual Entity MOs provide the abstrac-
tion of the virtual switch as a whole and the components and services that it provides, aggregating 
information across network devices and coordinating between them as necessary. They essentially 
form a management hierarchy on top of Device MOs, which represent the actual network elements 
and their resources, such as MGs and MGCs. An M.3100 based object model [7] is used to model the 
Device MOs and the Virtual Entity MOs. It is generic enough to accomodate multiple network ar-
chitectures and different flavors of MGs and MGCs. The model can also be extended to support mul-
tiple control protocols. As we shall see in the next section, despite the model’s power, there are a lot 
of practical issues to utilize it directly for provisioning applications in an environment as dynamic 
and heterogeneous as VoP.  

4. Challenges in Building a VoP Provisioning Application 
Key to our provisioning application and indeed to our entire management system is the object 

model on which to operate. Providing the object model in a middle tier in an n-tier management sys-
tem architecture provides a great advantage of allowing to separate the application logic from details 
of how to interact with the underlying systems and NEs. This makes the system more robust and 
easier to maintain.  

In general, new variations of NEs that map to the same abstractions, i.e. MOs, will lead to exten-
sions in the MO layer. For instance, extensions in the behavior and discovery modules will be re-
quired for those MO classes whose mapping is affected by the new variation, as it differs from be-
fore. In this case, no application layer modifications are necessary. However, when a new NE intro-
duces some new properties that need to be considered in provisioning, the object model itself will 
have to be extended. The generic model that the management is based on provides the necessary 
flexibility to handle multiple flavors of MG and MGCs, and can accommodate the extensions. Of 
course, in addition to extensions in the MO layer, changes to the application itself become necessary 
in order to account for the new extensions in the object model.  

In the VoP management domain, those kinds of scenarios occur constantly. For instance, new 
types of Media Gateways that are introduced into the network must be supported. A single network 
may also have multiple versions of the same components. For example, some of the MGs may be at 
version 1.1, and some others at release 1.2. It is not practical to expect that the network be upgraded 

Discovery Modules

Behavior Modules

Distributed Managed Object
Repository

MGC EMS MG EMS

MGC MG

Provisioning Subsystem

Managed
Object

Tier

Application
Tier

Discovery Modules

Behavior Modules

Distributed Managed Object
Repository

MGC EMS MG EMS

MGC MG

Provisioning Subsystem

Managed
Object

Tier

Application
Tier



Provisioning Voice over Packet Networks: A Metadata Driven, Service Object Based Approach    
to the same level at the same time. Even with a concept as compelling as that of an MO layer, this 
environment where multiple flavors of nodes and multiple versions of object instances have to be 
accommodated on an ongoing basis introduces challenges for the development of provisioning appli-
cations. Those challenges include the tradeoff between fine-grained and coarse-grained object 
models, i.e. flexibility and ease of extensibility vs. performance considerations, and the ability to 
keep up with new variations of devices that have to be mapped to.  

Figure 3 - MO categories 

4.1. Object Model Granularity 
An object model in the MO Repository allows the OMS applications such as the provisioning sub-

system to work with multiple implementations of the network elements such as different types of 
MGC and MG by factoring out their common facets into common classes and placing their differ-
ences into subclasses. In general, fine-grained models are able to accommodate new types of devices 
much more easily than coarse-grained models, which have a tendency to break in such scenarios. 
This is because the fine-grained model tends to separate out the atomic concepts in a domain, which 
can then be combined at will in virtually any variation, while coarse-grained models need to make 
assumptions about how some of these concepts are combined in a particular domain. The ability to 
adapt to any kind of VoP network was a key goal for our system; hence we decided to go with a fine-
grained model. This introduces a set of issues for our system to deal with: 
o Minimizing application complexity. A fine-grained model can lead to issues of application 

complexity vs. a coarse-grained model, because the application has to worry much more about 
how to combine different concepts that are scattered around, linked by a multitude of relation-
ships. Multiple objects per operation implies more complexity in getting, and especially cre-
ating, modifying and deleting the objects as transactional control, both across the objects and 
the network element entities that the objects represent. Certainly, a user or client application 
will not want to be exposed to these issues. However, they apply even if the transactional 
control is delegated to the Virtual Entity MO, which in turn handles its dependencies with 
other MOs, as opposed to an application.  

o Ease of use. A fine-grained model introduces the issue of how to collect information that is re-
quired for operations that affect multiple objects in a way that does not make the system cum-
bersome to use. Let’s consider the example of a “virtual switch trunk” MO, which in turn de-
pends on a DS0 MO modeling the physical endpoint on the MG, and a trunk object on the 
MGC, modeling the MGC’s properties of controlling that DS0. (In our system, the model is 
actually optimized not to model DS0s individually.)  There are attributes that are specific only 
to the MG or to the MGC, which hence should be modeled as part of the MG or MGC object 
respectively. An example would be, for instance, echo cancellation parameters, which apply 
only to the line side. A user, however, may want to operate on the concept of a virtual switch 
trunk, without concern about what other objects the virtual switch trunk is composed of, since 
having to deal with MG and MGC objects separately would defeat the purpose of our man-
agement system. In presenting a virtual switch trunk to the user (or an application), the system 
will have to include those attributes which (internally) pertain only to the MG or the MGC 
side. There are different ways to deal with this from the modeling side, all of which have 
some drawbacks: 

o MG and MGC attributes could be modeled only as part of the Virtual Entity MO, not 
as part of the Device MOs. This would however compromise the model’s precision 
and introduce issues with regards to synchronization and discovery.  
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o The Virtual Entity MO could duplicate, or “cache” relevant attributes of Device MOs 
that need to be exposed to the user. The drawback is that this introduces other practi-
cal issues with regards to maintainability (changes requiring extensions to MG or 
MGC objects would now also impact Virtual Entity MO) and object model integrity.   

o The Virtual Entity MO could offer actions with parameters that map to the Device 
MO attributes, so the model information is implicitly included in action parameters. 
Again, it introduces issues with regards to maintainability and maintaining integrity 
of actions and object model.  

In addition, users and applications will want certain operations to extend over multiple MOs, such 
as when requiring a list of all trunks in a virtual switch. The system needs to provide object services 
to allow for these types of operations.  

All this means while for system implementation purposes we prefer a fine-grained object model, 
the user will want to operate on a coarse-grained object model. This difference has to be reconciled, 
and is key to how our system works. At the provisioning subsystem level, applications such as a GUI 
or an OSS could be greatly simplified if the services are already presented at this coarse-grained 
concept. Using virtual switch trunks as example, these high level applications should be able to get 
virtual switch trunks, modify virtual switch trunks, create a new virtual switch trunk and delete vir-
tual switch trunks, not the individual fine-grained objects. Our approach presented in section 5 pro-
vides just that:  it allows to retain the benefits of a fine-grained object model at the managed object 
layer in terms of maintainability and extensibility, yet offers users and applications the benefits of a 
coarse-grained object model which is exposed through SOs that are driven by meta-data to require 
minimum development or customization effort.  

4.2. Variations in the Managed Objects 
Having a generic object model in theory shields the application from the actual entities they are 

representing. In reality there are always variations among network element implementation or types 
and versions of the same element type, requiring different mappings as implemented for instance in 
the behavior modules. Some of the types and versions introduce slight modifications at the model 
level, such as varying ranges for a parameter depending on NE capacity (e.g. 1..100 or 1..1000). In 
some cases, a new parameter may need to be supported. Some attribute constraints may even have to 
be determined at run-time based on some formula, state information or current configuration.   

In general, the client application should be aware of those variations so that input ranges can be 
checked at the client level and the right choices requested from the user, as opposed to having to en-
gage in trial-and-error behavior. Extending and modifying the object model for all such cases can be 
impractical and requires changes not only in the MO layer but also the client that makes use of it. 
When applications have to simultaneously support multiple types and versions of the network ele-
ment components, implementing those rules on the client application side quickly becomes unman-
ageable from a development perspective. A lightweight, dynamic extension capability on top of the 
existing object model that allows to account for minor deviations and variations of the object model 
and its behavior is much preferable. Introspection and dynamic invocation capabilities that allow 
clients to be generically implemented are addressed by our approach that will be presented in the next 
section.  

5. The Service Object Concept 
In this section, we introduce the concept of Service Objects (SOs) to address the provisioning chal-

lenges discussed earlier. SOs provide a particular view on the object model provided by the underly-
ing MO layer. These views allow the provisioning application to be decoupled from the fine 
granularity and variations of the model provided by the MO layer. Because they are driven by meta-
information, they are easily introduced dynamically. The following concepts are distinguished: 
o The instance information exposed through this view is referred to as the Service Object. The 

abstract concept that a view represents is referred to as the SO type.  
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o The definition of a view is referred to as the SO definition. It is specified using XML. There 

can be multiple SO definitions for an SO type, reflecting different variations of the same con-
cept as will be explained below. 

o SOs are not “objects” that are exposed directly. Rather, they are views that are accessed and 
operated upon through a dedicated set of server objects, called SO components. There is one 
set of SO components per SO type. SO components operate on the XML-based SO definitions 
to provide the specified views, i.e. they are meta-driven.    

The following subsections elaborate these concepts in more detail.  

5.1. Service Objects 
A Service Object is a view that maps to one or more managed objects. It has parameters that map 

to attributes of the associated MOs, as specified in the SO definition. It addresses the issues outlined 
in section 4 as follows: 
o Object model granularity. Because an SO can pertain to multiple MOs, it can effectively 

aggregate them into a more coarse-grained model to better address the users’ and applications’ 
needs. The SO not only exposes information to applications, it also allows applications to 
operate on this view as if it were a single entity.  

o MO variations. To address the variability of the MOs, the dependencies between the SO 
parameters and the MO variations resulting from type and versions of the network element are 
specified declaratively as part of the SO definition. There can be multiple SO definitions per 
SO type. Only one SO definition is valid for any particular SO, depending on certain prede-
fined properties of the MO that the SO maps to. Those properties are the containing network 
element type or version. This allows us to specify such dependencies and constraints only at 
the SO level without requiring any changes in the MO model. By building on top of SOs and 
interfacing to SO Handlers rather than the MOs directly, no modifications in client applica-
tions are necessary as they make use of the introspection and dynamic invocation capabilities 
that the SO components provide.   

Again, SOs constitute just a view. We are not defining a new object model layer and we are not 
mediating MOs into a new model. No new persistent or transient object are created.  

MO A
attr a

SO 
par 1
par 2
par 3

MO B
attr b

MO C
attr c

SO’ 

par 1
par 2
par 3’
par 4

par 1 = attr a

par 2 = attr b

par  3  = attr c
MO C’
attr c’
attr d

par  3’  = attr c’
par 4 = attr d

<SvcObj>Handler

Service Object Component

Service Object Definition

new version  
Figure 4 – Service Objects 

Figure 4 shows a conceptual diagram of a Service Object that maps to three managed objects. SO 
has three parameters which map to attributes a, b, and c of MOs A, B, and C, respectively. Suppose 
an extension to the MO layer’s object model is introduced, leading to a new MO class C’ which 
includes a new attribute d. (A concrete example would be SO representing a trunk view, with C repre-
senting the line side of the MG, with d being a new line attribute for echo cancellation, which we 
would like to include in our trunk view.)  A new view SO’ needs to be defined which takes the new 
mapping to C’ with the new attribute d into account. Both SO and SO’ represent variations of the 
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same concept (in the example, an application would think of both simply as a trunk). Whether an 
application invokes SO or SO’ is handled transparently by the Handler, which determines the appli-
cable SO definition for its SO type.  

 

5.2. Service Object Components 
Transparency and flexibility to client applications is achieved by providing a set of services that 

allow provisioning applications to operate on SOs as if they were MOs, creating, retrieving, modify-
ing, and deleting SOs, based on the declarative SO definitions. These services are provided by a set 
of application level server components, called SO components, that in our case are implemented as 
EJBs. These components are Handler, Iterator or Cursor, and Browser, as illustrated in figure 5. As 
mentioned before, there is one set of components for each SO type. SO components are meta-driven 
by SO definitions.  

interface <ServiceObject>Handler {

getParamSetForCreate()
getParamSetForUpdate()
getParamSetForDelete()

create()
update()
delete()

getProvItemForCreate()
getProvItemForUpdate()
getProvItemForDelete()

}

Parameter Services

Immediate Configuration

Deferred Configuration  via Provisioning Job

interface <ServiceObject>Iterator {
start()

stop()
}

Service Object List / S earch servic e

getContainedClasses()
getContainedObjects()

}

Containment Relationships Browser
interface <ServiceObject>Browser {

getInitParamSet()

Get, Modify, Create, Delete, Action Services

<Other Service Object Specific Actions>

startWithUpdates()

interface <ServiceObject>Iterator {
start()

stop()
}

Service Object List / S earch servic e

startWithUpdates()

interface <ServiceObject>Cursor {
select()

}

Service Object Cursor service

getNext()

interface <ServiceObject>Iterator {
start()

stop()
}

Service Object List / S earch servic e

startWithUpdates()

 

Figure 5 Service Object Component Interfaces 

The Handler is a component that allows for SO creation, modification and deletion, as well as Pro-
visioning Job related services. (Provisioning Job services are to be used with Provisioning Job 
components that provide a batch/scheduled provisioning services. This paper will not discuss this 
aspect further.) In addition, the Handler provides services to retrieve the SO parameters of the SO 
definition, allowing client applications to discover how an SO has been defined. Since the Handler 
component is the most critical component, its services are described in more detail in section 5.3.  

The Iterator is a component that provides list or search services to find SOs based on some criteria. 
This component only returns summary information about the SO and not the entire parameter values 
of the SO. The SO itself can be retrieved using the Handler component. A client will receive SOs 
asynchronously, and option to receive updates to keep the list up-to-date is available. The Cursor 
component is the synchronous version of the Iterator and provides database cursor like functionality. 

The Browser is an optional component that can be used to display a containment hierarchy of the 
elements associated with a SO. For instance, the Browser component could return a physical con-
tainment of the equipment. One of the purposes of this component is for applications to be able to 



Provisioning Voice over Packet Networks: A Metadata Driven, Service Object Based Approach    
choose resources used in creating a new SO. Another is for selecting an element to be used for selec-
tion criteria in searching SOs. 

 

5.3. Service Object Handler Services 
All Handler components implement the same basic and generic service interface. Information 

about SOs is returned in the form of a set of parameters, which map in a specified way to the under-
lying MOs. To create or modify SOs, the Handler similarly takes the input as a set of parameters. 
Thus no SO specific interfaces are needed to perform the basic services of retrieval, creation, modifi-
cation and deletion. Since a Handler component is provided per SO type, a customized SO specific 
interface can be provided if required. This approach is similar to the Attribute Value Assertion 
(AVA) concept in the CMIP protocol or the VarBind concept in SNMP but with a difference. The 
client of CMIP or SNMP services generally must know what parameters or attributes must be speci-
fied for the object as well as constraints for their values. Usually the knowledge about variations must 
be coded into the client applications. While some constraints are defined in the object definition, 
these definitions are static and not necessarily implemented by the specific object that the client is 
interacting with. On the other hand, the SO Handler component that processes the create, modify and 
delete requests allow clients to discover the required parameters and their rules using the parameter 
services interface (see getInitParamSet(), getParamSetForCreate(), getParamSetForUpdate() and 
getParamSetForDelete() in Figure 4.). The rules are returned as parameter properties and constraints. 
They are generated by the SO Handler component based on the static definition of the parameter 
properties and constraints in the SO definition and run-time behavior coded in the Handler compo-
nent. For example, the list of allowed value may be constructed and retrieved at run-time from the 
network element itself. 

In essence the interaction between the SO Handler and its clients resembles the interaction be-
tween an application and a human user. When a user creates a new object through a graphical user 
interface, typically the application would ask what type of object to be created and some initial pa-
rameters that are known to apply generically. Then it would prompt the user for the parameters that 
need to be specified through a series of forms. These forms usually perform value checking for the 
parameters. This contrasts with a (less friendly) interface in which a user would have to know a priori 
which parameters are required and what constraints apply, having to provide them without being 
prompted.  

The Handler component is well suited to implement such applications. The parameter set and its 
rule can be used to render the form.  Once the form is populated, the parameter set is sent to the Han-
dler either by invoking the create() method directly or by invoking getProvItemForCreate() to get 
provisioning items that can be added into a provisioning job. The Handler component also contains 
business logic that will perform any checking and validation that go beyond parameter checking. 

5.4. Service Object Definition 
The SO Definition serves as a meta-data for the SO Handler component in providing its parameter 

services. Thus the rules are not hard-coded but data-driven. XML is used to define SOs because of 
the hierarchical nature of the content structure and the wide availability of the XML parser. This 
standard has become widely used recently as a format for exchanging data between applications and 
for configuration files. An SO definition contains two basic parts:  
o The SO parameter definition specifies the properties of SO parameters, such as data type, con-

straints, associated Managed Object class and attribute, and presentation information like label 
and a short help text. These properties can be overridden based on the type and version of the 
MGC, MG and MG card components in the definition itself. This facility can also be used to 
specify default, range or enumeration values or even parameter labels that are sensitive to type 
and version of MGC, MG and MG Card. All parameter properties can be specialized this way.  

o The parameter set definition specifies the SOs themselves, i.e. their parameters and 
appropriate subsets for various types and versions of the MG, MGC and MG card components 
of the Virtual Switch.  



Jung Tjong, Prakash Bettadapur and Alexander Clemm 
 
Each SO type is associated with a configuration file. The structure of the configuration file is 

shown in Figure 6. A configuration file contains one or more SO definitions. Each SO definition 
contains four basic sections:  

 

<svcO bjDef name= ”soname” label=”abc” ...>

<soInit Param>

< /soInitParam>

<paramGroupDef name=”grpname”>

<default> ... < /default>
<range > ...  < /range>
<enumset> ... </enumset>

<param DefConstraint TYPE VS attributes + paramDef attributes>

<initParamDef name=”paramname” datatype=”str ing”.. .>

<soParamGroup>

</initParamDef>
...

</soPa ramGroup>

...

<soParam>

</soParam>

<default> ... < /default>
<range > ...  < /range>
<enumset> ... </enumset>

<paramDef name=”paramname” data type=”string” . ..>

</paramDef>
...

< /paramDefConstraint>

<default>  ... < /default>
<range>  ...  </range>
<enumset> ... </enumset>

<soPa ramSet>

<soPa ramSet>

<paramSetDef TYPE VS attributes>
<paramSetItem name=”paramname” />
...

< /paramSetDef>
...

</svcObjDef>

...

Service Object

Initial 
Parameter Set
For Creation

Parameter Group
for  grouping
paameters in
the set

Parameter
Defintion Specialized

Parameter
Definition

Parameter Set
Definition

Parameter Set
Definition
For a specific
Type and Vs

Definition

<int value =”value” />
<float value=”value”/>
<string value=”va lue”/>
<enum nam e=”name” value=”value”>
<strenum name=”name” value =”value”>
<seq name=”name”>

<seqItem name=”name”>

</se qItem>

</se q>
<seqOf>

</se qOf>

... simple type ...

...

... simple type ...

Data Types and Values  inside default, range and
enumSet tags. 

 

Figure 6 - Service Object Definition XML Structure 

o The initial parameter set defines the parameters that user need to specify in creating a new SO. 
The information in the type and version information is used to select the parameter set.  

o The parameter group definition is to define a logical grouping of parameters in the parameter 
set. This can be used, for example to group parameters together in the user interface form.  

o The parameter definition specifies properties associated with the parameters. A parameter 
definition constraint section allows to specify or restrict the properties to certain NE types and 
versions. For example, the TYPE VS attributes could be mgc_type=”vsc” and 
mgc_vs=”8.1” to indicate that the particular parameter only applies for MGCs of type VSC 
with version 8.1.  

o The parameter set definition specifies the parameters that are applicable to a particular NE 
type and version. It includes two attributes moClass and moAttr that specify which 
Managed Object class and Managed Object Attributes are associated with the parameter.  

6. Implementation Experience 
In this section we will describe how the SO concepts have been realized in the OMS Provisioning 

Subsystem. We will also present interactions between a client and the SO components to further illus-
trate their usage. 
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6.1. Provisioning Subsystem 
The OMS Provisioning Subsystem provides functions for configurations associated with day-to-

day VoP service provisioning. Among the frequently performed configurations are adding, modifying 
and deleting PRI-Backhaul, Trunk Group, Trunk and Route List. These entities constitute SO types 
and are represented in the MO repository as multiple MOs.   

We choose to implement the SO components using Java and EJB for ease of implementation and 
Java GUI integration (by allowing Java objects to be passed between the component and the GUI). 
For each SO type we introduce its own Handler and Iterator components. For example, the Trunk-
Handler and TrunkIterator implement the Handler and Iterator components for Trunk SO. The 
Browser components are shared among the SOs since the resources needed to provision them can be 
presented with the same set of objects.  We followed the SO component pattern to also create a provi-
sioning job handler component that provides services for creating, modifying and deleting provi-
sioning jobs, which control batches of prescheduled provisioning activities. Because of the transac-
tional nature of provisioning jobs, they are persisted in a repository.  

Using the SO components we are able to create a Java based GUI that is largely generic (SO spe-
cific behavior and business logic is provided by the Handler component). We design a GUI frame, 
shown in Figure 7, that displays a tree view on the left panel, and list view on the right panel. The 
content of the tree view is driven by the data returned by the Browser component and would show a 
virtual switch containing the MGs with their physical equipment hierarchy and the MGC with its 
logical components, such as route lists. The content of the list view is driven by the Iterator compo-
nent. The list view frame is replaced by a form to display SO parameters when users create a new SO 
or modify one of the existing SOs from the list in the list view. 

 

Figure 7 GUI Display 

The GUI also shows a list of provisioning job that has been submitted and their status. When user 
creates, modifies or deletes one or more SOs using a provisioning job, a new provisioning job is 
created in the Provisioning Object Repository. The behavior associated with the provisioning job in 
the repository would then execute the newly created provisioning job and update its status after it has 
been processed. We will discuss the interaction between the GUI and the Handler component in a 
PRI-Backhaul creation and modification. 

6.2. GUI and Service Component Interactions 
There are two options for provisioning an SO: immediate provisioning that applies the configura-

tion immediately to the NEs, or provisioning through provisioning job that applies the configuration 
in the background at a prescheduled time. Here we will illustrate the provisioning of a PRI backhaul 
that would require the use of a provisioning job. 

The first step in the configuration process is for the GUI to create a new provisioning job request. 
The second step is to fill it with provisioning job items related to creation, modification or deletion 
requests that are returned by the SO Handler component. Finally when the provisioning job request is 
completed, the GUI submits the provisioning job request to the provisioning job Handler component. 
When a user adds a new PRI backhaul, the GUI first retrieves the initial parameter set using the Han-
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Parameter FormList View

Parameter Form 
(Detail)

Tree View
Parameter FormList View

Parameter Form 
(Detail)
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dler’s getInitParameterSet() and displays the parameters to the user. For PRI backhaul, the 
initial parameter set consists of just one parameter: a string where user must specify the MG compo-
nent name, the card number and the DS1 line number. The tree view constructed by the Browser 
component can be used to simply drag a DS1 line into the parameter field. Next, the GUI invokes the 
Handler’s getParamSetForCreate() method to retrieve the parameter set for the new PRI 
backhaul. The parameter set and the parameter properties are determined based on the DS1 line that 
is selected, which in turn determines the MGC, MG and MG card types and versions. These parame-
ters are used by the GUI to render the parameter form and initialize their particular default values. To 
make the form generic, we even use one of the parameter properties to specify what Java GUI class to 
use to receive the parameter value from the user. The PRI backhaul parameter set consists of 
attributes from three objects under the MGC, one object under the MG and one object under virtual-
Switch. After the parameters are specified, the GUI invokes the Handler’s getProvItemFor-
Create() method to obtain the provisioning item that it can insert into the previously created pro-
visioning job. The provisioning process is completed when all the provisioning items are added and 
the provisioning job is submitted to the Provisioning Job Handler component. 

The interaction to modify a SO is similar to the creation process. In this case the parameter set is 
returned by the Handler’s getParamSetForUpdate() method and the parameters initialized 
with their current values.  

7. Summary  
In this paper, we presented the concept of Service Objects which are driven by XML-defined 

metadata to facilitate the provisioning of VoP networks. This approach allows provisioning applica-
tions to keep up with the high degree of heterogeneity (with respect to NE types, versions, and net-
work architectures) of those networks. It bridges the gap between coarse-grained concepts needed by 
users and applications to interact with the provisioning system, and fine-grained concepts that are 
well suited to keep underlying object models and applications generic. While our target application 
was the provisioning of VoP networks, we would expect our concepts to apply and provide benefits 
also to other domains with similar problem characteristics. We have successfully applied these con-
cepts in building a VoP management system for MGCP-based networks. Possibilities for future work 
include the providing of tools that facilitate the automatic generation of SO definitions. 
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